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Overview

Subdivision surfaces are based upon the binary subdivision of the uniform B-spline surface. In general,
they are defined by a initial polygonal mesh, along with a subdivisiorrdfimement operation which,
given a polygonal mesh, will generate a new mesh that has a greater number of polygonal elements, and
is hopefully “closer” to some resulting surface. By repetitively applying the subdivision procedure to the
initial mesh, we generate a sequence of meshes that (hopefully) converges to a resulting surface. As it turns
out, this is a well known process when the mesh has a “rectangular” structure and the subdivision procedure
is an extension of binary subdivision for uniform B-spline surfaces.

Ed Catmull and Jim Clark, while still graduate students at the University of Utah, sought to extend
Doo and Sabin’s algorithm to bicubic surfaces. Since the methods of Doo-Sabin is based upon the binary
subdivision of the uniform bi-quadratic B-spline patches, Catmull and Clark believed that study of the cubic
case would lead to a better subdivision surface generation scheme.

A Matrix Equation for the Bicubic Uniform Spline Surfaces
Consider the bicubic uniform B-spline surfaPéu, v) defined by thet x 4 array of control points
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where

Pu,v) = | 1 u u? o |MPM"

whereM is the4 x 4 matrix
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The control point mesh for such a patch is shown in the figure below.
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Subdividing the Bicubic Patch

The bicubic uniform B-spline patch can be subdivided into four subpatches, which can be generated from
25 unique sub-control points. We focus on the subdivision scheme for only one of the four (the subpatch
corresponding t® < u,v < %), as the others will follow by symmetry. The following figure illustrates
the 25 points produced by subdividing into four subpatches. We have outlined the initial subpatch that we
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consider below. It should be noted that the nine “interior” control points are utilized by each of the four
subpatch components of the subdivision.
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This subpatch can be generated by reparameterizing the surface by the variablgs, whereu' =
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andv’ = . Substituting these into the equation, we obtain

P(/,v) = P(5,5)
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Through this process, we have written the surfB¢:, v) as

P'(u,v) =

[1 u u? u3}MP,MT

for some4 x 4 control point arrayP’. This implies thatP’(u, v) is a uniform bicubic B-spline patch. The

matrix S is typically called the “splitting matrix”, and is straightforward to calculate. It is given by

By carrying out the algebra, we can calculate the control point dtdyy
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and we obtain
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Each of these points can be classified into three categories — face points, edge points and vertex points

— depending on each points relationship to the original control point mesh. The B@j@,t?{m, ’270 and

5.2» Which are shown in the figure below
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are called “face” points, and are calculated as the average of the four points that bound the respective face.
If we define the face poink; ; to be the average of the poin®;, P11 ;, P; j+1 and P j41, then we can



rewrite the above equations with these face points substituted on the right-hand side, and obtain
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Simplifying these equations, we obtain

Pyo = Fopo
P — Foo+Fo1+Po1+Pia
01 = 1
P672 = FO,l
P ~ Fo1+Foo+Pgo+Pip
0,3 - 4
P Foo+Fi0+Pio+Py
1,0 - 4
P Foo+Fo1+Fio+Fi1+P1o+Po1 +8P11+Pa1 +Pip
1,1 16
P!  Fo1+Fi11+P11+Pip
1,2 - 4
p’ _ Fo1+Foo2+Fi1+Fi2+P11+Po2+8Pio+Pro+Pyj
13 16
P,y = Fio
P Fio+Fi11+P11+Poy
21 = n
Py, = Fi.
p!  Fi1+Fio0+P1o+Pop
2,3 - 4
r  Fio+Foo+Paog+Pay
3,0 - 4
P, Fio+Fo+F11+Fo1+Poog+Pyr1 +8P21 +P31+Pops
3.1 16
P!  Fi11+Fo1+Po1 +Pop
32 = 1
P’ _ Fii+Fe 1 +Fi2+Fo2+Py1 + P12+ 8Py +P3o+ Pojs
33 =
’ 16

In examining these equations, we see that the pagts Py 5, P, P 5, Py, Py 5, Ps g andPy 5,
which are called “edge” points, are given as the average of four points — the two points that define the
original edge and the two two new face points of the faces sharing the edge. This is shown in the following

figure.



These edge pointg; ; can be calculated either as
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depending on which side of the edge point the two faces lie. If we replace these edge points on the right-hand
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side of the equations above, we obtain
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The remaining four point®; |, P} 3, P3 ; andPy 5, as shown in the figure below
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are called “vertex points”. These points, as can be seen above, are somewhat complex, but after some
reduction it can be seen that

Q+2R+S
Pig = =4

whereQ is the average of the face points of the faces adjacent to the vertex Roisthe average of the
midpoints of the edges adjacent to the vertex point®ithe corresponding vertex from the original mesh.
For example, if we consider the poiBY, 3, then
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All sixteen points of the subdivision have now been characterized in terms of face points, edge points
and vertex points, and a geometric method has been developed to calculate these points.

Extending this Subdivision Procedure to the Entire Patch

We note that all 25 of the points can actually be calculated in this manner, as for exfnpie a face
point and can be calculated as the average of the four points bounding the face. In general, we call the mesh
generated by the 25 points as a refinement of the original mesh. In this case, we can state the following rules
to generate the points for the refinement of the surface:

e For each face in the original mesh, generate the new face points — which are the average of all the
original points defining the face.

e For each internal edge of the original mesh (i.e. an edge not on the boundary), generate the new edge
points — which are calculated as the average of four points: the two points which define the edge, and
the two new face points for the faces that are adjacent to the edge.

e For each internal vertex of the original mesh (i.e. a vertex not on the boundary of the mesh), generate
the new vertex points — which are calculated as the avera@g 2R andS, whereQ is the average of
the new face points of all faces adjacent to the original vertex pRirg,the average of the midpoints
of all original edges incident on the original vertex point, &id the original vertex point.
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The process generated from these rules actually extends to arbitrary rectangular meshes, so we can
perform this process again on our refined mesh of 25 elements, producing a second refinement of the original
mesh. In this case, we know that this represents yet another subdivision and that eventually, if we keep
refining, this “limit mesh” will converge to the original uniform B-spline surface.

Thus, this process gives us a sequence of meshes, each of which is a refinement of the mesh directly
above, and which converges to the surface in the limit. For the purposes of rendering such a surface we can
simply let the refinement process go until we have a mesh that is “sufficiently close” to the actual surface
and then utilize the mesh for rendering purposes.

Summary

The subdivision of the bicubic uniform B-spline surface produces a simple procedure based upon face
points, edge points and vertex points, and can be extended to be a refinement procedure for an extended
mesh based upon a rectangular topology. Catmull and Clark were able to take this procedure and produce a
refinement strategy that works on a mesh of arbitrary topology.
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