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1. Given n+1 points, x0, x1, …, xn and a sequence of n+1 parameters u0, u1, … un with ui < ui+1 for all I, our 
goal is to compute a C2 cubic spline curve F(u), such that F(ui) = xi for all I ≤ i ≤ n 
 
A) If we use cubic B-spline curves (and compute the appropriate control points), how will you choose the 
knot sequence? Is your resulting problem under-constrained or over-constrained? 
 
We can choose the knot sequence to be the same as the parameter values. That is if our knots are t0, t1, … tn 
then we would set them as: t0 = u0, t1 = u1, … tn = un. Then the control points can be positioned to meet the 
xi. At worst, the control points could be replicated (3 times) in order to force the curve to interpolate the 
points. Since we know that n+k+1 = # of control points + degree of cure + 1 = n + 4 + 1 = # of knots = T 
(Mortenson 97), the number of knots must be greater than 5. We know we have an absolute lower bound on 
the number of knots we need and hence number of parameters we need to make a cubic B-Spline curve 
useful for interpolation.  
 
The resulting problem is under-constrained because we have not specified any tangent information for the 
points even though the curve is capable of C2 continuity and we have not specified any endpoint 
information besides positional (so if this curve were part of a larger group we would not have enough 
information to match it up. 
 
B) If the problem is under-constrained, add sufficient number of tangent conditions at the end points and 
derive the control points of the resulting [cubic] B-spline curve. 
 
Using Farin 1990 as our guide, we can rewrite every B-spline curve as a piecewise Bezier curve. Hence we 
can then use the interpolating properties of Bezier curves for each piece and convert them into a form that 
can be used in the B-spline. 
 
Since it is a cubic curve, the Bezier curve relies on a neighbor on either side to exactly interpolate the point. 
We take every third point in the Bezier curve to be the exact point we wish to interpolate (namely xi). In 
other words, we take: 

nibx ii ,...,03 ==  
But then we must fill in the neighbors. To be C1 continuous at a particular knot (ui), the Bezier control point 
xi must be in the same ratio as the knots (parameters) on either side of it. To be more concise and 
confusing, let’s define ∆i=ui+1 - ui where the ui are meant to be the knots but since in part A we took the 
knots and parameters to be the same, we can just use ui for both. Then we can say that: 
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This formula says that b3i, the control point for our intermediate Bezier form, is a weighted average of its 
neighbors in proportion to their relative distance in knot space. We only have a parameter for the b3i and the 
neighboring points are added in. 
 The neighboring points can be related to the control vertices in the curve itself through 
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 where the di and di-1 are control vertices on the B-spline curve we are seeking from Farin 1990. 
Similarly,  
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So we now have a method of relating the control points on the B-spline curve to the Bezier control points 
interpolating the data points we were given originally. However, there are still some issues with the end 
points because they are not specified with neighbors and such. We are free to come up with our own 
tangents (say based on x1-x0 and xn-xn-1). Using our formulation of Bezier control points in terms of B-
spline control points, we can say: 
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Now that we have all the b’s in terms of d’s, we can use our definition of x to get the direct correspondence 
between the data points xi and the B-spline control points. 
We know: 
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So: 
 ( ) 1...1131131 −=∆+∆=∆+∆ +−−− nibbx iiiiiii  
 But we have definitions for the b’s. Substituting those in we get: 
( ) 1...1131131 −=∆+∆=∆+∆ +−−− nibbx iiiiiii  
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Collecting like terms gives us: 
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Where for items like ∆i-2 and ∆i+1 we set ∆-1 = ∆L = 0. To simplify the notation we can label the coefficients 
of the B-spline control points as: 
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Then we can say more concisely, 
( ) 111 +−− ++=∆+∆ iiiiiiiii dddx γβα  
so we would have a system of equations such as we progress along i: 
 ( ) 211101110 dddx γβα ++=∆+∆  

( ) 322212221 dddx γβα ++=∆+∆  
… 

At the end points, we can data points for control points. We can specify the system in matrix form as: 
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The first and last polygon vertices are d-1= x0 and dn+1 = xn. Hence now we have specified the entire set of  
control points given a set of data points and parameters. 



2. Find the Bezier control points of a closed B-spline cure of degree 4 whose control polygon consists of 
the edges of a square, and whose knot sequence is uniform and consists of simple knots. 
 
A uniform, simple knot sequence looks like (0,1,2,3,4… n). However, the curve is closed. Therefore, we 
must replicate some control points if we are to achieve a closed curve. The degree is 4 so the polynomial 
governing the B-spline has a form of a0x4+a1x3…+a4. In this case, what we call k will be k=5 since k=1 
contains just x0, k=2 contains x1 and so on. 
 
A uniform quartic B-spline curve can be represented in a matrix form as: 
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or more succinctly pi(u) = UMSPk. Also since our curve is closed, we place ‘mod’ on each control point. So 

we really use the equation: 
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 but the Pk hides this. 

where each pi is a control point and pi(u) is the curve for the segment between knots i and i+1 (Mortenson). 
A Bezier curve can similarly be rewritten in matrix form as: 
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or more succinctly p(u) = UMBP. 
 
If we are to describe the same curve, the we have UMBPB = UMSPS or equivalently MBPB = MSPS so to 
convert from B-spline to Bezier control points, we have the equation: 
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So given any control points on the edges of a square, we can place them through the above equation and get 
our Bezier control points. The mod function for PS makes the curve closed and prevent us from choosing 
points that aren’t in the original set of control points. 
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The calculation of the B-spline matrix was a bit trying so I will recount the steps here: 
The derivation follows Mortensen p123-124 but for higher degrees. The first step is to choose an interval I 
where k ≤i≤n. This is a generic interval to calculate symbolically on. The ti knot values are chosen 
conveniently as ti = i-k+1 = i-5+1 = i-4. Then we enumerate the various base N values as: 

otherwiseuNoriuiforuN ii 0)(341)( 1,1, =−<≤−=  

otherwiseuNoriuiforuN ii 0)(231)( 1,1,1 =−<≤−=+  

otherwiseuNoriuiforuN ii 0)(121)( 1,1,2 =−<≤−=+  

otherwiseuNoriuiforuN ii 0)(11)( 1,1,3 =<≤−=+  

otherwiseuNoriuiforuN ii 0)(11)( 1,1,4 =+<≤=+  

otherwiseuNoriuiforuN ii 0)(211)( 1,1,5 =+<≤+=+ … 
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uN  is applied for: Ni,5(u), Ni+1,5(u), 

Ni+2,5(u), Ni+3,5(u), Ni+4,5(u) where the N are evaluated using the following Mathematica commands: 
t@i_D := i− 5 + 1;  NC2@i_, k_D :=HHHu− t@iDL ∗ HNC2@i, k− 1DLLêHt@i + k − 1D − t@iDLL +HHHt@i+ kD − uL NC2@i + 1, k− 1DLêHt@i + kD − t@i + 1DLL  
NC2@i_, 1D := MC@i, 1D  
 
Using these commands, derived again from Mortenson’s discussion, allows us to evaluate any Ni,k(u) in 
terms of the base Ni,1, Ni+1,1, Ni+2, 1 … 
Then we choose a representative interval for one of the function to be 1 over. For this case, the interval i ≤ 
u < i + 1 was chosen which means that only the terms with Ni+4,1 had to be evaluated. The evaluation was 
done with the following Mathematica command: 
Expand@24∗ NC2@i, 5D ê.8MC@i, 1D → 0, MC@i + 1, 1D → 0, MC@i + 2, 1D → 0,

MC@i+ 3D → 0, MC@i + 4, 1D → 1, MC@i + 5, 1D → 0,
MC@i+ 6, 1D → 0, i→ 0<D  

This provides the coefficients for one column of the matrix. The other columns are determined by 
evaluating NC2[i+1, 5], NC2[i+2,5], NC2[i+3,5], and NC2[i+4,5]. The 24 comes from empirically looking 
at the output of the unexpanded form. Just as the cubic has a 1/6th and the quadratic has a ½, the quartic has 
its own constant factor, namely 1/24. 
 
 



3. Given a m x n tensor product patch, P(u,w), there are three possible ways to evaluate a point. Work out 
the operation count for each of these cases. 
 
Since in class we covered on the evaluations necessary for a Bezier Tensor Product Patch, I will consider 
only Bezier patches for the operation counts. 
 
* Use the recursive de Casteljau algorithm 
 There are two cases for the de Casteljau algorithm, one in which the patch has equal control points 
in each dimension and one in which there is an addition bilinear interpolation. 
 As an example of a 2 point interpolation, we have a form such as: 
 1,00,0)1( tppt +−  
 This evaluation takes 1 subtraction, 1 addition of (x,y,z) values = 3 additions, 2 multiplications of 
(x,y,z) values = 6 multiplications. So S = 1, A = 3, M = 6. 
 As an example, a 4 point application of the direct de Casteljau algorithm will result in a formula 
such as: 
 ))1(())1)((1(),( 1,10,11,00,0 tpptstpptstsp +−++−−=  

 This evaluation requires 2 subtractions ( (1-s) and (1-t) ), 9 additions ( [ ]jijijiji zyxp ,,,, = ) 
so any time we add two p’s we do 3 additions and since we have p0,0+p0,1 and p1,0 + p1,1 and then sum those 
we get (3+3+3 = 9), finally there are 18 multiplications. (1-t)*p0,0 = 3 and each p has one so 3*4=12 and 
then we multiply by the s’s for each so 3+3 = 6 and 12 + 6 = 18 multiplications. S = 2, A = 9, M = 18. 
 I will take each square to take 9 adds and 18 multiplies since a recursive function (with no 
memory) would perform the same actions. 
 Looking at the matrix form, we have: 
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 In this form, we can store the two subtractions and keep them globally so there will always be 2 
subtractions. However, in evaluating rr

jib ,
, , we eventually come down to one or more four point cases or 

one or more two point cases.  
 Now, we can generalize this result for an m x n patch. For the special case of an n x n, we know 
there are not going to be any lines for interpolation and we know the number of squares (4 point cases). So 

since we know we will have 
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 squares each of which takes 9 adds and 18 

multiplies (plus our constant 2 subtracts). 
 For the case in which n ≠ m we have more options. We know the number of squares is given by 
the formula f(m,n) = m*n * f(m-1, n-1) with f(0,n) = 0 and f(m,0) = 0. So f(4,2) = 4*2 + 3*1 + 2*0= 8 + 3 
= 11 squares. However, we also know that if n ≠ m we will have to interpolate some lines. In fact, we must 
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 lines. So we have 2 subtractions, f(m,n)*9 additions, f(m,n) * 18 

multiplies + ((m-n)(1+m-n)/2) * 3 additions + ((m-n)(1+m-n)/2) * 6 multiplies in total. 
 



* Use the tensor product formulation. Compute the coefficients of a u isoparametric line, and then evaluate 
that curve at v. 
 
 We are given an m x n patch such as: 
 
 
 
 
 
 
 
 
 
 
 
In this problem, we evaluate all the Berstein polynomials first, multiply them by their coefficients for each 
curve along m and then calculate the Berstein polynomial for the line across u and multiply it by the 
coefficients to get the points on (u,v). This is somewhat different than the method discussed in class which 
essentially performs a de Casteljau iteration for each curve to get the u control points and then performs de 
Casteljau on that curve to get the final point on the curve. 
 
In this method, we first calculate the Berstein polynomial. We assume that the degree of the curve is the 
same across the surface.  The polynomials are computed for the given v and for all 0 ≤ i ≤ n. The Berstein 
polynomial is given by: 
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 Assume that the binomial coefficients are precomputed and do no factor into the operation count. 
Evaluating the polynomial uses 1 subtraction of (1-t) which can be stored and used over and over. Next we 
must compute powers of t, ti implies that t is multiplied i times (using a simple implementation) and (1-t) is 
multiplied n-i times and then we multiply the binomial so in total we have i+n-i+1 = n+1 multiplies and one 
subtract so n+2 total operations (not counting binomials). 
 After doing that, we have a Berstein polynomial that can be used for all the curves on the v axis. 
However, we must evaluate the coefficients and multiply them against the Berstein as: 
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 So we perform n multiplies and n-1 adds to compute a single point on a curve. Each add takes 3 
additions and each multiply takes 3 multiplications. So the total operation count is (n+1)*(3) + 3n = 6n+3. 
 In our case along the m axis, we really have m+2 operations to calculate the Berstein polynomial 
and 6m+3 operations to calculate a point on one of the curves. However, there are n curves so to generate 
all the points on all the curves takes n*(6m+3) operations. 
 Now we have all the points on a isoparametric line on u. Now we must compute the Berstein in 
this direction. This requires n+2 operations. Evaluating a point on the u curve takes 6n+3 operations. 
 Therefore, in total we have: 1) calculate Berstein: m+2 operations 2) calculate points on curves: 
n*(6m+3) operations 3) calculate other Berstein: n+2 4) evaluate a point on there: 6n+3 for a grand total of:  
# ops total = m+2 + n*(6m+3) + n+2 + 6n+3. 
 
 
* Use the tensor product formulation. Compute the coefficients of a v isoparametric line, and then evaluate 
that curve at u. 
 This is just the same as the previous argument with n and m swapped. Therefore the operation 
count is: 
 # ops total = n+2 + m*(6n+3) + m+2 + 6m+3 

m 

n 
u

v 



4. Given a rational Bezier patch of degree n, P(u,v), give an algorithm to compute the control points (and 
associated weight) of its normal or hodograph patch, N(u,w). Given the parameter values (u0, w0), N(u0, 
w0) denotes the normal at P(u0, w0). N(u0, w0) doesn’t represent a normalized vector. I am not expecting a 
closed form solution in terms of weights and control points of P(u,w), but show all the steps used to 
compute a representation of the normal patch in terms of Bernstein polynomials. 
 
Given a rational Bezier patch, I will show how to convert it to a normal patch (hopefully). 
 

First, a rational Bezier patch is given by: ∑
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We will proceed as follows: 
1) Show that the addition and multiplication (or really any basic operation) on a Bezier curve results in 
another Bezier curve. This is needed when partial derivatives are calculated to provide some argument that 
they are also Bezier curves. Also for cross products. 
2) Compute the partial derivative Ps and Pt and argue that they are rational Bezier curves still 
3) Compute Ps x Pt (abstractly) and argue that that is also a rational Bezier curve 
 
Since n = Ps x Pt then we have constructed the normal patch for the rational Bezier patch and so have new 
weights and control points to use. 
 
1) Addition and multiplication on a Bezier curve results in another Bezier curve 
Any two Bezier curves have the form: 
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When we multiply two of them together, we get something like: 
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The main point being that the terms are still powers of (1-t) and t together which means that they 
correspond still to a Bezier curve formulation. Adding also just intermingles terms without altering the 
basic Bezier properties, we have just altered like terms by summing coefficients. For rational Bezier, the a 
and b terms can be seen as iii waa =' . In other words, the coefficients also contain the weights. 
 
2) Compute partial derivatives Ps and Pt 
To make the calculation simpler, we divide the fraction into its numerator and denominator. Namely: 
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Then, consulting Farin 1990, the derivatives can be computed using the following formulas: 
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Applying these formulas to N and D result in: 
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Since we are adding and multiplying to achieve the differentiation, the partials are also Bezier curves. 
Now we can use these terms to compute the partials for the whole expression. We have: 
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where the quotient rule was used since N/D form a quotient. 
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So now that we have the partials (in Bezier form since they are formed from basic operations), then we can 
try and phrase the normal map as a composition of these elements. 
 
3) Compute Ps x Pt 
 
If we take the results from part 2, we can say that the unnormalized normal map is: 
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The cross product can be calculated by breaking the terms into their components. We know that we can 
rephrase P(s,t) as P(s,t) = [ x(s,t) y(s,t) z(s,t) ]. So Ps(s,t) × Pt(s,t)= [xs(s,t) ys(s,t) zs(s,t)] × [xt(s,t) yt(s,t) 
zt(s,t)] where the patch has been split into its x, y and z components Then the cross product becomes: 

 
[ ] [ ]

[ ])()()(
),(),(),(),(),(),(

tstststsstts

tttsss

xyyxzxxzzyzy
tsztsytsxtsztsytsxn

−−−=
×=

 

Since these components are all multiplications and subtractions (negative additions) then we can also call 
the normal patch generated by the NM formula a Bezier patch as well. 
 
  



5. Degree elevation of a triangular patch. Given a triangular patch of degree n, the degree elevation formula 
for this patch is given as: 
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show that the control points )1(
ib  are given as: 
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There is a lot of notation introduced by these equations which is worthwhile to explain. |i|=i+j+k. So saying 
|i|=n means that i+j+k add up to n with none of them going negative. Therefore, the summations are more 
complicated than a straight indexing scheme. The i subscript refers to (i,j,k) as a way of identifying control 
points on the triangle.E1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1) are representative of the unit axes. U = (u,v,w) 
which are coordinates on the triangle patch. The Berstein polynomial is also redefined as: 
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 but u+v+w=1 so the function is bivariate. 
 
Since u+v+w=1, we can place is anywhere in the equation for degree elevation and we will still have a 
legitimate formula (since we are essentially multiplying by 1). So we reformulate the degree elevation 
formula as: 
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Then we can compare like powers to define elevated control points in terms of the original control points. 
One thing to keep in mind when looking at the formula is that the right side has |i|=n+1 while the left side 
has |i|=n.  
On the right hand side of the equation, we will have a term as: 
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However, with i+j+k=n+1 we can rephrase this to find the corresponding terms on the left hand side. In 
particular, if i+j+k=n+1, we have three choices: (i-1)+j+k=n, i+(j-1)+k=n, or i+j+(k-1)=n. These indices 
correspond to specific terms in the summation. So on the right hand side we can state: 
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but then multiplying by (u+v+w) will create terms that are equal in u,v,w powers as our term on the right 
hand side. Multiplying out the u+v+w results in the following terms in the summation sequence: 
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Granted the terms will not appear together, but the distribution of + over * says that each term will 
eventually be multiplied by u, v, and w separately. 
Now that we have terms of equal power on the left and right side, we can then solve the equality for )1(

ib  to 
get our sought after result. Equating like terms (and eliminating the common uivjwk), we have: 
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so solving for )1(
ib  
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simplifying 
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or as the problem states it: 
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finally substituting e1=(1,0,0), e2=(0,1,0), e3=(0,0,1) 
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and this is the form we desired. 
 
 


