
On-Line Geometric Modeling Notes

CUBIC UNIFORM B-SPLINE CURVE REFINEMENT

Kenneth I. Joy
Visualization and Graphics Research Group

Department of Computer Science
University of California, Davis

Overview

The binary subdivision of the uniform B-spline curves and surfaces motivate much of the work on sub-

division curves and surfaces – where the word “subdivision” here is taken from the process that is used to

subdivide a curve or surface into multiple components. In the uniform B-spline case a subdivided compo-

nent shares many of its individual control points with other components, allowing us to define the totality of

control points generated through subdivision as a refinement of the original control polygon. These new con-

trol points can be assembled into a new control polygon and refined again by the same methods. Successive

refinements produce a sequence of control polygons that in the limit converge to a curve.

The uniform B-spline curves, surfaces and solids have been extensively studied in the literature and

subdivision methods for these objects are well known. We develop here the refinement method for a cubic

uniform B-spline curve. The analysis is similar to that presented in the quadratic case however, the refine-

ment algorithm can be specified in a different manner which eventually allows us to use eigenanalysis and

directly calculate points on the curve.

The Matrix Equation for the Cubic Uniform B-Spline Curve

Given a set control polygon{P0,P1...,Pn} the cubic uniform B-spline curveP(t) defined by these

control points can be defined in segments by then− 2 equations

P(t) =
[

1 t t2 t3
]
M


Pk

Pk+1

Pk+2

Pk+3





for k = 0, 1, ..., n− 3, and0 ≤ t ≤ 1, and where

M =
1
6


1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1


The matrixM , when multiplied by

[
1 t t2 t3

]
defines the cubic uniform B-spline blending functions.

Splitting and Refinement

We will begin by studying the binary subdivision of a cubic uniform B-spline curveP(t) defined by the

four control pointsP0, P1, P2 andP3. Such a curve is shown in the following illustration.
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We can perform a binary subdivision by applying one of the two splitting matrices

SL =
1
8


4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1



SR =
1
8


1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4


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to the control polygon. (When applied to the control polygonSL gives the first half of the curve, andSR

gives the second half.)

As it turns out, several of the control points for the two subdivided components are the same. Thus, we

can combine these matrices, creating a5× 4 matrix

1
8



4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4


and apply it to a control polygon as follows

P1
0

P1
1

P1
2

P1
3

P1
4


=

1
8



4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4




P0

P1

P2

P3



generating a new control polygon which serves as the refinement of the original. The five control points of

this new control polygon specify the two subdivided halves of the curve – and therefore specify the curve

itself.
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The General Refinement Procedure
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In the case of the quadratic curve we were able to state exactly a single procedure for the points of

the refinement. In this case, it is not so easy. However, if we examine the rows of5 × 4 matrix used in

the refinement, we see that they have two distinct forms. This motivates us to classify the points of the

refinement as vertex and edge points, which is exhibited in another section. This classification makes the

description of the refinement process quite straightforward.

Summary

In the case of a uniform cubic B-spline curve we can define process that takes the defining control

polygon and creates a sequence of control polygons by refinement. This sequence converges to the curve

defined by the original control polygon. The procedure is similar to that given in the quadratic case as it is

generated through the matrices for binary subdivision of the curve.
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