
On-Line Geometric Modeling Notes

CATMULL-CLARK SURFACES

Kenneth I. Joy
Visualization and Graphics Research Group

Department of Computer Science
University of California, Davis

Overview

Utilizing the subdivision for bicubic uniform B-spline surfaces, Ed Catmull and Jim Clark, following

the methodology of Doo and Sabin noted that the subdivision rules expressed for the cubic B-spline surface

not only work for arbitrary rectangular meshes, but can also be extended to meshes of an arbitrary topology.

This extension was accomplished by generalizing the definition of a face point, by modifying the method

for calculating vertex points (which extends that of the uniform B-spline case), and by specifying a method

for reconnecting the points into a mesh.

Specifying the Refinement Procedure

Given a mesh of control points with an arbitrary topology, we can generalize the face point, edge point,

vertex point specification from the uniform B-spline surface calculations to obtain

• For each face of the mesh, generate the new face points – which are the average of all the original

points defining the face (We note that faces may have 3, 4, 5, or many points now defining them).

• Generate the new edge points – which are calculated as the average of the midpoints of the original

edge with the two new face points of the faces adjacent to the edge.

• Calculate the new vertex points – which are calculated as the average ofQ, 2R and (n−3)S
n , whereQ

is the average of the new face points of all faces adjacent to the original face point,R is the average

of the midpoints of all original edges incident on the original vertex point, andS is the original vertex

point.

The mesh is reconnected by the following method.



• Each new face point is connected to the new edge points of the edges defining the original face.

• Each new vertex point is connected to the new edge points of all original edges incident on the original

vertex point.

Example

For an example of this process consider the mesh consisting of four triangles in a diamond pattern, as is

illustrated below.

First, we construct the face points, which are calculated as the average of the points that make up each of

the original faces. These points are shown in the figure below, labeled with anF.

� �

� �

2



Now, we construct the edge points, which are calculated as the average of the four points – the two original

points which define the edge, and the two new face points for the faces that are adjacent to the edge. These

points are shown in the figure below and are labeled with anE.

�

� �

�

We now construct the single vertex point. This point, at least in two dimensions, is identical with the center

of the diamond. This point is shown in the figure below.

�

Finally, we connect the edges to the points we have generated: First connecting the face points to the edge

points that correspond to edges on the face, and then connecting the vertex point to the edge points.

3



We note now that the each face of the refined mesh has four edges, and our above algorithm with four edges

can now be used.

For an expanded example of this process consider the mesh illustrated below.

First, we construct the face points, which are calculated as the average of the points that make up each of

the original faces. These points are shown in the figure below, labeled with anF.

4



��

� �

� �

� �

Now, we construct the edge points, which are calculated as the average of the four points – the two original

points which define the edge, and the two new face points for the faces that are adjacent to the edge. These

points are shown in the figure below and are labeled with anE (The face points calculated in the previous

step are indicated as points with white centers).

�

�

�

�

�

�

�

�

�

	


�

We now construct the vertex points. These points are shown in the figure below, with the face points and

5



edge points indicated with white centers.

� �

�

�

�

Finally, we connect the edges to the points we have generated: First connecting the face points to the edge

points that correspond to edges on the face, and then connecting the vertex point to the edge points.

We note now that the each face of the refined mesh has four edges, and in fact, this is true in all cases no

matter how many sides the original figure has.

6



Four steps in the Catmull-Clark refinement process are shown in the illustrations below. Note what

happens to the corner control points under the refinement process.

We note that the new set of control points has the property that all faces have four sides. However also

note that the vertices corresponding to the original control points retain thevalence(the number of edges

that are adjacent to the vertex). One of the quadrilaterals is shaded incorrectly, since it is non-planar and the

rendering algorithm used cannot process these correctly.

7



Notice still that the vertices corresponding to the original control points retain their valence. Notice the

vertex of valence eight at the top of the solid.

Note that any portion of the surface where we have a4 × 4 array of control points in a rectangular

topology, represents a bicubic uniform B-spline surface patch. As subdivision proceeds, the only place

where such a topology will not exist is at the vertices that represent the original control points, and whose

valence is not four (commonly called extraordinary points). If all vertices in the original had valence four,

we would have a bicubic uniform B-spline surface patch to start with.

8



Summary

Catmull and Clark have shown that the rules expressed for the cubic B-spline subdivision not only

work for arbitrary rectangular meshes, but can also be extended to meshes of an arbitrary topology. This

methodology produces a surface that is locally a bicubic uniform B-spline except at a finite number of points

on the surface.

References

[1] CATMULL , E., AND CLARK , J. Recursively generated B-spline surfaces on arbitrary topological

meshes.Computer-Aided Design 10(Sept. 1978), 350–355.

All contents copyright (c) 1996, 1997, 1998, 1999
Computer Science Department, University of California, Davis
All rights reserved.

9


