Properties of Bezier Curves

• Invariance under affine parameter transformation

$$\sum_{i=0}^{n} \mathbf{P}_{i} \mathbf{B}_{i,n} (\mathbf{u}) = \sum_{i=0}^{n} \mathbf{P}_{i} \mathbf{B}_{i,n} ((\mathbf{u} - \mathbf{a})/(\mathbf{b} - \mathbf{a}))$$

• Invariance under barycentric combinations (weighted average):

$$\sum_{i=0}^{n} (\alpha \mathbf{Q}_{i} + \beta \mathbf{R}_{i}) \mathbf{B}_{i,n}(\mathbf{u}) = \alpha \sum_{i=0}^{n} \mathbf{Q}_{i} \mathbf{B}_{i,n}(\mathbf{u}) + \beta \sum_{i=0}^{n} \mathbf{R}_{i} \mathbf{B}_{i,n}(\mathbf{u}),$$

$$\alpha + \beta = 1$$

• **Pseudo-local control**: $B_{i,n}$ (u) has a max at u = i/n. If we move the control point P_i , then the curve is most affected in the region around the parameter value i/n.

Derivatives of Bezier Curve

• Derivative of a Bezier curve:

$$\frac{d}{du}\mathbf{P}(\mathbf{u}) = \sum_{0}^{n-1} \Delta \mathbf{P}_{i} B_{i,n-1} (\mathbf{u}) = \mathbf{P}'(\mathbf{u}),$$
where $\Delta \mathbf{P}_{i} = \mathbf{P}_{i+1}$ - \mathbf{P}_{i} .

P'(u) is also called the *hodograph* curve

- Higher order derivatives can also be defined in terms of lower order Bezier curves
- Based on the derivatives, we can place constraints on the control points for C¹ or G¹ continuity.

09/09/02

Degree Elevation

- Geometric representation of a degree n curve in terms of n+1 degree curve
 - Compute the control points $(\underline{\mathbf{P}}_i)$ of the elevated curve

$$\sum_{i=0}^{n+1} \mathbf{P}_{i} B_{i,n+1} (\mathbf{u}) = \sum_{i=0}^{n} \mathbf{P}_{i} B_{i,n} (\mathbf{u})$$

where
$$\underline{\mathbf{P}}_{i} = \left(i/(n+1)\right)\mathbf{P}_{i-1} + \left(1 - i/(n+1)\right)\mathbf{P}_{i}$$
, where $i=0,\ldots,n+1$

• What happens if degree elevation is applied repeatedly?

09/09/02

Truncating a Bezier Curve

- *Truncation* and subsequent reparametrization: Given a Bezier curve, find the new set of control points of a Bezier curve that define a segment of this curve in the parametric interval: $u \in [u_i, u_i]$
- Subdivision: Given a Bezier curve, P(u), subdivide at a parameter value u_i . Compute the control points of two Bezier curves: $P_1(s)$ and $P_2(t)$, so that $P_1(s)$, s $\in [0,1]$ corresponds to P(u), u $\in [0,1]$, and $P_2(t)$, t $\in [0,1]$ corresponds to P(u), u $\in [u_i,1]$.
- Subdivision can be used to truncate a curve. The control points of the subdivided curve are computed using de Casteljau's algorithm.

Subdividing a Bezier Curve

- Subdivision doesn't change the shape of a Bezier curve
- It can be used for *local* refinement: subdivide a curve and change the control point(s) of one of the subdivided curve
- The union of convex hulls of the subdivided curve is a subset of the convex hull of the original curve (i.e. the convex hulls are a better approximation of the Bezier curve).
- Asymptotically the control polygons of the subdivided curve converge to the actual curve (at a quadratic rate)
- Subdivision and convex hulls are frequently used for intersection computations