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Conics exhibit many Ask anyone in the CAD/CAM industry or graphics about the most
tmp ortant geom etric promising curve or surfac'e form. T.he answer is mv.anably N.URBS —

. nonuniform rational B-splines. In this article, I describe the main geomet-
prop erties Of NURBS. ric features of this curve and surface representation. Surprisingly, most of
This article surveys Conic these features are already exhibited by conics, which are a special case of

geom etry and shows how NURBS. I discuss properti.es typical qf NURBS—that is, I don.’t.d'well on

2 . properties already present in polynomial curves. I adopt the definition that

it carries over to NURBS. a NURB curve or surface is a piecewise rational polynomial curve or sur-
face. Also, I assume familiarity with the concepts of integral (that is, non-
rational) Bezier and B-spline curves and surfaces.”” For more advanced
material on NURBS, see NURBS for Curve and Surface Design.4

Conics

Conic sections, the oldest known curve form, are still essential to many
CAD systems. In 1944, R. Liming5 used conics as the basis for the first
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CAD system: He based the design of airplane fuselages on
calculating with conics, as opposed to the traditional drafting
with conics. (Because of the tools available to Liming, we
might now call his method “calculator-aided design.”) There
are a number of equivalent ways to define a conic section; for
our purposes the following one is very useful:

A conic section in two space is the perspective projec-
tion of a parabola in Euclidean three space into a plane.

To formulate conics as rational curves, we typically choose
the projection’s center to be the origin 0 of a 3D Cartesian
coordinate system. The plane into which we project the
parabola is the plane z = 1. Since we study planar curves in
this section, we can think of this plane as a copy of two space,
thus identifying points [x y]” with [x y 1]”. Our special projec-
tion is characterized by

x x/z
yi = |ylz
z 1

A point [x y]” is the projection of a whole family of points: Ev-
ery point on the straight line [wx wy w]T projects to [x y]”. In
the following, I use the shorthand notation [wx w]|” with x €
IE” for [wx wy w]". (Sometimes the set of all points [wx wy w]”
is called the homogeneous form or homogeneous coordinates
of [x y}%)

Let ¢(t) € E' be a point on a conic. Then there are num-
bers w,, wy, w, € IR and points by, by, b, € IE” such that

- woby B3 (1) +wb, B} (1) +w,b, B; (1)
woBG (1) +w, B} (1) +w, B; (1)

() )

that is, we can express ¢ as a parametric rational quadratic
curve. Here the terms BZ(z) refer to quadratic Bernstein poly-
nomials.”

We call the points b; the control polygon of the conic ¢; the
numbers w; are weights of the corresponding control polygon
vertices. Thus, the conic control polygon is the projection of
the control polygon with vertices [w;b; w,]”, which is the con-
trol polygon of the 3D parabola that we projected onto the
conic c.

The form in Equation 1 is called the rational quadratic
form of a conic section. If all weights are equal, we recover
nonrational quadratics—that is, parabolas. As w; becomes
larger—in other words, as {w;b;, w;] moves “up” parallel to
the z axis—the conic is “pulled” toward b,.

Conics have many interesting geometric properties, such as
eccentricity and axes.®

Weight points

For any conic we can compute the shoulder tangent: the tan-
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gent at ¢ = 1/2. It will intersect the two polygon legs at points
q, and q, respectively. But we don’t have to compute the ac-
tual intersections to determine ¢, and q,; we can express
them as

wobgy +w,b,
0= » G
Wy +w,

- wib, +w,b,

witw,

The points q, and q, are called weight poims.7 Instead of pre-
scribing the weights of a conic, we might as well prescribe the
position of the weight points, or, equivalently, the shoulder
tangent. Figure 1 shows the weight points of a hyperbolic seg-
ment.

If the control points and the weight points (that is, the
shoulder tangent) are given, the point p on the shoulder tan-
gent is

_by+2wb; +w,b,

p=—— 0]

142w, +w,

where w; = ratio(by, qq, b;) and w, = wy/ratio(by, q;, b,).

by

by

bo

Figure 1. The weight points of a hyperbolic segment.

Reparameterization

A common nonzero factor in the w; does not affect the
conic at all. If wy # 0, we can therefore always achieve wy =1
by a simple scaling of all w;. But other weight changes might
also leave the curve shape unchanged: These correspond to
rational linear parameter transformations t = t(1). Let’s set

N o _Pa-1)
=raner TR
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for some p € IR. We can insert this into Equation 1 and get

IszwoboBo2 (;)*‘ pwi by 312 (?)*‘ wab, B% (?)

c(i)= : - :
pwo By (i) + pwy BY (1) +w, B3 (P)

3)

Thus, the curve shapc does not change if we replace each
weight w; by w; = ﬁz_‘wi. If, for a given set of weights w;, we
select

A wy

Wo

then we get W, = w,. After dividing all three weights through
by w,, we even have W, = W, = 1. A conic that satisfies this
condition is in standard form. We can rewrite all conics with
W, W, # 0 in standard form with the above choice of p. If the
conic is in standard form, the shoulder tangent is parallel to
bob,.

Let q; be the weight points after reparameterization. On
each polygon leg, we now have four points: by, qg, qo, b, on
the first one and by, q;, q;, b, on the second one. Their cross
ratios are equal:8

cr(by, gy, Go» by) = cr(by, gy, 41, by) (O]
The cross ratio cr is the fundamental invariant of projective
geometry:

cr(a, b, ¢, d) = ratio(a, b, d) / ratio(a, ¢, d)

Since all the lines bgb;, byb,, qoq;, and §,q; are tangent to the
conic, we can interpret Equation 4 as a statement about any
four tangents to a conic—I shall refer to the equation as the
four-tangent theorem.

Derivatives

We write a conic section as a rational function, so deriva-
tives now call for the quotient rule—at least at first sight. Life
is actuaily easier than that, with a little trick."! We denote the
derivative by ¢ and have

«(n)=—

[p(z) w()e()] 0)

We can easily compute higher derivatives by applying this
formula recursively.2

We now consider two conics, one defined over the interval
[ug, u,] with control polygon by, by, b, and weights wg, wy, w;,
and the other defined over the interval [u,, u,] with control
polygon b,, bs, b, and weights w,, w;, w,. Both segments form
a C' curve if

Wy

Ab, = Ab
U —u, ', —u, 2 ©

80

The interval lengths appear because of the chain rule,
which we must apply since we now consider a composite
curve with a global parameter u. But notice the absence of
the weight w, in the c equation. This means there are c
piecewise conics (in the plane) that are not the projections of
C' piecewise parabolas (in space). In fact, we can project two
discontinuous parabolas in three dimensions onto a smooth
piecewise conic in two dimensions.

Curvature and G* continuity

The curvature of a conic involves first and second deriva-
tives, and is somewhat messy to write down. However, if we
restrict ourselves to the endpoints, things work out much
more simply: The curvatures ¥, and k; at b, and b, are given
by

W A _woms A

Ky =

)

2 3 01 2 3
wi Iy wi [

with A denoting the area of the triangle formed by the con-
trol polygon. Here [, denotes the length of the first control
polygon leg, and /;, that of the second. If we are interested in
curvatures at other points on the conic, we just perform sub-
diyision and apply Equation 7. (As an interesting aside, note
that the ratio k,/k; does not depend on the weights.)

Suppose again that we have two conics, one with control
polygon by, by, b,, and the other with control polygon by, b;,
b,. Let’s assume that by, b,, and b, are collinear, making the
two conics tangent continuous. They are also curvature con-
tinuous if

Al _wi
A, 13

3
w3

assuming that both conics are in standard form and setting L=
{lb, — byll, I, = lIb; — b,ll. Planar curves that are tangent and
curvature continuous are called G’ continuous.

Recently, Pottmann’ used G conics to solve the following
interpolation problem: Given two points by and by, plus a
tangent direction and a curvature at each point, find a curve
that interpolates to these data. This is too much information
for one conic to interpolate to, so Pottmann uses two conics
instead. Each interpolates to the information at one of the
given points, and both meet with G’ continuity. The same
problem is also solvable with one rational cubic.”

Control vectors

In principle, we can write any arc of a conic as a rational
quadratic curve segment (possibly with negative weights).
But what happens when the tangents at b, and b, are paral-
lel? Intuitively, this would send b, to infinity. With a little
analysis, we can overcome this problem, as the following ex-
ample shows.

Leta comc be given by by = [-1, 0}", b, = [1, 0], and b, =
[0, tan (x] and a weight w; = ¢ cos o (we assume standard
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form). The angle o is formed by byb; and byb, at by. For c =1,

we get a circular arc, as illustrated in Figure 2.
The equation of our conic is

(1-1) P.l} 2c¢ cos oc-t(l—t)[tar? a}”z{(l)]

(1-1)* +2ct(1-t)cos o +1°

c(t)=

What happens as o tends to ©/2? For the limiting conic, we
get the equation

(1- z)z[_Ol} 2t(1- t)l:(c)]+ tz[(l)]
®)

Q-0 +£

c()=

Thus, we have resolved the problem of a weight tending to
zero and a control point tending to infinity. Forc =1, we get a
semicircle; other values of ¢ give different conics. For ¢ = -1,
we get the “lower” half of the unit circle.

We have overcome possible problems with parallel end
tangents, but for a price: The factors of by and b, sum to 1
identically; hence [0, c]” must be interpreted as a vector.
Thus, Equation 8 contains both control points and control
vectors. We thus lose an important property of Bezier curves,
namely, the convex hull property. It is defined only for point
sets, not for a potpourri of points and vectors.

In projective geometry, vectors are sometlmes called
“pomts at infinity.” As a consequence, Vespnlle and later
Pleg] use the term “infinite control points.” The term “con-
trol vector” seems more appropriate because it lets us distin-
guish between [0, )" and [0, —] T

Control vectors provide a
very compact form for writing
a semicircle. But, in my opin-
ion, two disadvantages argue
against their practical use:

1. The loss of the convex
hull property.

2. The need for a special-
case treatment to write
the control vector form in
the context of “normal”
rational quadratics.

Other researchers have written
more extensively about control
vectors.12

Figure 2. A 168-degree arc of a
circle; o is close to 90 degrees.
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Rational Bezier curves

So far, we obtained a conic section in Euclidean two space
as the projection of a parabola (a quadratic) in three space.
We can express conic sections as rational quadratic Bezier
curves, and their generalization to higher degree rational
curves is quite straightforward: A rational Bezier curve of de-
gree n in three space is the projection of an nth-degree Bezier
curve in four space into the hyperplane w = 1. We can view
this 4D hyperplane as a copy of three space; we assume that a
point in four space is given by its coordinates xyz w] Pro-
ceeding in exactly the same way as we did for conics, we can
show that an nth-degree rational Bezier curve is given by

X(t) — WObOBg(t)+"' +Wnann (t); X(t),bi EIE3 )

woBg (0)+-+w, By (1)

The B’ are Bernstein polynomials of degree n, the w; are
again weights, and the b; form the control polygon It is the
projection of the 4D control polygon [wb; w, w;]" of the nonra-
tional 4D preimage of x(¢).

If all weights equal 1, we obtain the standard nonrational
Bezier curve; then the denominator is identically equal to 1.
If some w; are negative, singularities might occur; we there-
fore deal only with nonnegative w;. Then rational Bezier
curves enjoy all the properties that their nonrational counter-
parts possess; for example, they are affinely invariant. If all w;
are nonnegative, we have the convex hull property.

Bezier curves’ weight points

We use the control points and weights to define weight
points q;:

- wb; +wi b,
W; Wi

Figure 3. The change of one weight point (from black to gray)
“shifts” the black curve to the gray curve.

Although weight points13 are determined by the weights, the
reverse statement also holds: If the weight points are given,
we can compute a set of weights that generate them. As Fig-
ure 3 shows, we can use the weight points as a design tool:
Changing one weight point has a predictable effect on the

new curve. If we change one weight point as in Figure 3, all-
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weights to its left are multiplied by a common factor, and all
weights to its right are multiplied by a different factor. Such
operations are too tedious for a designer to manipulate di-
rectly.

The weight points also give some insight into the behavior
of rational Bezier curves under projective maps (such as
viewing transformations in graphics). We subject the polygon
together with its weight points to a projective map. Before the
map, the weight points and weights were related by

w;, = wratio(b;, q;, b, 1); i=0,...,n-1
A projective map does not leave ratios invariant. Thus map-
ping changes the above ratios, giving rise to different weights
of the mapped curve.

Reparameterizing Bezier curves

Arguing exactly as in the conic case (see the earlier section
on conics), we might reparameterize a rational Bezier curve
by changing the weights according to

where c is any nonzero constant. Figure 4 shows how the
reparameterization affects the parameter spacing on the
curve: The curve shape remains the same.

The old and new weight points are again related by the
cross ratio condition:

cr(b;, q;, q; b;,,) = const. i=0,....n-1

We can transform a rational Bezier curve to standard form
by using the rational linear parameter transformation result-
ing from the choice

This results in W, = w;. After dividing all weights through by
we, we have the standard form w, = w, = 1. Of course, the
root must exist. Patterson" gave a different derivation of this
result.

How can rational Bezier curves in nonstandard form arise?
A common case occurs with rational Bezier surfaces (as dis-
cussed in the later section on rational Bezier and B-spline
surfaces): The end weights of an isoparametric curve gener-
ally will not be unity. Such curves are often “extracted” from
a surface and then treated as entities in their own right.

A final note: Even after standardization, a rational curve
will not be parameterized with respect to arc length. As we
trace out the interval [0, 1] in equal parameter increments,
the curve is not traced out in steps of equal length. Farouki
and Sakkalis”’ pointed out this “defect” of rational curves: In
particular, a circle in rational form will not be traced out as
we are used to from the sin/cos parameterization.
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Figure 4. (a) A rational Bezier curve evaluated at parameter
values 0, 0.02, . . ., 1. (b) The same curve and parameter val-
ues after a reparameterization with ¢ = 3.

b1

bp d bg

Figure 5. A rational G? condition: The left and right rational
cubics are G if they share the same (gray) conic osculant.

Bezier curvature and G* continuity

We find the curvature at the first control point of a rational
cubic Bezier curve following the conic recipe:

_Aww, A

Ky =
0 2 3
3w L

Here, A denotes the area of the triangle by, b;, b,, and [, = llb; —
bgll. The curvature at b, thus involves the first three control
points and weights only. These define a conic ¢,, and we call
¢, the conic osculant at by. The curvature at by of the cubic
and its conic osculant differ by a factor of 4/3.

The plane spanned by by, by, b, is the osculating plane at by,
Two rational Bezier curves are G~ if they share a common
tangent direction, osculating plane, and curvature at their
common point. Thus, they are certainly G’ if they share the
same conic osculant at their common point. This is illustrated
in Figure 5: We know that the left osculant is defined by b,
b,, b; and weight points q,, q,. The straight line ¢,q, is tan-
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gent to this conic. The right osculant is defined by control ~ where all points by, d, are in IE’ and
points b;, by, bs and weight points g, q,. Again, the straight A=A, +A,  +A,,

line q,q, is a tangent. Of course, b,b, is tangent to both oscu- A,
lants. %=
If both osculants are part of the same conic, then that conic A

must be defined by the control polygon by, d, bs and weight B = X’

points b,, b,. This conic also has tangents b,;d and dbs. We
can now use the four-tangent theorem and formulate a G*

condition for two rational cubics: The weights of these Bezier points are
cr(by, q;, by, d) = cr(b,, q5, bs, by) (10 Viig = wig(1 - 0y) + wie, (14)
Vi = Wil + wi(1-B) as)
and

For the junction points, we get
cr(by, by, g3, by) = cr(d, by, q4, bs) an
Vo (=7, vy b
Pottmann'® suggested a similar (less symmetrical but more R (v Yo)Vas b 16)
general) G* condition. 3

i

V3 = Vs + (1= ¥)Vaia

is the weight of the junction point b;;.

Designing with cubic NURB curves is not very different
d b from designing with their nonrational counterparts. We now
have the added freedom of being able to change weights. A
change of only one weight affects a rational B-spline curve
Figure 6. Cubic NURBS: the NURB and Bezier control points. only locally, as is amply demonstrated in the literature.>’"*
NURRB control points are squares. Bezier control points are circles. ~ We can also reparameterize rational B-splines, as Lee and

Lucian show."”
We should not overlook a problem with this curve form:
The added “freedom” of weights is potentially more a nui-
sance than a real help. A designer might simply be overbur-
Cubic NURB curves dened by having to specify control points, parameter values,
and weights. We need more methods to automate this pro-
A C cubic NURB curve in three dimensions is the projec-  cess. I describe one in the next section.
tion through the origin of a 4D nonrational C* cubic B-spline
curve into the hyperplane w = 1. The NURB curve’s control Geometric rational splines
polygon is given by vertices d_y, . . ., d;,,. Each vertex d; €
has a corresponding weight w;. The knot sequence is u, . . ., G’ polynomial splines are well established in the litera-
u;, and we set A; = u;,; — u;. The NURB curve has a piecewise  ture.”*' Of course, they can be generalized to the rational
rational cubic Bezier representation. We can obtain it by pro-  case.”>” More theoretical discussions of NURB G continu-

jecting the corresponding 4D Bezier points into the hyper- ity are also available.*?”’
plane w=1. I now briefly describe a class of G” rational cubics that do
Thus, referring to Figure 6, we get not rely on the specification of weights; instead, I use more
b - w_ (1-a)d,  +wad, geometric input. Figure 6 shqws the NURB control points
32~ Ve (squares). We can use Equations 12 to 16 to compute the
2 (12)  Bezier points of each rational cubic piece from the known
by, = weBdiy +w, (1-B,)d, (13)  weights and parameters. Here we try a different approach:

Vaict Using just the NURB control polygon and the Bezier points
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Figure 7. An example of the scheme for G? NURBS. One tan-
gent has been changed.

that lie on the polygon legs (these are the points of the form
bs;41), we can define a piecewise cubic G* NURB curve.

As a first step, recall that each b;; must lie on a conic with
control polygon b;;_,, d;, bsy;,, and weight points b;; ;, bs;,.
Application of Equation 2 thus yields the junction points bs;.
We will use the G* conditions Equations 10 and 11, so we
need to look at the weight points of each cubic piece. We
prescribe all weight points gs;,,—that is, the ones on the con-
trol legs—to be the midpoints of b;;,; and bs;,,. Now all re-
maining weight points follow from application of the G*
conditions formulated in Equations 10 and 11. Having found
all weight points and already having all control points of each
rational cubic segment, we have determined our G’ NURB
curve. I have described a nonrational version of this method
elsewhere.”®

The advantage of this kind of curve description is that it
does not need abstract constraints such as parameter values
and weights. Instead, it uses, in addition to the control poly-
gon, tangents to the curve: After all, the lines b,,_;, by;,; are
tangents at b,;. Figure 7 gives an example.

While we were happy to produce a G? curve without refer-
ring to a knot sequence, it is in fact possible to produce a
knot sequence with respect to which the described curves will
be twice differentiable, or c?®

As a next step, we might try to automate tangent selection.
I have experimented with this using a method that aims at re-
ducing the eccentricity of the osculants.®

Rational Bezier, B-spline surfaces

We can generalize Bezier and B-spline surfaces to their ra-
tional counterparts in much the same way as we did for
curves. In other words, we define a rational Bezier or B-spline
surface as the projection of a 4D tensor product Bezier or B-
spline surface. Thus, the rational Bezier patch takes the form

N w..b..B™(u)B"
x(u,v) = 22 it m’ (u)n’ © an
2:‘2,‘ w,;B; (”)B/ )
and a rational B-spline surface is written as
. w,.d. . N™ N?"
s(u’v)z 212] wl-ldlvl ml (u) J (V) (18)
Zizj‘ wi N7 (N7 (v)
84

c

Figure 8. Two rational bicubic B-spline surfaces: (a) the con-
trol net for both surfaces; (b) all weights equal to 1 except for
the indicated ones, which have weight 5; (c) the weights indi-
cated by solid circles are 0.5.

Figure 8 shows two rational B-spline surfaces. Their control
nets are the same; the weight changes are only local.

We obtain rational surfaces as the projections of tensor
product patches, but they are not tensor product patches
themselves. Recall that a tensor product surface has the form
x(u, v) = £,X¢; ;F; (u, v), where we can express the basis
functions F;; as products F; (u, v) = Aj(u)By(v). The basis
functions for Equation 18 have the form

wi,jNim (u)N;'(v)

F (u,v)=
“]( ) 2.2,‘ Wz,jNim(”)Nj"(V)
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Rational de Casteljau algorithm

Set (witheu=(1,0,0), ev=(0,1,0),ew = (0, 0, 1)):

b (u) =

Given: A triangular array of points b; e E>, il = n, corresponding weights
w;, and a point in a domain triangle with barycentric coordinates u.

uw o, (Wb, () + vwi, (Wb, W) +ww| 2, )b, )

w; (u)

where
e

W] (U) = UW oy (W) + VW ray (W) + WW] o (W)
and.

r=1,....,n and lil=n-r

the rational Bezier triangle b".

and bi(u) = by, w2 = w;. Then by (u) is the point with parameter value u on

where, as usual, the w; are the weights associ-
ated with the control vertices b;, and i = (i, J,
k). For positive weights we have the convex
hull property, and we have affine and projec-
tive invariance.

We can evaluate rational Bezier triangles
using a de Cas-teljau algorithm (see sidebar).
This algorithm works because we can inter-
pret each intermediate bj as the projection of
the corresponding point in the de Casteljau al-
gorithm of the nonrational 4D preimage of
our patch. The algorithm also produces the
normal vector to the surface: The points b';;l,
b'gl, and b';;' span the tangent plane at bj.

Derivatives of Bezier triangles

I now give a formula for the directional

Because of the denominator’s structure, this generally cannot
be factored into the required form F; (u, v) = A;(u) B{v).

But even though rational surfaces do not possess a tensor
product structure, we can use many tensor product algo-
rithms for their manipulation. Consider, for example, the
problem of finding the piecewise rational bicubic Bezier form
of a rational bicubic B-spline surface. All we do is convert
each row of the B-spline control net into piecewise rational
Bezier cubics (see the earlier section on cubic NURB
curves). Then we repeat this process for each column of the
resulting net (and the resulting weights), simply following the
standard recipe for tensor product surfaces. !

As another example, consider the problem of extracting an
isoparametric curve from a rational Bezier surface. Suppose
the curve corresponds to v = V. We simply interpret all con-
trol net columns as control polygons and evaluate each at v,
using, for example, a rational version of the de Casteljau al-
gorithm (see sidebar). We also have to compute a weight in
each case. We can now interpret all obtained points together
with their weights as the Bezier control polygon of the de-
sired isoparametric curve. In general, its end weights will not
be unity: The curve will not be in standard form (as described
in the section on rational Bezier curves). We can remedy this
situation by using the reparameterization algorithm also de-
scribed in that section.

Rational Bezier triangles

Following the familiar theme of generating rational curve
and surface schemes, we define a rational Bezier triangle to
be the projection of a nonrational 4D Bezier triangle.2 We
thus have

2 fifn Wil B (w)

b () =0 )=
Jifen i

19)
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derivative of a rational Bezier triangular
patch. Let d denote a direction in the domain triangle, ex-
pressed in barycentric coordinates. We are interested in the
directional derivative Dy of a rational triangular Bezier patch
b, (u). Proceeding exactly as in the curve case (see the section
on conics), we get

D" ()= s (w) = Dy (0p" (w)]

where we have set

p(u)=w(u)b" (u)= 3 w;b, B (u)

Ii‘:n

Higher derivatives follow the pattern outlined for conics
derivatives:

g n 1
Dib" ()= ——

Djip(u)- iDéw(u)D;‘%u)}
(u) A

The sphere

We can use rational Bezier triangles to represent an octant of
a sphere. As it turns out, this representation has to be ratio-
nal quartic and not, as we might guess, rational quadratic.32
To represent the whole sphere, we assemble eight copies of
this octant patch. Other representations are possible: We can
write each octant as a rational biquadratic I;)atch (introducing
singularities at the north and south poles).1 A representation
of the whole sphere as two rational bicubics™ turned out to
be incorrect.”* Cobb presented a different way of represent-
ing the sphere: He covered it with six rational bicubics having
a cubelike connectivity.35

Quadrics

There are (at least) two motivations for the use of rational
Bezier curves: They are projectively invariant, and they allow
us to represent conics—namely, in the form of rational
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quadratics. While the first argument holds trivially for ratio-
nal Bezier triangles, the second one does not carry over im-
mediately.

The proper generalization of a conic to surfaces is a
quadric surface—“quadric” for short. A conic (curve) has the
implicit equation g(x, y) = 0, where ¢ is a quadratic polyno-
mial in x and y. Similarly, a quadric has the implicit equation
q(x, y, z) = 0, where g is quadratic in x, y, and z.

Given a rational quadratic Bezier triangle, what is the con-
dition that it represents a quadric patch? First, recall that ev-
ery rational quadratic Bezier triangle is completely defined
by its boundary curves, as there are no interior Bezier points.
Each boundary curve is a segment of a conic. These conics
are defined beyond the confines of their control polygons; for
example, they might be ellipses. Our condition is now that
these three conics intersect at one point.

So while it is true that we can use NURBS to represent
quadrics,” it is far from trivial (and really unresolved at this
point) to decide whether a given patch is quadric. This ap-
plies to rectangular patches as well as to triangular ones. QO
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