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Overview

Subdivision surfaces are based upon the binary subdivision of the uniform B-spline surface. In general,

they are defined by a initial polygonal mesh, along with a subdivision (orrefinement) operation which,

given a polygonal mesh, will generate a new mesh that has a greater number of polygonal elements, and

is hopefully “closer” to some resulting surface. By repetitively applying the subdivision procedure to the

initial mesh, we generate a sequence of meshes that (hopefully) converges to a resulting surface. As it turns

out, this is a well known process when the mesh has a “rectangular” structure and the subdivision procedure

is an extension of binary subdivision for uniform B-spline surfaces.

Ed Catmull and Jim Clark, while still graduate students at the University of Utah, sought to extend

Doo and Sabin’s algorithm to bicubic surfaces. Since the methods of Doo-Sabin is based upon the binary

subdivision of the uniform bi-quadratic B-spline patches, Catmull and Clark believed that study of the cubic

case would lead to a better subdivision surface generation scheme.

A Matrix Equation for the Bicubic Uniform Spline Surfaces

Consider the bicubic uniform B-spline surfaceP(u, v) defined by the4× 4 array of control points

P =


P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3





where

P(u, v) =
[

1 u u2 u3
]
MPMT


1

v

v2

v3


whereM is the4× 4 matrix

M =
1
6


1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1


The control point mesh for such a patch is shown in the figure below.
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Subdividing the Bicubic Patch

The bicubic uniform B-spline patch can be subdivided into four subpatches, which can be generated from

25 unique sub-control points. We focus on the subdivision scheme for only one of the four (the subpatch

corresponding to0 ≤ u, v ≤ 1
2 ), as the others will follow by symmetry. The following figure illustrates

the 25 points produced by subdividing into four subpatches. We have outlined the initial subpatch that we

2



consider below. It should be noted that the nine “interior” control points are utilized by each of the four

subpatch components of the subdivision.
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This subpatch can be generated by reparameterizing the surface by the variablesu′ andv′, whereu′ = u
2

3



andv′ = v
2 . Substituting these into the equation, we obtain

P(u′, v′) = P(
u

2
,
v

2
)

=
[

1 u
2

(
u
2

)2 (
u
2

)3
]
MPMT


1
v
2(
v
2

)2(
v
2

)3



=
[

1 u u2 u3
]


1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
8

MPMT


1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
8


T 

1

v

v2

v3



=
[

1 u u2 u3
]
MM−1


1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
8

MPMT


1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
8


T

(M−1)T MT


1

v

v2

v3



=
[

1 u u2 u3
]
MSPST MT


1

v

v2

v3



=
[

1 u u2 u3
]
MP ′MT


1

v

v2

v3



whereP ′ = SPST and

S = M−1


1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
8

M
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Through this process, we have written the surfaceP′(u, v) as

P′(u, v) =
[

1 u u2 u3
]
MP ′MT


1

v

v2

v3


for some4 × 4 control point arrayP ′. This implies thatP′(u, v) is a uniform bicubic B-spline patch. The

matrixS is typically called the “splitting matrix”, and is straightforward to calculate. It is given by

H1 =
1
8


4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1


By carrying out the algebra, we can calculate the control point arrayP ′ by

P ′ =
1
8


4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1




P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3

 1
8


4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1


T

=
1
8


4P0,0 + 4P1,0 4P0,1 + 4P1,1 4P0,2 + 4P1,2 4P0,3 + 4P1,3

P0,0 + 6P1,0 + P2,0 P0,1 + 6P1,1 + P2,1 P0,2 + 6P1,2 + P2,2 P0,3 + 6P1,3 + P2,3

4P1,0 + 4P2,0 4P1,1 + 4P2,1 4P1,2 + 4P2,2 4P1,3 + 4P2,3

P1,0 + 6P2,0 + P3,0 P1,1 + 6P2,1 + P3,1 P1,2 + 6P2,2 + P3,2 P1,3 + 6P2,3 + P3,3

 1
8


4 1 0 0

4 6 4 1

0 1 4 6

0 0 6 1
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and we obtain

P′
0,0 =

P0,0 + P1,0 + P0,1 + P1,1

4

P′
0,1 =

P0,0 + P1,0 + 6(P0,1 + P1,1) + P0,2 + P1,2

16

P′
0,2 =

P0,1 + P1,1 + P0,2 + P1,2

4

P′
0,3 =

P0,1 + P1,1 + 6(P0,2 + P1,2) + P0,3 + P1,3

16

P′
1,0 =

P0,0 + P0,1 + 6(P1,0 + P1,1) + P2,0 + P2,1

16

P′
1,1 =

P0,0 + 6P1,0 + P2,0 + 6(P0,1 + 6P1,1 + P2,1) + P0,2 + 6P1,2 + P2,2

64

P′
1,2 =

P0,1 + P0,2 + 6(P1,1 + P1,2) + P2,1 + P2,2

16

P′
1,3 =

P0,1 + 6P1,1 + P2,1 + 6(P0,2 + 6P1,2 + P2,2) + P0,3 + 6P1,3 + P2,3

64

P′
2,0 =

P1,0 + P2,0 + P1,1 + P2,1

4

P′
2,1 =

P1,0 + P2,0 + 6(P1,1 + P2,1) + P1,2 + P2,2

16

P′
2,2 =

P1,1 + P2,1 + P1,2 + P2,2

4

P′
2,3 =

P1,1 + P2,1 + 6(P1,2 + P2,2) + P1,3 + P2,3

16

P′
3,0 =

P1,0 + P1,1 + 6(P2,0 + P2,1) + P3,0 + P3,1

16

P′
3,1 =

P1,0 + 6P2,0 + P3,0 + 6(P1,1 + 6P2,1 + P3,1) + P1,2 + 6P2,2 + P3,2

64

P′
3,2 =

P1,1 + P1,2 + 6(P2,1 + P2,2) + P3,1 + P3,2

16

P′
3,3 =

P1,1 + 6P2,1 + P3,1 + 6(P1,2 + 6P2,2 + P3,2) + P1,3 + 6P2,3 + P3,3

64

Each of these points can be classified into three categories – face points, edge points and vertex points

– depending on each points relationship to the original control point mesh. The pointsP′
0,0, P′

0,2, P′
2,0 and

P′
2,2, which are shown in the figure below
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are called “face” points, and are calculated as the average of the four points that bound the respective face.

If we define the face pointFi,j to be the average of the pointsPi,j , Pi+1,j , Pi,j+1 andPi+1,j+1, then we can
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rewrite the above equations with these face points substituted on the right-hand side, and obtain

P′
0,0 = F0,0

P′
0,1 =

4F0,0 + 4F0,1 + 4P0,1 + 4P1,1

16
P′

0,2 = F0,1

P′
0,3 =

4F0,1 + 4F0,2 + 4P0,2 + 4P1,2

16

P′
1,0 =

4F0,0 + 4F1,0 + 4P1,0 + 4P1,1

16

P′
1,1 =

4F0,0 + 4F0,1 + 4F1,0 + 4F1,1 + 4P1,0 + 4P0,1 + 32P1,1 + 4P2,1 + 4P1,2

64

P′
1,2 =

4F0,1 + 4F1,1 + 4P1,1 + 4P1,2

16

P′
1,3 =

4F0,1 + 4F0,2 + 4F1,1 + 4F1,2 + 4P1,1 + 4P0,2 + 32P1,2 + 4P2,2 + 4P1,3

64
P′

2,0 = F1,0

P′
2,1 =

4F1,0 + 4F1,1 + 4P1,1 + 4P2,1

16
P′

2,2 = F1,1

P′
2,3 =

4F1,1 + 4F1,2 + 4P1,2 + 4P2,2

16

P′
3,0 =

4F1,0 + 4F2,0 + 4P2,0 + 4P2,1

16

P′
3,1 =

4F1,0 + 4F2,0 + 4F1,1 + 4F2,1 + 4P2,0 + 4P1,1 + 32P2,1 + 4P3,1 + 4P2,2

64

P′
3,2 =

4F1,1 + 4F2,1 + 4P2,1 + 4P2,2

16

P′
3,3 =

4F1,1 + 4F2,1 + 4F1,2 + 4F2,2 + 4P2,1 + 4P1,2 + 32P2,2 + 4P3,2 + 4P2,3

64
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Simplifying these equations, we obtain

P′
0,0 = F0,0

P′
0,1 =

F0,0 + F0,1 + P0,1 + P1,1

4
P′

0,2 = F0,1

P′
0,3 =

F0,1 + F0,2 + P0,2 + P1,2

4

P′
1,0 =

F0,0 + F1,0 + P1,0 + P1,1

4

P′
1,1 =

F0,0 + F0,1 + F1,0 + F1,1 + P1,0 + P0,1 + 8P1,1 + P2,1 + P1,2

16

P′
1,2 =

F0,1 + F1,1 + P1,1 + P1,2

4

P′
1,3 =

F0,1 + F0,2 + F1,1 + F1,2 + P1,1 + P0,2 + 8P1,2 + P2,2 + P1,3

16
P′

2,0 = F1,0

P′
2,1 =

F1,0 + F1,1 + P1,1 + P2,1

4
P′

2,2 = F1,1

P′
2,3 =

F1,1 + F1,2 + P1,2 + P2,2

4

P′
3,0 =

F1,0 + F2,0 + P2,0 + P2,1

4

P′
3,1 =

F1,0 + F2,0 + F1,1 + F2,1 + P2,0 + P1,1 + 8P2,1 + P3,1 + P2,2

16

P′
3,2 =

F1,1 + F2,1 + P2,1 + P2,2

4

P′
3,3 =

F1,1 + F2,1 + F1,2 + F2,2 + P2,1 + P1,2 + 8P2,2 + P3,2 + P2,3

16

In examining these equations, we see that the pointsP′
0,1, P′

0,3, P′
1,0, P′

1,2, P′
2,1, P′

2,3, P′
3,0 andP′

3,2,

which are called “edge” points, are given as the average of four points – the two points that define the

original edge and the two two new face points of the faces sharing the edge. This is shown in the following

figure.
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These edge pointsEi,j can be calculated either as

Ei,j =
Fi,j−1 + Fi,j + Pi,j + Pi+1,j

4

or

Ei,j =
Fi−1,j + Fi,j + Pi,j + Pi,j+1

4

depending on which side of the edge point the two faces lie. If we replace these edge points on the right-hand
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side of the equations above, we obtain

P′
0,0 = F0,0

P′
0,1 = E0,1

P′
0,2 = F0,1

P′
0,3 = E0,2

P′
1,0 = E1,0

P′
1,1 =

F0,0 + F0,1 + F1,0 + F1,1 + P1,0 + P0,1 + 8P1,1 + P2,1 + P1,2

16
P′

1,2 = E1,2

P′
1,3 =

F0,1 + F0,2 + F1,1 + F1,2 + P1,1 + P0,2 + 8P1,2 + P2,2 + P1,3

16
P′

2,0 = F1,0

P′
2,1 = E2,1

P′
2,2 = F1,1

P′
2,3 = E2,2

P′
3,0 = E3,0

P′
3,1 =

F1,0 + F2,0 + F1,1 + F2,1 + P2,0 + P1,1 + 8P2,1 + P3,1 + P2,2

16
P′

3,2 = E3,2

P′
3,3 =

F1,1 + F2,1 + F1,2 + F2,2 + P2,1 + P1,2 + 8P2,2 + P3,2 + P2,3

16

The remaining four points,P′
1,1, P′

1,3, P′
3,1 andP′

3,3, as shown in the figure below
����� �

����� �

	�
� 
���� �

������ �

���� ������ �

�� !�" #

11



are called “vertex points”. These points, as can be seen above, are somewhat complex, but after some

reduction it can be seen that

P′
i,j =

Q + 2R + S
4

whereQ is the average of the face points of the faces adjacent to the vertex point,R is the average of the

midpoints of the edges adjacent to the vertex point andS is the corresponding vertex from the original mesh.

For example, if we consider the pointP′
1,3, then

Q =
F0,1 + F0,2 + F1,1 + F1,2

4

R =
P0,2+P1,2

2 + P1,1+P1,2

2 + P1,3+P1,2

2 + P2,2+P1,2

2

4
S = P1,2

All sixteen points of the subdivision have now been characterized in terms of face points, edge points

and vertex points, and a geometric method has been developed to calculate these points.

Extending this Subdivision Procedure to the Entire Patch

We note that all 25 of the points can actually be calculated in this manner, as for exampleP′
4,4 is a face

point and can be calculated as the average of the four points bounding the face. In general, we call the mesh

generated by the 25 points as a refinement of the original mesh. In this case, we can state the following rules

to generate the points for the refinement of the surface:

• For each face in the original mesh, generate the new face points – which are the average of all the

original points defining the face.

• For each internal edge of the original mesh (i.e. an edge not on the boundary), generate the new edge

points – which are calculated as the average of four points: the two points which define the edge, and

the two new face points for the faces that are adjacent to the edge.

• For each internal vertex of the original mesh (i.e. a vertex not on the boundary of the mesh), generate

the new vertex points – which are calculated as the average ofQ, 2R andS, whereQ is the average of

the new face points of all faces adjacent to the original vertex point,R is the average of the midpoints

of all original edges incident on the original vertex point, andS is the original vertex point.
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The process generated from these rules actually extends to arbitrary rectangular meshes, so we can

perform this process again on our refined mesh of 25 elements, producing a second refinement of the original

mesh. In this case, we know that this represents yet another subdivision and that eventually, if we keep

refining, this “limit mesh” will converge to the original uniform B-spline surface.

Thus, this process gives us a sequence of meshes, each of which is a refinement of the mesh directly

above, and which converges to the surface in the limit. For the purposes of rendering such a surface we can

simply let the refinement process go until we have a mesh that is “sufficiently close” to the actual surface

and then utilize the mesh for rendering purposes.

Summary

The subdivision of the bicubic uniform B-spline surface produces a simple procedure based upon face

points, edge points and vertex points, and can be extended to be a refinement procedure for an extended

mesh based upon a rectangular topology. Catmull and Clark were able to take this procedure and produce a

refinement strategy that works on a mesh of arbitrary topology.
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