
11/8/2002
CS 258

HW 2

1. Given n+1 points, x0, x1, …, xn and a sequence of n+1 parameters u0, u1, … un with ui < ui+1 for all I, our
goal is to compute a C2 cubic spline curve F(u), such that F(ui) = xi for all I ≤ i ≤ n

A) If we use cubic B-spline curves (and compute the appropriate control points), how will you choose the
knot sequence? Is your resulting problem under-constrained or over-constrained?

We can choose the knot sequence to be the same as the parameter values. That is if our knots are t0, t1, … tn
then we would set them as: t0 = u0, t1 = u1, … tn = un. Then the control points can be positioned to meet the
xi. At worst, the control points could be replicated (3 times) in order to force the curve to interpolate the
points. Since we know that n+k+1 = # of control points + degree of cure + 1 = n + 4 + 1 = # of knots = T
(Mortenson 97), the number of knots must be greater than 5. We know we have an absolute lower bound on
the number of knots we need and hence number of parameters we need to make a cubic B-Spline curve
useful for interpolation.

The resulting problem is under-constrained because we have not specified any tangent information for the
points even though the curve is capable of C2 continuity and we have not specified any endpoint
information besides positional (so if this curve were part of a larger group we would not have enough
information to match it up.

B) If the problem is under-constrained, add sufficient number of tangent conditions at the end points and
derive the control points of the resulting [cubic] B-spline curve.

Using Farin 1990 as our guide, we can rewrite every B-spline curve as a piecewise Bezier curve. Hence we
can then use the interpolating properties of Bezier curves for each piece and convert them into a form that
can be used in the B-spline.

Since it is a cubic curve, the Bezier curve relies on a neighbor on either side to exactly interpolate the point.
We take every third point in the Bezier curve to be the exact point we wish to interpolate (namely xi). In
other words, we take:

nibx ii ,...,03 ==
But then we must fill in the neighbors. To be C1 continuous at a particular knot (ui), the Bezier control point
xi must be in the same ratio as the knots (parameters) on either side of it. To be more concise and
confusing, let’s define ∆i=ui+1 - ui where the ui are meant to be the knots but since in part A we took the
knots and parameters to be the same, we can just use ui for both. Then we can say that:

() () () () 13
11

1
13

11

1
3 +

+−

−
−

+−

+

−+−
−

+
−+−

−
= i

iiii

ii
i

iiii

ii
i b

uuuu
uub

uuuu
uub

 or

 13
1

1
13

1
3 +

−

−
−

− ∆+∆
∆

+
∆+∆

∆
== i

ii

i
i

ii

i
ii bbbx

This formula says that b3i, the control point for our intermediate Bezier form, is a weighted average of its
neighbors in proportion to their relative distance in knot space. We only have a parameter for the b3i and the
neighboring points are added in.
 The neighboring points can be related to the control vertices in the curve itself through

() 1...2
12

121
13 −=

∆+∆+∆
∆+∆+∆

=
−−

−−−
− niddb

iii

iiiii
i

 where the di and di-1 are control vertices on the B-spline curve we are seeking from Farin 1990.
Similarly,

() 2...1
11

111
13 −=

∆+∆+∆
∆+∆+∆

=
+−

+−+
+ niddb

iii

iiiii
i

So we now have a method of relating the control points on the B-spline curve to the Bezier control points
interpolating the data points we were given originally. However, there are still some issues with the end
points because they are not specified with neighbors and such. We are free to come up with our own
tangents (say based on x1-x0 and xn-xn-1). Using our formulation of Bezier control points in terms of B-
spline control points, we can say:

10

1001
2 ∆+∆

∆+∆
=

ddb and
10

211
23 ∆+∆

∆+∆
= −−−

−
LLLL

L
ddb

Now that we have all the b’s in terms of d’s, we can use our definition of x to get the direct correspondence
between the data points xi and the B-spline control points.
We know:

 1...1
1

13113
13

1

1
13

1
3 −=

∆+∆
∆+∆

=
∆+∆

∆
+

∆+∆
∆

==
−

+−−
+

−

−
−

−

nibbbbbx
ii

iiii
i

ii

i
i

ii

i
ii

So:
 () 1...1131131 −=∆+∆=∆+∆ +−−− nibbx iiiiiii
 But we have definitions for the b’s. Substituting those in we get:
() 1...1131131 −=∆+∆=∆+∆ +−−− nibbx iiiiiii

() () () 1...1
11

111
1

12

121
1 −=

∆+∆+∆
∆+∆+∆

∆+
∆+∆+∆
∆+∆+∆

∆=∆+∆
+−

+−+
−

−−

−−−
− niddddx

iii

iiiii
i

iii

iiiii
iiii

Collecting like terms gives us:

() ()

() () ()
1

11

2
1

11

11

12

12

1
12

2

1

+
+−

−

+−

+−

−−

−−

−
−−

−









∆+∆+∆

∆
+








∆+∆+∆
∆+∆∆

+
∆+∆+∆

∆+∆∆

+







∆+∆+∆

∆
=∆+∆

i
iii

i
i

iii

iii

iii

iii

i
iii

i
iii

dd

dx

Where for items like ∆i-2 and ∆i+1 we set ∆-1 = ∆L = 0. To simplify the notation we can label the coefficients
of the B-spline control points as:

()
iii

i
i ∆+∆+∆

∆
=

−− 12

2

α ,
() ()

11

11

12

12

+−

+−

−−

−−

∆+∆+∆
∆+∆∆

+
∆+∆+∆

∆+∆∆
=

iii

iii

iii

iii
iβ , and

()
11

2
1

+−

−

∆+∆+∆
∆

=
iii

i
iγ

Then we can say more concisely,
() 111 +−− ++=∆+∆ iiiiiiiii dddx γβα
so we would have a system of equations such as we progress along i:
 () 211101110 dddx γβα ++=∆+∆

() 322212221 dddx γβα ++=∆+∆
…

At the end points, we can data points for control points. We can specify the system in matrix form as:

()

()




















∆+∆

∆+∆
=











































−

−−−−−−−

13

112

110

1

1

1

0

111

111

1

1

n

nnn

n

nnnn

b
x

x
b

d
d

d
d

MMO
γβα

γβα

The first and last polygon vertices are d-1= x0 and dn+1 = xn. Hence now we have specified the entire set of
control points given a set of data points and parameters.

2. Find the Bezier control points of a closed B-spline cure of degree 4 whose control polygon consists of
the edges of a square, and whose knot sequence is uniform and consists of simple knots.

A uniform, simple knot sequence looks like (0,1,2,3,4… n). However, the curve is closed. Therefore, we
must replicate some control points if we are to achieve a closed curve. The degree is 4 so the polynomial
governing the B-spline has a form of a0x4+a1x3…+a4. In this case, what we call k will be k=5 since k=1
contains just x0, k=2 contains x1 and so on.

A uniform quartic B-spline curve can be represented in a matrix form as:

[]













































−−
−−
−−

−−

=

+

+

+

−

3

2

1

1

234

0
0

1
4

11
12

11
12

1
4

06666
0412124
14641

1
24
1)(

i

i

i

i

i

P
p
p
p

p

uuuuup for i∈[1:n-2]

or more succinctly pi(u) = UMSPk. Also since our curve is closed, we place ‘mod’ on each control point. So

we really use the equation:























+
+
+
+
+

=

+

+

+

−

)1(mod
)1(mod
)1(mod

)1(mod
)1(mod

)(

3

2

1

1

np
np
np

np
np

UMup

i

i

i

i

i

Si

 but the Pk hides this.

where each pi is a control point and pi(u) is the curve for the segment between knots i and i+1 (Mortenson).
A Bezier curve can similarly be rewritten in matrix form as:

[]













































−
−

−−
−−

=

5

4

3

1

0

234

0
0

0
0

0
0

0
4

1
4

006126
0412124
14641

1)(

p
p
p
p
p

uuuuup

or more succinctly p(u) = UMBP.

If we are to describe the same curve, the we have UMBPB = UMSPS or equivalently MBPB = MSPS so to
convert from B-spline to Bezier control points, we have the equation:

SSBB PMMP 1−=

SSB PPP























=























−−
−−
−−

−−























=

1
0

11
8

11
14

1
2

0
0

041640
021480
0111111

24
1

0
0

1
4

11
12

11
12

1
4

06666
0412124
14641

1
1

1111
0

100
1000
10000

24
1

4
3

2
1

4
1

2
1

6
1

4
1

So given any control points on the edges of a square, we can place them through the above equation and get
our Bezier control points. The mod function for PS makes the curve closed and prevent us from choosing
points that aren’t in the original set of control points.

===

The calculation of the B-spline matrix was a bit trying so I will recount the steps here:
The derivation follows Mortensen p123-124 but for higher degrees. The first step is to choose an interval I
where k ≤i≤n. This is a generic interval to calculate symbolically on. The ti knot values are chosen
conveniently as ti = i-k+1 = i-5+1 = i-4. Then we enumerate the various base N values as:

otherwiseuNoriuiforuN ii 0)(341)(1,1, =−<≤−=

otherwiseuNoriuiforuN ii 0)(231)(1,1,1 =−<≤−=+

otherwiseuNoriuiforuN ii 0)(121)(1,1,2 =−<≤−=+

otherwiseuNoriuiforuN ii 0)(11)(1,1,3 =<≤−=+

otherwiseuNoriuiforuN ii 0)(11)(1,1,4 =+<≤=+

otherwiseuNoriuiforuN ii 0)(211)(1,1,5 =+<≤+=+ …

Then the formula
1

1,1

1

1,
,

)()()()(
)(

++

−++

−+

−

−
−

+
−

−
=

iki

kiki

iki

kii
ki tt

uNut
tt

uNtu
uN is applied for: Ni,5(u), Ni+1,5(u),

Ni+2,5(u), Ni+3,5(u), Ni+4,5(u) where the N are evaluated using the following Mathematica commands:
t@i_D := i− 5 + 1; NC2@i_, k_D :=HHHu− t@iDL ∗ HNC2@i, k− 1DLLêHt@i + k − 1D − t@iDLL +HHHt@i+ kD − uL NC2@i + 1, k− 1DLêHt@i + kD − t@i + 1DLL
NC2@i_, 1D := MC@i, 1D

Using these commands, derived again from Mortenson’s discussion, allows us to evaluate any Ni,k(u) in
terms of the base Ni,1, Ni+1,1, Ni+2, 1 …
Then we choose a representative interval for one of the function to be 1 over. For this case, the interval i ≤
u < i + 1 was chosen which means that only the terms with Ni+4,1 had to be evaluated. The evaluation was
done with the following Mathematica command:
Expand@24∗ NC2@i, 5D ê.8MC@i, 1D → 0, MC@i + 1, 1D → 0, MC@i + 2, 1D → 0,

MC@i+ 3D → 0, MC@i + 4, 1D → 1, MC@i + 5, 1D → 0,
MC@i+ 6, 1D → 0, i→ 0<D

This provides the coefficients for one column of the matrix. The other columns are determined by
evaluating NC2[i+1, 5], NC2[i+2,5], NC2[i+3,5], and NC2[i+4,5]. The 24 comes from empirically looking
at the output of the unexpanded form. Just as the cubic has a 1/6th and the quadratic has a ½, the quartic has
its own constant factor, namely 1/24.

3. Given a m x n tensor product patch, P(u,w), there are three possible ways to evaluate a point. Work out
the operation count for each of these cases.

Since in class we covered on the evaluations necessary for a Bezier Tensor Product Patch, I will consider
only Bezier patches for the operation counts.

* Use the recursive de Casteljau algorithm
 There are two cases for the de Casteljau algorithm, one in which the patch has equal control points
in each dimension and one in which there is an addition bilinear interpolation.
 As an example of a 2 point interpolation, we have a form such as:
 1,00,0)1(tppt +−
 This evaluation takes 1 subtraction, 1 addition of (x,y,z) values = 3 additions, 2 multiplications of
(x,y,z) values = 6 multiplications. So S = 1, A = 3, M = 6.
 As an example, a 4 point application of the direct de Casteljau algorithm will result in a formula
such as:
))1(())1)((1(),(1,10,11,00,0 tpptstpptstsp +−++−−=

 This evaluation requires 2 subtractions ((1-s) and (1-t)), 9 additions ([]jijijiji zyxp ,,,, =)
so any time we add two p’s we do 3 additions and since we have p0,0+p0,1 and p1,0 + p1,1 and then sum those
we get (3+3+3 = 9), finally there are 18 multiplications. (1-t)*p0,0 = 3 and each p has one so 3*4=12 and
then we multiply by the s’s for each so 3+3 = 6 and 12 + 6 = 18 multiplications. S = 2, A = 9, M = 18.
 I will take each square to take 9 adds and 18 multiplies since a recursive function (with no
memory) would perform the same actions.
 Looking at the matrix form, we have:

 [] 






 −












−= −−

++
−−

+

−−
+

−−

v
v

bb
bb

uub rr
ji

rr
ji

rr
ji

rr
jirr

ji

1
1 1,1

1,1
1,1

,1

1,1
1,

1,1
,,

,

 In this form, we can store the two subtractions and keep them globally so there will always be 2
subtractions. However, in evaluating rr

jib ,
, , we eventually come down to one or more four point cases or

one or more two point cases.
 Now, we can generalize this result for an m x n patch. For the special case of an n x n, we know
there are not going to be any lines for interpolation and we know the number of squares (4 point cases). So

since we know we will have
6

)12)(1(
1

2 ++
=∑

=

nnni
n

i
 squares each of which takes 9 adds and 18

multiplies (plus our constant 2 subtracts).
 For the case in which n ≠ m we have more options. We know the number of squares is given by
the formula f(m,n) = m*n * f(m-1, n-1) with f(0,n) = 0 and f(m,0) = 0. So f(4,2) = 4*2 + 3*1 + 2*0= 8 + 3
= 11 squares. However, we also know that if n ≠ m we will have to interpolate some lines. In fact, we must

interpolate
2

)1)((
1

nmnmi
nm

i

−+−
=∑

−

=

 lines. So we have 2 subtractions, f(m,n)*9 additions, f(m,n) * 18

multiplies + ((m-n)(1+m-n)/2) * 3 additions + ((m-n)(1+m-n)/2) * 6 multiplies in total.

* Use the tensor product formulation. Compute the coefficients of a u isoparametric line, and then evaluate
that curve at v.

 We are given an m x n patch such as:

In this problem, we evaluate all the Berstein polynomials first, multiply them by their coefficients for each
curve along m and then calculate the Berstein polynomial for the line across u and multiply it by the
coefficients to get the points on (u,v). This is somewhat different than the method discussed in class which
essentially performs a de Casteljau iteration for each curve to get the u control points and then performs de
Casteljau on that curve to get the final point on the curve.

In this method, we first calculate the Berstein polynomial. We assume that the degree of the curve is the
same across the surface. The polynomials are computed for the given v and for all 0 ≤ i ≤ n. The Berstein
polynomial is given by:

inin
i tt

i
n

tB −−







=)1()(

 Assume that the binomial coefficients are precomputed and do no factor into the operation count.
Evaluating the polynomial uses 1 subtraction of (1-t) which can be stored and used over and over. Next we
must compute powers of t, ti implies that t is multiplied i times (using a simple implementation) and (1-t) is
multiplied n-i times and then we multiply the binomial so in total we have i+n-i+1 = n+1 multiplies and one
subtract so n+2 total operations (not counting binomials).
 After doing that, we have a Berstein polynomial that can be used for all the curves on the v axis.
However, we must evaluate the coefficients and multiply them against the Berstein as:

∑
=

=
n

i
i

n
i ptBtx

0
)()(

 So we perform n multiplies and n-1 adds to compute a single point on a curve. Each add takes 3
additions and each multiply takes 3 multiplications. So the total operation count is (n+1)*(3) + 3n = 6n+3.
 In our case along the m axis, we really have m+2 operations to calculate the Berstein polynomial
and 6m+3 operations to calculate a point on one of the curves. However, there are n curves so to generate
all the points on all the curves takes n*(6m+3) operations.
 Now we have all the points on a isoparametric line on u. Now we must compute the Berstein in
this direction. This requires n+2 operations. Evaluating a point on the u curve takes 6n+3 operations.
 Therefore, in total we have: 1) calculate Berstein: m+2 operations 2) calculate points on curves:
n*(6m+3) operations 3) calculate other Berstein: n+2 4) evaluate a point on there: 6n+3 for a grand total of:
ops total = m+2 + n*(6m+3) + n+2 + 6n+3.

* Use the tensor product formulation. Compute the coefficients of a v isoparametric line, and then evaluate
that curve at u.
 This is just the same as the previous argument with n and m swapped. Therefore the operation
count is:
 # ops total = n+2 + m*(6n+3) + m+2 + 6m+3

m

n
u

v

4. Given a rational Bezier patch of degree n, P(u,v), give an algorithm to compute the control points (and
associated weight) of its normal or hodograph patch, N(u,w). Given the parameter values (u0, w0), N(u0,
w0) denotes the normal at P(u0, w0). N(u0, w0) doesn’t represent a normalized vector. I am not expecting a
closed form solution in terms of weights and control points of P(u,w), but show all the steps used to
compute a representation of the normal patch in terms of Bernstein polynomials.

Given a rational Bezier patch, I will show how to convert it to a normal patch (hopefully).

First, a rational Bezier patch is given by: ∑
∑∑

∑
=

= =

=

=
n

i
n

k

m

l

m
l

n
klk

m
j

n
iji

m

j
ji

tBsBw

tBsBw
btsP

0

0 0
,

,

0
,

)()(

)()(
),(

We will proceed as follows:
1) Show that the addition and multiplication (or really any basic operation) on a Bezier curve results in
another Bezier curve. This is needed when partial derivatives are calculated to provide some argument that
they are also Bezier curves. Also for cross products.
2) Compute the partial derivative Ps and Pt and argue that they are rational Bezier curves still
3) Compute Ps x Pt (abstractly) and argue that that is also a rational Bezier curve

Since n = Ps x Pt then we have constructed the normal patch for the rational Bezier patch and so have new
weights and control points to use.

1) Addition and multiplication on a Bezier curve results in another Bezier curve
Any two Bezier curves have the form:

()()∑ ++−== n
n

nn
ii tataBatA1)(0

() ()()∑ +−+−== − m
m

mmm
ii tbttbtbBbtB11)(1

10
When we multiply two of them together, we get something like:

() mn
mn

jkjmknmn tbatttbatBtA ++−+−+ ++−+−= ...)1....(...)()1()()(00 where k+j≤m+n and k,j≥0
The main point being that the terms are still powers of (1-t) and t together which means that they
correspond still to a Bezier curve formulation. Adding also just intermingles terms without altering the
basic Bezier properties, we have just altered like terms by summing coefficients. For rational Bezier, the a
and b terms can be seen as iii waa =' . In other words, the coefficients also contain the weights.

2) Compute partial derivatives Ps and Pt
To make the calculation simpler, we divide the fraction into its numerator and denominator. Namely:

∑∑
= =

=
n

i

m
j

n
iji

m

j
ji tBsBwbtsN

0
,

0
,)()(),(and ∑∑

= =

=
n

k

m

l

m
l

n
klk tBsBwtsD

0 0
,)()(),(

Then, consulting Farin 1990, the derivatives can be computed using the following formulas:

 ∑∑
=

−

=

−∆=
∂
∂ n

j

m

i

n
j

m
iji

nm vBuBbmvub
u 0

1

0

1
,

0,1,)()(),(

where jijiji bbb ,,1,
0,1 −=∆ +

 ∑∑
=

−

=

−∆=
∂
∂ m

i

n

j

m
i

n
jji

nm vBuBbnvub
v 0

1

0

1
,

1,0,)()(),(

where jijiji bbb ,1,,
1,0 −=∆ +

Applying these formulas to N and D result in:

∑∑
=

−

=

−
++ −=

n

j

m

i

n
j

m
ijijijis tBsBpwpwtsN

ji
0

1

0

1
,,1,1)()()(),(

,

∑∑
=

−

=

−
+ −=

n

j

m

i

n
j

m
ijijis tBsBwwtsD

0

1

0

1
,,1)()()(),(

∑∑
−

= =

−
++ −=

1

0 0

1
,1,1,)()()(),(

,

n

j

m

i

n
j

m
ijijijit tBsBpwpwtsN

ji

∑∑
−

= =

−
+ −=

1

0 0

1
,1,)()()(),(

n

j

m

i

n
j

m
ijijit tBsBwwtsD

Since we are adding and multiplying to achieve the differentiation, the partials are also Bezier curves.
Now we can use these terms to compute the partials for the whole expression. We have:

 2),(
),(),(),(),(),(

tsD
tsDtsNtsDtsN

D
NtsP ss

s
s

−
=






=

where the quotient rule was used since N/D form a quotient.

2),(
),(),(),(),(),(

tsD
tsDtsNtsDtsN

D
NtsP vt

t
t

−
=






=

So now that we have the partials (in Bezier form since they are formed from basic operations), then we can
try and phrase the normal map as a composition of these elements.

3) Compute Ps x Pt

If we take the results from part 2, we can say that the unnormalized normal map is:

()

2),(
)),(),(),(),((),(),(),(),(),(

tsD
tsDtsNtsDtsNtsDtsNtsDtsNtsNM tvss −×−

=

The cross product can be calculated by breaking the terms into their components. We know that we can
rephrase P(s,t) as P(s,t) = [x(s,t) y(s,t) z(s,t)]. So Ps(s,t) × Pt(s,t)= [xs(s,t) ys(s,t) zs(s,t)] × [xt(s,t) yt(s,t)
zt(s,t)] where the patch has been split into its x, y and z components Then the cross product becomes:

[] []

[])()()(
),(),(),(),(),(),(

tstststsstts

tttsss

xyyxzxxzzyzy
tsztsytsxtsztsytsxn

−−−=
×=

Since these components are all multiplications and subtractions (negative additions) then we can also call
the normal patch generated by the NM formula a Bezier patch as well.

5. Degree elevation of a triangular patch. Given a triangular patch of degree n, the degree elevation formula
for this patch is given as:
 ∑ ∑

= +=

+=
ni ni

n
ii

n
ii uBbuBb

1

1)1()()(

show that the control points)1(
ib are given as:

 []321
)1(

1
1

eieieii kbjbib
n

b −−− ++
+

=

There is a lot of notation introduced by these equations which is worthwhile to explain. |i|=i+j+k. So saying
|i|=n means that i+j+k add up to n with none of them going negative. Therefore, the summations are more
complicated than a straight indexing scheme. The i subscript refers to (i,j,k) as a way of identifying control
points on the triangle.E1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1) are representative of the unit axes. U = (u,v,w)
which are coordinates on the triangle patch. The Berstein polynomial is also redefined as:

 niwvu
kji

nwvu
i
n

uB kjikjin
i ==








=

r
r

r
r

!!!
!)(

 Also nkjiorkjiifuBn
i ><= ,,0,,0)(rr

),,(wvuu =
r

 but u+v+w=1 so the function is bivariate.

Since u+v+w=1, we can place is anywhere in the equation for degree elevation and we will still have a
legitimate formula (since we are essentially multiplying by 1). So we reformulate the degree elevation
formula as:
 ∑ ∑

= +=

+=++
ni ni

n
ii

n
ii uBbuBbwvu

1

1)1()()()(rr

Then we can compare like powers to define elevated control points in terms of the original control points.
One thing to keep in mind when looking at the formula is that the right side has |i|=n+1 while the left side
has |i|=n.
On the right hand side of the equation, we will have a term as:

 kji
i

n
ii wvu

kji
nbwvuBb

!!!
)!1(),,()1(1)1(+

=+ where i+j+k=n+1

However, with i+j+k=n+1 we can rephrase this to find the corresponding terms on the left hand side. In
particular, if i+j+k=n+1, we have three choices: (i-1)+j+k=n, i+(j-1)+k=n, or i+j+(k-1)=n. These indices
correspond to specific terms in the summation. So on the right hand side we can state:
 ∑

=

++
ni

n
ii uBbwvu)()(r

().....)(1
)!1(!!

!
1,,

1
!)!1(!

!
,1,

1
!!)!1(

!
,,1 ++++++= −

−−
−

−−
−

−−
kji

kji
n

kji
kji

kji
n

kji
kji

kji
n

kji wvubwvubwvubwvu

but then multiplying by (u+v+w) will create terms that are equal in u,v,w powers as our term on the right
hand side. Multiplying out the u+v+w results in the following terms in the summation sequence:

 ..
)!1(!!

!...
!)!1(!

!...
!!)!1(

!... 1,,,1,,,1 +
−

+
−

+
−

+ −−−
kji

kji
kji

kji
kji

kji wvu
kji
nbwvu

kji
nbwvu

kji
nb

Granted the terms will not appear together, but the distribution of + over * says that each term will
eventually be multiplied by u, v, and w separately.
Now that we have terms of equal power on the left and right side, we can then solve the equality for)1(

ib to
get our sought after result. Equating like terms (and eliminating the common uivjwk), we have:

!!!
)!1(

)!1(!!
!

!)!1(!
!

!!)!1(
!)1(

1,,,1,,,1 kji
nb

kji
nb

kji
nb

kji
nb ikjikjikji

+
=

−
+

−
+

− −−−

so solving for)1(
ib

)!1(
!!!

)!1(!!
!

)!1(
!!!

!)!1(!
!

)!1(
!!!

!!)!1(
!

1,,,1,,,1
)1(

+−
+

+−
+

+−
= −−− n

kji
kji
nb

n
kji

kji
nb

n
kji

kji
nbb kjikjikjii

simplifying

111 1,,,1,,,1
)1(

+
+

+
+

+
= −−− n

kb
n

jb
n

ibb kjikjikjii

or as the problem states it:

()1,,,1,,,1
)1(

1
1

−−− ++
+

= kjikjikjii kbjbib
n

b

finally substituting e1=(1,0,0), e2=(0,1,0), e3=(0,0,1)

()321
)1(

1
1

eieieii kbjbib
n

b −−− ++
+

= rrr

and this is the form we desired.

