
A Survey of Polygonal Simplification Algorithms
UNC Technical Report TR97-045

David Luebke
Department of Computer Science

University of North Carolina at Chapel Hill

1. ABSTRACT
Polygonal simplification is at once a very current and a very old
topic in computer graphics. As early as 1976 James Clark de-
scribed the benefits of representing objects within a scene at
several resolutions, and flight simulators have long used hand-
crafted multi-resolution models of airplanes to guarantee a con-
stant frame rate [Clark 76, Cosman 81]. Recent years have seen
a flurry of research into generating such multi-resolution repre-
sentations of objects automatically by simplifying the polygonal
geometry of the object. This paper surveys the field of polygo-
nal simplification, describing the current state-of-the-art as well
as attempting to identify the major issues and trends in the field
to date.

2. INTRODUCTION
Polygonal models currently dominate the field of interactive
three-dimensional computer graphics. This is largely because
their mathematical simplicity allows rapid rendering of polygo-
nal datasets, which in turn has led to widely available polygon
rendering hardware. In addition, polygons serve as a sort of
lowest common denominator for computer models, since almost
any model representation (spline, implicit-surface, volumetric)
may be converted with arbitrary accuracy to a polygonal mesh.
For these and other reasons, polygonal models are the most
common representation for visualization of medical, scientific,
and CAD datasets.

In many cases the complexity of such models exceeds the
ability of graphics hardware to render them interactively. Three
approaches are used to alleviate this problem:
• Augmenting the raw polygonal data to convey more visual

detail per polygon. Gouraud shading and texture mapping
fall into this category.

• Using information about the model to cull away large por-
tions of the model that are occluded from the current view-
point. The visibility processing approach described by Seth
Teller and Carlo Sequin is an excellent example [Teller 91].

• Polygonal simplification methods simplify the polygonal
geometry of small or distant objects to reduce the rendering
cost without a significant loss in the visual content of the
scene. These methods are the subject of this paper.

Note that terrains, or tessellated height fields, are a special cate-
gory of polygonal models. The regularity and two-dimensional
nature of these models simplify some aspects of the simplifica-
tion problem; most of the problems facing researchers in po-
lygonal simplification have been solved a year or two earlier for
the restricted domain of terrain datasets. At the risk of injustice
to some elegant work on terrains, this survey focuses on solu-
tions that apply to the more general realm of polygonal meshes.

A bewildering variety of simplification techniques have ap-
peared in the recent literature; the next section attempts to clas-
sify the important similarities and differences among these
techniques. A catalog of ten published algorithms follows,
briefly describing each approach and placing it in this taxonomy.
The next sections discuss some important issues and trends in
the field of simplification, and speculate on possible avenues for
future work. A few informal remarks close the paper.

3. TAXONOMY
The various simplification approaches described in the computer
graphics literature of the last five years can be categorized along
several axes. Some algorithms simplify the scene by iteratively
removing polygons while others collapse multiple vertices to-
gether, some algorithms preserve topology while others ignore
it, and so on. Polygonal simplification is by no means a solved
problem; this section identifies some of the important areas in
which existing solutions differ or resemble each other.

3.1 Mechanism:
A primary classification of any simplification algorithm is the
underlying mechanism it uses to remove polygons from the
scene. Nearly every simplification technique in the literature
uses some variation or combination of four basic polygon elision
mechanisms: sampling, adaptive subdivision, decimation, and
vertex merging.
• Sampling schemes begin by sampling the geometry of the

initial model. These samples can be points on the 2-D
manifold surfaces in the model or voxels in a 3-D grid su-
perimposed upon the model. The algorithm then tries to
create a polygonal simplification that closely matches the
sampled data. Varying the number of samples taken regu-
lates the accuracy of the created simplification.

• Adaptive subdivision approaches create a very simple po-
lygonal approximation of the scene, called the base model.
The base model consists of triangles or squares, shapes that
lend themselves to recursive subdivision. This process of
subdivision is applied to the base model until the resulting
surface lies within some user-specified threshold of the
original surface. Conceptually simple, adaptive subdivision
methods suffer two disadvantages. First, creating the base
model involves the very problem of polygonal simplifica-
tion that the algorithm is attempting to solve. For this rea-
son adaptive subdivision approaches have been more
popular with the specialized case of terrains, whose base
model is simple to calculate. Second, a recursive subdivi-
sion of the base model may not be able to capture the exact
geometry of the original model, especially around sharp
corners and “creases” in the mesh [Hoppe 96].

• Decimation techniques iteratively remove vertices or faces
from the mesh, retriangulating the resulting hole after each
step. This process continues until it reaches a user-
specified degree of simplification. Since most decimation
algorithms do not permit a vertex or face removal that will
change the local topology of the mesh, the decimation pro-
cess may be unable to effect high degrees of simplification.

• Vertex merging schemes operate by merging two or more
vertices of a triangulated model together into a single ver-
tex, which can in turn be merged with other vertices. Tri-
angles whose corners have been collapsed together become
degenerate and can be eliminated, decreasing the total
polygon count. Vertex merging approaches do not neces-
sarily require manifold topology, though some algorithms
have made that assumption implicitly. These algorithms
use a limited vertex merge called an edge collapse, in

which only the two vertices sharing an edge are collapsed
in each operation.

3.2 View-dependence
A few recent algorithms have introduced a methodology that
blurs the once-clear distinction between simplification and ren-
dering. The new approach performs simplification based on the
viewer’s position and provides another fundamental categoriza-
tion:
• View-independent simplification, the traditional approach,

computes several levels of detail (LODs) for every object in
the scene. At run-time the rendering system selects an ap-
propriate LOD for each object, usually based on distance.
As the object recedes from the viewer, the original or high-
est level of detail is replaced with progressively coarser
LODs.

• View-dependent simplification replaces multiple static lev-
els of detail with a single dynamic representation of the
model. This structure is continuously queried at run-time
to produce a polygonal tessellation appropriate to the user’s
current viewpoint. In a view-dependent system a single
object can span multiple levels of simplification, with
nearby portions of the object shown at higher resolution
than distant regions.

3.3 Error Metric:
Simplification methods can also be characterized by how they
use an error metric to regulate the quality of the simplification.
A surprising number of algorithms use no metric at all, but sim-
ply require the user to run the algorithm with different settings
and explicitly select appropriate LOD switching distances. For
large databases, however, this degree of user intervention is
simply not practical. Those algorithms that utilize an error met-
ric to guide simplification fall into two categories:
• Fidelity-based simplification techniques allow the user to

specify the desired fidelity of the simplification in some
form, then attempt to minimize the number of polygons
without violating that fidelity constraint. Different ap-
proaches measure fidelity in different ways; a common
definition is the maximum distance of the simplified sur-
face from the original surface. Adaptive subdivision algo-
rithms lend themselves nicely to fidelity-based
simplification, simply subdividing the base model until the
fidelity requirement is met.

• Polygon-budget simplification systems take as input a tar-
get number of polygons and attempt to maximize the fidel-
ity of the simplified model without exceeding the specified
polygon budget. This approach is a natural fit for decima-
tion techniques, which are designed to remove vertices or
faces one at a time and merely need to halt upon reaching
the target number of polygons. As mentioned above, how-
ever, topology constraints often prevent decimation algo-
rithms from reducing the polygon count below a certain
level.

To be most useful, a simplification algorithm needs to support
both fidelity-based and polygon-budget operation. Fidelity-
based approaches are crucial for generating accurate images,
whereas polygon-budget approaches are important for time-
critical rendering. The user may well require the both of these
tasks in the same system.

3.4 Topology:
In the context of polygonal simplification, topology usually
refers to the structure of a connected 2-D manifold, or mesh.
The local topology of a face, edge, or vertex refers to the geo-
metric structure of that feature’s immediate neighborhood. A

simplification algorithm that preserves local topology will not
alter this geometric structure, and will preserve the genus of the
simplified surface. Global topology refers to the geometric
structure of the entire surface. A simplification algorithm pre-
serves global topology if it preserves local topology and does
not create self-intersections within the simplified object. A self-
intersection, as the name implies, occurs when two non-adjacent
faces intersect each other.

Many real-world CAD models contain objects that violate
local or global topology. Since interactive visualization of CAD
databases is a primary application of polygonal simplification,
the behavior of the various approaches when encountering such
models is an important characteristic. Simplification algorithms
can be separated into two camps:
• Topology-preserving algorithms tend to exhibit good fidel-

ity. Since they preserve the genus of the simplified object,
no holes will disappear during simplification. As a result
the opacity of the object seen from a distance tends to re-
main roughly constant. This also limits the simplification
possible with a topology-preserving algorithm, however,
since objects of high genus cannot be simplified below a
certain number of polygons without closing holes in the
model. In addition, a topology-preserving approach re-
quires a mesh with valid topology to begin with. Some al-
gorithms, such as [Schroeder 92] ignore regions in the
mesh with invalid local topology, leaving the regions un-
simplified, while others simply crash.

• Topology-modifying algorithms do not necessarily preserve
local or global topology. The algorithms can therefore
close up holes in the model as simplification progresses,
permitting drastic simplification beyond the scope of topol-
ogy-preserving schemes. This drastic simplification often
comes at the price of poor fidelity, however, and distracting
artifacts as holes disappear from one LOD to the next.
Some topology-modifying algorithms do not require valid
topology in the initial mesh, which greatly increases their
utility in real-world CAD applications. Some topology-
modifying algorithms attempt to regulate the change in to-
pology, but most are topology-insensitive, paying no heed
to the initial mesh connectivity at all.

4. CATALOG
The intent of this section is not to provide an exhaustive list of
work in the field of polygonal simplification, nor to select the
“best” published papers, but rather to briefly describe a few
important algorithms that span the taxonomy presented above.
Most of the papers chosen represent influential advances in the
field; a few provide more careful treatment of existing ideas.

4.1 Decimation of Triangle Meshes
One of the first published algorithms to simplify general po-
lygonal models, this paper by William J. Schroeder, Jonathan A.
Zarge, and William E. Lorenson [Schroeder 92] coined the term
“decimation” for iterative removal of vertices. Schroeder’s
decimation scheme is designed to operate on the output of the
Marching Cubes algorithm for extracting isosurfaces from
volumetric data [Lorenson 87], and is still the most commonly
used algorithm for this purpose. Marching Cubes output is often
heavily overtesselated, with coplanar regions divided into many
more polygons than necessary, and Schroeder’s algorithm excels
at removing this redundant geometry.

The algorithm operates by making multiple passes over all
the vertices in the model. During a pass, each vertex is consid-
ered for deletion. If the vertex can be removed without violating
the local topology of the neighborhood, and if the resulting sur-
face would lie within a user-specified distance of the unsimpli-

fied geometry, the vertex and all its associated triangles are de-
leted. This leaves a hole in the mesh, which is retriangulated
using a loop-splitting algorithm. The algorithm continues to
iterate over the vertices in the model until no more vertices can
be removed.

Simplifications produced by the decimation algorithm pos-
sess an interesting feature: the vertices of the simplified model
are a subset of the vertices of the original model. This is con-
venient for reusing normals and texture coordinates at the verti-
ces, but can limit the fidelity of the simplifications, since the
best approximation to the original surface can at times involve
changing the positions of the vertices. The decimation algo-
rithm accepts models with non-manifold vertices, but does not
attempt to simplify those regions of the model.

4.2 Re-Tiling Polygonal Surfaces
Another of the first papers to address simplification of arbitrary
polyhedral objects, this algorithm by Greg Turk [Turk 92] com-
bines elements of the sampling and decimation mechanisms.
The re-tiling algorithm works best on smoothly curved surfaces
without sharp edges or discontinuities, preferring organic forms
such as people or animals to mechanical shapes such as furniture
or machine parts. Re-tiling provides a form of polygon-budget
simplification by allowing the user to specify the number of
vertices in the simplified model, but it is not obvious how to
modify the algorithm to provide a fidelity metric.

The algorithm begins by randomly distributing the user-
specified number of vertices over the surface of the model. The
algorithm then simulates repulsion forces between the vertices,
allowing nearby vertices to repel each other. Since the vertices
are constrained to move within the surface, this repulsion tends
to redistribute the randomly scattered vertices evenly across the
surface. Next, the algorithm uses a method called mutual tes-
sellation to construct an intermediate surface that contains both
the new and original vertices. A local re-triangulation is applied
to improve the aspect ratio of the resulting triangles. Finally, the
original vertices are decimated from this surface, leaving the re-
tiled model composed of the new vertices.

Among the contributions of this paper was the introduction
of a method to smoothly interpolate between different levels of
detail, a process for which Hughes Hoppe has since used the
term “geomorph” [Hoppe 96].

4.3 Multi-Resolution 3D Approximations for
Rendering Complex Scenes
This vertex-merging algorithm by Jarek Rossignac and Paul
Borrel is one of the few schemes that neither requires nor pre-
serves valid topology. The algorithm can therefore deal robustly
with degenerate models with which other approaches have little
or no success. This is a tremendous advantage for simplification
of handcrafted CAD databases, a notoriously messy category of
models.

The algorithm begins by assigning a perceptual importance
to each vertex based upon two factors. Vertices associated with
large faces are considered more important than vertices associ-
ated only with small faces, and vertices of high curvature
(measured by the inverse of the maximum angle between any
pair of edges incident to the vertex) are considered more impor-
tant than vertices of low curvature. Next a three-dimensional
grid is overlaid on the model and all vertices within each cell of
the grid are collapsed to a single representative vertex for the
cell, chosen according to the importance weighting calculated in
the first step. The resolution of this grid determines the quality
of the resulting simplification; a coarse grid will aggressively
simplify the model while a fine grid will perform only minimal

reduction. In the process of clustering, triangles whose corners
are collapsed together become degenerate and disappear.

One unique feature of the Rossignac-Borrel algorithm is the
fashion in which it treats these triangles. Reasoning that a trian-
gle with two corners collapsed is simply a line and a triangle
with three corners collapsed is simply a point, the authors
choose to render such triangles using the line and point primi-
tives of the graphics hardware, filtering out redundant lines and
points. Thus a simplification of a polygonal object will gener-
ally be a collection of polygons, lines, and points. The resulting
simplifications are therefore more accurate from a schematic
than a strictly geometric standpoint. For the purposes of drastic
simplification, however, the lines and points can contribute sig-
nificantly to the recognizability of the object.

In addition to its inherent robustness, the Rossignac-Borrel
algorithm can be implemented very efficiently and is one of the
fastest algorithms known. However, the method suffers several
disadvantages. Since topology is not preserved and no explicit
error bounds with respect to the surface are guaranteed, the re-
sulting simplifications can be less visually pleasing than those of
slower algorithms. In addition, the simplification is sensitive to
the orientation of the clustering grid, so two identical objects at
different orientations can produce quite different simplifications.
Finally, the algorithm does not lend itself to either fidelity-based
or polygon-budget simplification, since the only way to predict
how many triangles an LOD will have using a specified grid
resolution is to perform the simplification.

4.4 Model Simplification Using Vertex Clus-
tering
Kok-Lim Low and Tiow-Seng Tan have carefully examined the
Rossignac-Borrel algorithm and invented a revised version that
addresses some of these shortcomings [Low 97]. Observing that
the spatial binning invoked by the 3-D grid is simply a form of
vertex clustering, Low and Tan introduce a different clustering
approach they call floating-cell clustering. In this approach the
vertices are ranked by importance and a cell of user-specified
size is centered on the most important vertex. All vertices fal-
ling within the cell are collapsed to the representative vertex and
degenerate triangles are filtered out as in the Rossignac-Borrel
scheme. The most important remaining vertex becomes the
center of the next cell and the process is repeated. By eliminat-
ing the underlying grid, floating-cell clustering greatly reduces
the sensitivity of the simplification to the position and orienta-
tion of the model. In addition, floating-cell simplification re-
sults vary less with cell size than the results of the uniform-
subdivision approach.

Low and Tan also improve upon the criteria used for calcu-
lating vertex importance. Let θ be the maximum angle between
all pairs of edges incident to a vertex. Though Rossignac and
Borrel used 1/θ to estimate the probability that the vertex lies on
the silhouette, Low and Tan argue that cos (θ/2) provides a bet-
ter estimate.

In addition, Low and Tan extend the concept of drawing de-
generate triangles as lines, calculating an approximate width for
those lines based on the vertices being clustered and drawing the
line using the thick-line primitive present in most graphics sys-
tems. The appearance of these lines is further improved by giv-
ing the line a normal to be shaded by the standard graphics
lighting computations. This normal is dynamically assigned at
run-time to give the line a cylinder-like appearance.

Finally, Low and Tan address the lack of a fidelity metric in
the original algorithm by noting that the clustering size used to
create an LOD can be related to the maximum number of pixels
each cluster can cover. This provides a rough fidelity metric,
allowing the user to specify that no LOD will be used unless it

clusters only vertices within n pixels of each other. This obser-
vation has been made elsewhere and forms the basis for the
Luebke-Erikson algorithm, described next.

4.5 View-Dependent Simplification of Arbi-
trary Polygonal Environments
This vertex-merging algorithm by David Luebke and Carl Erik-
son is one of the first to provide interactive view-dependent
simplification of arbitrary polygonal scenes [Luebke 97]. The
algorithm, referred to as Hierarchical Dynamic Simplification or
HDS, was designed for visualization of very complex CAD
models and, like the Rossignac-Borrel approach, neither requires
nor preserves manifold topology. Rather than representing the
scene as a collection of objects, each at several levels of detail,
in the HDS algorithm the entire model comprises a single large
data structure. This structure is the vertex tree, a hierarchy of
vertex clusters which is queried to generate a simplified scene.

The entire system is dynamic; nodes to be collapsed or ex-
panded are continuously chosen based on their projected size.
The screenspace extent of each node is monitored: as the view-
point shifts, certain nodes in the vertex tree will fall below the
size threshold. These nodes will be folded into their parent
nodes and the now-redundant triangles removed. Other nodes
will increase in apparent size to the user and will be unfolded
into their constituent child nodes, introducing new vertices and
new triangles. The user selects the screenspace size threshold
and may adjust it during the course of a viewing session for
interactive control over the degree of simplification. HDS
maintains an active list of visible polygons for rendering. Since
frame-to-frame movements typically involve small changes in
viewpoint, and therefore modify the active list by only a few
polygons, the method takes advantage of temporal coherence for
greater speed.

Any vertex merging simplification technique can be used to
construct the vertex tree; the paper describes how two such
techniques were implemented. The first is the tight octree, an
adaptive hierarchical variation of spatial binning. The second is
a hybrid approach based on edge collapses, in which adjacent
vertices are merged until local curvature criteria would be vio-
lated by further edge collapses. The remaining vertices are then
clustered together using a tight octree.

In addition, any set of run-time criteria can be plugged into
the HDS framework in the form of a function that folds and
unfolds the appropriate nodes. The paper describes the imple-
mentation of three such criteria: a screenspace error threshold, a
silhouette test, and a triangle budget. The screenspace error
threshold, described above, provides a form of fidelity-based
simplification. The silhouette test uses a pre-calculated “cone of
normals” to determine whether a vertex cluster is currently on
the silhouette. Clusters on the silhouette are tested against a
tighter screenspace threshold than clusters in the interior. Fi-
nally, HDS implements triangle-budget simplification by main-
taining a priority queue of vertex clusters. The cluster with the
largest screenspace error is unfolded and its children placed in
the queue. This process is repeated until unfolding a cluster
would violate the triangle budget.

4.6 Voxel-Based Object Simplification
Taosong He, Lechan Hong, Arie Kaufman, Amitabh Varshney,
and Sidney Wang introduced this sampling algorithm to address
the problem of topology. As mentioned above, the constraints
of topology-preserving algorithms often limit their ability to
perform drastic simplification. Topology-insensitive approaches
such as the Rossignac-Borrel algorithm do not suffer these con-
straints, but reduce the topology of their models in a haphazard
and unpredictable fashion. Voxel-based simplification is an

attempt to simplify topology in a gradual and controlled manner
using the robust and well-understood theory of signal process-
ing.

The algorithm begins by creating a volumetric representa-
tion of the model, superimposing a three-dimensional grid of
voxels over the polygonal geometry. The value of each voxel is
determined from the density of polygons within that voxel.
Next the algorithm applies a low-pass filter by resampling and
convolving the volume. The result is another volumetric repre-
sentation of the object with lower resolution. Sampling theory
guarantees that small, high-frequency features will be eliminated
in the low-pass filtered volume. The Marching Cubes algorithm
is applied to this volume to generate a simplified polygonal
model. Since Marching Cubes can create redundant geometry, a
standard topology-preserving algorithm is required as a post-
process.

Unfortunately, high-frequency details such as sharp edges
and squared-off corners seem to contribute greatly to the per-
ception of shape. As a result, the voxel-based simplification
algorithm performs poorly on models with such features. This
greatly restricts its usefulness on mechanical CAD models,
which are perhaps the most likely models to have complex to-
pologies.

4.7 Simplification Envelopes
Simplification envelopes, presented by Jonathan Cohen, Ami-
tabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber,
Pankaj Agrawal, Frederick Brooks, and William Wright, provide
a method of guaranteeing fidelity bounds while enforcing global
as well as local topology [Cohen 96]. Simplification envelopes
per se are more of a framework than an individual algorithm,
and the authors of this paper present two examples of algorithms
within this framework.

The simplification envelopes of a surface consist of two off-
set surfaces, or copies of the surface offset no more than some
distance ε from the original surface. The outer envelope is cre-
ated by displacing each vertex of the original mesh along its
normal by ε. Similarly, the inner envelope is created by dis-
placing each vertex by -ε. The envelopes are not allowed to
self-intersect; where curvature of the original surface would
create such self-intersection, ε is locally decreased.

Once created, these envelopes can guide the simplification
process. The algorithms described in the paper are both deci-
mation approaches that iteratively remove triangles or vertices
and re-triangulate the resulting holes. By keeping the simplified
surface within the envelopes, these algorithms can guarantee,
first, that global topology is respected, and second, that the sim-
plified surfaces deviates in no place by more than ε from the
original surface. The resulting simplifications tend to have very
good fidelity.

Where fidelity and topology preservation are crucial, simpli-
fication envelopes are an excellent choice. The ε error bound is
also an attractive feature of this approach, providing a natural
means for calculating LOD switching distances. Though the
algorithms presented in the paper are based on a decimation
approach, a vertex-merging algorithm based on simplification
envelopes is easy to imagine. However, the very strengths of
the simplification envelopes technique are also its weaknesses.
The strict preservation of topology and the careful avoidance of
self-intersections greatly curtail the approach’s capability for
drastic simplification. The construction of offset surfaces also
demands an orientable manifold; topological imperfections in
the initial mesh can hamper or prevent simplification. Finally,
the algorithms for simplification envelopes are intricate and
difficult to program. Writing a robust system based on simplifi-
cation envelopes is a substantial undertaking.

4.8 Mesh Optimization
This paper by Hughes Hoppe, Tony DeRose, Tom Duchamp,
John McDonald, and Werner Stuetzle, describes a complex
sampling approach, which evolved out of the authors’ work on
surface reconstruction of laser-scanned datasets [Hoppe 93].
Surface reconstruction is the problem of creating a three-
dimensional mesh from a collection of sample points. Mesh
optimization, as the name suggests, treats simplification as an
optimization problem. The number of vertices in the simplifica-
tion and its deviation from the original are explicitly modeled as
an energy function to be minimized.

The algorithm begins by sampling the mesh, taking a num-
ber of randomly placed samples in addition to the vertices of the
original mesh. These sample points are used to measure devia-
tion from the original. Next a random edge of the mesh is
picked and one of three operations attempted at random: edge
collapse, edge split, or edge swap. An inner loop then adjusts
the positions of vertices to minimize the energy function for the
next configuration. If the overall energy is not reduced or the
topology is violated, the randomly selected edge operation is
undone. Another random edge is picked and the process repeats,
iterating until repeated attempts suggest that the energy function
has reached a local minimum.

The careful simplification performed by the mesh optimiza-
tion algorithm produces models of very high fidelity. The algo-
rithm seems to be especially well suited for mechanical CAD
models, capturing sharp features very nicely. Though topology
is preserved, with the consequent limits on simplification, mesh
optimization appears excellent at simplifying right up to those
limits. Unfortunately, the algorithm is extremely slow, requiring
hours to simplify a single machine part. In addition, mesh opti-
mization probably qualifies as the most complex simplification
scheme published, and a robust implementation seems quite
difficult.

4.9 Progressive Meshes
This vertex-merging algorithm by Hughes Hoppe follows up on
the mesh optimization approach. As described above, mesh
optimization used the three techniques of edge collapse, edge
split, and edge swap in random order to reduce an explicitly
modeled energy function. The progressive meshes paper builds
on the discovery that the edge collapse operation alone suffices
to achieve high-quality simplification. The main contributions
of the paper are the progressive mesh, a new representation for
polygonal models based on edge collapses, and a topology-
preserving simplification algorithm for generating progressive
meshes.

A progressive mesh consists of a simple base mesh, created
by a sequence of edge collapse operations, followed by a stream
of vertex split records. A vertex split (or vsplit) is the dual of an
edge collapse (or ecol). Each vsplit replaces a vertex by two
edge-connected vertices, creating one additional vertex and two
additional triangles. The vsplit records in a progressive mesh
correspond to the edge collapse operations used to create the
base mesh. Applying all of the vsplit records to the associated
base mesh will recapture the original model exactly; applying a
subset of the vsplit records will create an intermediate simplifi-
cation. Since each vertex split creates two triangles (one for
boundary edges), triangle-budget simplification is easily imple-
mented by applying the vsplit records in order until the specified
triangle budget is reached. In fact, the stream of vsplit records
encodes a continuum of simplifications from the base mesh up
to the original model. The vertex split and edge collapse opera-
tions are quite fast and may be applied at run-time to smoothly
transition between levels of detail.

The quality of the intermediate simplifications depends en-
tirely on the order of ecol operations used to create the base
mesh. Hoppe describes a careful simplification algorithm to
generate these edge collapses. The algorithm, like the mesh
optimization algorithm, models fidelity explicitly as an energy
function to be minimized. All edges that can be collapsed are
evaluated according to their effect on this energy function and
sorted into a priority queue. The ecol operation which most
decreases the energy function is taken from the head of the
queue and performed. Since this may change how collapsing
nearby edges will affect the energy function, those edges are re-
evaluated and resorted into the queue. This process repeats until
topological constraints prevent further simplification. The re-
maining edges and triangles comprise the base mesh, and the
sequence of ecol operations performed becomes (in reverse or-
der) the stream of vsplit operations.

Along with progressive meshes, Hoppe introduces a very
nice framework for handling surface attributes of a mesh during
simplification. Such attributes are categorized as discrete attrib-
utes, associated with faces in the mesh, and scalar attributes,
associated with corners of the faces in the mesh. Common dis-
crete attributes include material and texture identifiers; common
scalar attributes include color, normal, and texture coordinates.
Hoppe also describes how to model some of these attributes in
the energy function, allowing normals, color, and material iden-
tifiers to guide the simplification process.

Finally, Hoppe has recently extended progressive meshes to
perform view-dependent simplification at run time [Hoppe 97],
independently developing a system similar in many ways to the
Luebke-Erikson algorithm described above.

4.10 Multiresolution Analysis of Arbitrary
Meshes
This adaptive subdivision algorithm by Matthias Eck, Tony
DeRose, Tom Duchamp, Hughes Hoppe, Michael Lounsbery,
and Werner Stuetzle uses a compact wavelet representation to
guide the recursive subdivision process [Eck 95]. By adding or
subtracting wavelet coefficients the algorithm can smoothly
interpolate between levels of detail. The algorithm provides
fidelity-based simplification by using enough wavelet coeffi-
cients to guarantee that the simplified surface lies within a user-
specified distance of the original model.

A chief contribution of this paper is a method for finding a
simple base mesh that exhibits subdivision connectivity, which
means that the original mesh may be recovered by recursive
subdivision. As mentioned above, finding a base mesh is simple
for terrain datasets but difficult for general polygonal models of
arbitrary topology. Eck’s algorithm creates the base mesh by
growing voronoi-like regions across the triangles of the original
surface. When these regions stop growing, a Delauney-like
triangulation is formed from the voronoi sites and the base mesh
formed in turn from the triangulation.

This algorithm possesses the usual disadvantages of strict
topology-preserving approaches: manifold topology is abso-
lutely required in the input model, and the shape and genus of
the original object limit the potential for drastic simplification.
The fidelity of the resulting simplifications is quite high for
smooth organic forms, but the algorithm has difficulty capturing
sharp features in the original model unless the features happen to
fall along a division in the base mesh [Hoppe 96].

4.11 Surface Simplification Using Quadric
Error Metrics
This recent view-independent vertex-merging algorithm by Mi-
chael Garland and Paul Heckbert strikes perhaps the best bal-
ance yet between speed, fidelity, and robustness. The algorithm

proceeds by iteratively merging pairs of vertices, which may or
may not be connected by an edge. Candidate vertex pairs are
selected at the beginning of the algorithm according to a user-
specified distance threshold t. Candidate pairs include all verti-
ces which are connected by an edge, plus all vertex pairs sepa-
rated by less than t. The major contribution of the algorithm is a
new way to represent the error introduced by a sequence of ver-
tex merge operations, called the quadric error metric. The
quadric error metric of a vertex is a matrix that represents the
sum of the squared distances from the vertex to the planes of
neighboring triangles.

The error introduced by a vertex merge operation can be
quickly derived from the sum of the quadric error metrics of the
vertices being merged, and that sum will become the quadric
error metric of the merged vertex. At the beginning of the algo-
rithm, all candidate vertex pairs are sorted into a priority queue
according to the error calculated for merging them. The vertex
pair with the lowest merge error is removed from the top of the
queue and merged. The errors of all vertex pairs involving the
merged vertices are then updated and the algorithm repeats.

Quadric error metrics provide a fast, simple way to guide the
simplification process with relatively minor storage costs. The
result algorithm is extraordinarily fast; the authors report simpli-
fying a 70,000 triangle model to 100 triangles in 15 seconds.
The visual fidelity of the resulting simplifications is quite high,
especially at high levels of simplification. Since disconnected
vertices closer than t are allowed to merge, the algorithm does
not require manifold topology, though it can be made to pre-
serve topology by setting t to zero. One disadvantage of the
algorithm is that the number of vertex pairs, and hence the run-
ning time of the algorithm, approaches O(n2) as t approaches the
size of the model. In addition, the choice of a good value for t is
very model-specific and can be difficult to automate. Finally,
the algorithm as presented does not take vertex attributes such as
color, normal, and texture information into account. Within
these limitations, however, this simple-to-implement algorithm
appears to be the best combination of efficiency, fidelity, and
generality currently available. Many future algorithms will no
doubt build on concepts introduced by Garland and Heckbert.

5. ISSUES AND TRENDS

5.1 Mechanism
The field of polygonal simplification appears to be converging
on vertex merging as the underlying mechanism for polygon
reduction. All four surface simplification papers in the SIG-
GRAPH ‘97 conference, for example, present algorithms based
on merging vertices [Hoppe 97, Luebke 97, Garland 97, Popovic
97]. The simplicity and robust nature of vertex merging no
doubt play a large part in this trend. Earlier work by Hoppe and
Ronfard has probably played a part as well by demonstrating
that high-quality simplification is possible with an algorithm
based entirely on edge collapses [Hoppe 96, Ronfard 96]. Rep-
resentations such as progressive meshes and the HDS vertex tree
provide a very general framework for experimenting with differ-
ent simplification strategies, including the relatively new view-
dependent criteria. Settling on this emerging standard will hope-
fully allow the field of polygonal simplification to make faster
strides in other important issues.

5.2 Error metrics
The lack of an agreed-upon definition of fidelity seriously ham-
pers comparison of results among algorithms. Most simplifica-
tion schemes use some sort of distance-based metric in which
fidelity of the simplified surface is assumed to vary with the
distance of that surface from the original mesh. The edge-

collapsing approach of Guèziec preserves the enclosed volume
of the simplified surface to within a user-specified tolerance
[Guèziec 97]. Such metrics are useful for certain CAD applica-
tions, such as finite element analysis, and for certain medical
and scientific applications, such as co-registering surfaces or
measuring volumes. Probably the most common use of polygo-
nal simplification, however, is to speed up rendering for visuali-
zation of complex databases. For this purpose, the most
important measure of fidelity is not geometric but perceptual:
does the simplification look like the original?

Unfortunately, the human visual system remains imperfectly
understood, and no well-defined perceptual metric exists to
guide simplification. Existing distance- and volume-based met-
rics, while certainly a useful approximation, suffer one definite
deficiency by not taking the surface normal into account. Since
lighting calculations are usually interpolated across polygons,
for example, deviation in a vertex’s normal can be even more
visually distracting than deviation in its position. As another
example, consider a pleated polygonal sheet. A single polygon
spanning the width of the sheet may have minimal distance error
but can have very different reflectance properties. In their sur-
vey of multiresolution methods for fast rendering, Garland and
Heckbert propose that fidelity of simplification methods should
be measured with perceptual tests using human viewers, or with
a good image-based error metric. As a starting point for such a
metric, they suggest the sum of the squared distances in RGB
color space between corresponding pixels. [Garland 94].

5.3 View-dependence
View-dependent algorithms are quite new to the field of general
polygonal simplification, and possess some definite advantages
over view-independent approaches. View-independent methods
are less general, making some implicit assumptions regarding
object size. To begin with, physically large objects must be
subdivided. Consider a model of a ship, for example: the hull of
the ship should be divided into several sections, or the end fur-
thest from the user will be tessellated as finely as the nearby
hull. View-dependent techniques do not have this problem,
since a single object can be rendered at multiple levels of detail.
In addition, physically small objects may need to be combined,
especially for drastic simplification. The diesel engine of that
ship might consist of ten thousand small parts; from far away a
roughly engine-shaped block makes a better approximation than
ten thousand tetrahedra. Again, view-dependent techniques can
be designed to automatically merge objects without requiring the
user to explicitly establish a hierarchy of objects to be merged
[Luebke 97]. Finally, view-dependent methods offer the possi-
bility of more sophisticated simplification criteria. Some exam-
ples include preservation of silhouettes [Hoppe 97, Luebke 97,
Xia 96], preservation of specular highlights [Xia 96], and ag-
gressive simplification of backfacing regions [Hoppe 97].
View-independent algorithms can address none of these criteria.

However, view-dependence also suffers some significant
drawbacks. View-dependent methods inherently involve more
run-time computation than view-independent approaches. When
the CPU rather than the graphics subsystem is the limiting factor
in rendering performance, view-dependent approaches become
less attractive. Also, view-dependent simplification is by nature
an immediate-mode technique, a disadvantage since most cur-
rent rendering hardware favors retained-mode display lists.
Experiments on an SGI Onyx with InfiniteReality graphics, for
example, indicate that Gouraud-shaded depth-buffered unlit
triangles render two to three times faster in a display list than in
a tightly optimized immediate mode display loop [Aliaga 97].
For these reasons view-dependent techniques seem unlikely to

completely supplant view-independent techniques in the near
future.

5.4 Geometry Compression
A field closely related to polygonal simplification is geometry
compression. Rather than attempting to produce simpler repre-
sentations of a polygonal model, geometry compression focuses
on minimizing the storage requirements of a given mesh.
Deering introduced the first geometry compression algorithm for
general 3-D polygonal models. His approach applies quantiza-
tion and lossy compression to attributes such as the position,
normal, and color of vertices, achieving compression rates of 6-
10:1 [Deering 95]. Taubin and Rossignac extend this idea by
compressing the topological connectivity of polygons in the
mesh. Decomposing the triangulated model into a tree of linear
triangle strips allows significant compression of connectivity
information, averaging roughly two bits per triangle [Taubin
96]. The Taubin-Rossignac algorithm has since been incorpo-
rated into a proposal for the next-generation binary format of
VRML, the Virtual Reality Modeling Language, and the authors
of the proposal report compression ratios of 50:1 or more for
large VRML models [Taubin 97].

5.5 Progressive Transmission
As the bandwidth and processing power available to home users
increase, 3-D graphics seem likely to undergo a mass-market
debut similar to that which has recently shaken the hypertext-
oriented World Wide Web. Indeed, VRML and browser plug-
ins may well bring such a revolution about via the Web. The
evolution of the WWW has underscored the importance of pro-
gressive transmission algorithms. These algorithms transmit a
coarse version of the data first, followed by a stream of refine-
ments, which the receiving process uses to reconstruct the origi-
nal. The progressive mesh representation is by design well
suited for progressive transmission of polygonal models [Hoppe
96]. If the mainstream debut of 3-D graphics occurs on the scale
of the WWW, polygonal simplification algorithms may well be
measured by their ability to support compression and progres-
sive transmission.

6. CONCLUSION
The field of polygonal simplification, first heralded by Clark’s
seminal 1976 paper, virtually exploded out of nowhere in 1992.
A flurry of papers have presented algorithms of every descrip-
tion, varying widely in mechanism, metric, and general ap-
proach. Now the field appears to be coming of age. Algorithms
are converging on a common underlying mechanism, method-
independent image-based fidelity metrics are being proposed,
and techniques such as view-dependence are increasing the
scope and generality of simplification methods. Recent algo-
rithms possess excellent fidelity, robustness, and speed; the
Garland-Heckbert algorithm, though not without limitations,
shows promise of all three. As the field of polygonal simplifi-
cation moves forward, researchers need to address the issues of
a unified framework for simplification, better perceptual fidelity
metrics, the role of view-dependence, and the relationship of
polygonal simplification to compression and progressive trans-
mission.

7. REFERENCES
[Aliaga 97] Aliaga, Daniel. “SGI Performance Tips” (Talk). For more
information see: http://www.cs.unc.edu/~aliaga/IR-perf.html.

[Clark 76] Clark, James. “Hierarchical Geometric Models for Visible
Surface Algorithms,” Communications of the ACM, Vol. 19, No 10, pp
547-554.

[Cohen 96] Cohen, Jon, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. Brooks, W. Wright. “Simplification Envelopes”, Com-
puter Graphics, Vol. 30 (SIGGRAPH 96).

[Cosman 81] Cosman, M., and R. Schumacker. “System Strategies to
Optimize CIG Image Content”. Proceedings Image II Conference
(Scotsdale, Arizona), 1981.

[Deering 95] Deering, Michael. “Geometry Compression”, Computer
Graphics, Vol. 29 (SIGGRAPH 95).

[Eck 95] Eck, Matthias, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, W. Stuetzle. “Multiresolution Analysis of Arbitrary Meshes”,
Computer Graphics, Vol. 29 (SIGGRAPH 95).

[Garland 94] Garland, Michael, and P. Heckbert. “Multiresolution
Modeling for Fast Rendering”. Proceedings of Graphics Interface ‘94
(1994).

[He 95] Taosong He, L. Hong, A. Kaufman, A. Varshney, and S. Wang.
“Voxel-Based Object Simplification”. Proceedings Visualization 95,
IEEE Computer Society Press (Atlanta, GA), 1995, pp. 296-303.

[Hoppe 93] Hoppe, Hughes. “Mesh Optimization”, Computer Graphics,
Vol. 27 (SIGGRAPH 93).

[Hoppe 96] Hoppe, Hughes. “Progressive Meshes”, Computer Graph-
ics, Vol. 30 (SIGGRAPH 96).

[Hoppe 97] Hoppe, Hughes. “View-Dependent Refinement of Progres-
sive Meshes”, Computer Graphics, Vol. 31 (SIGGRAPH 97).

[Lorenson 87] Lorenson, William, and H. Cline. “Marching Cubes: A
High Resolution 3D Surface Construction Algorithm”, Computer
Graphics, Vol. 21 (SIGGRAPH 87).

[Low 97] Low, Kok-Lim, and T.S. Tan. “Model Simplification Using
Vertex Clustering”. In 1997 Symposium on Interactive 3D Graphics
(1995), ACM SIGGRAPH, pp. 75-82.

[Luebke 97] Luebke, David, and C. Erikson. “View-Dependent Simpli-
fication of Arbitrary Polygonal Environments”, Computer Graphics,
Vol. 31 (SIGGRAPH 97).

[Popovic 97] Popovic, Jovan, and H. Hoppe. “Progressive Simplicial
Complexes”, Computer Graphics, Vol. 31 (SIGGRAPH 97).

[Ronfard 96] Ronfard, Rèmi, and J. Rossignac. “Full-range Approxi-
mation of Triangulated Polyhedra”, Computer Graphics Forum, Vol. 15
(Eurographics 96).

[Rossignac 92] Rossignac, Jarek, and P. Borrel. “Multi-Resolution 3D
Approximations for Rendering Complex Scenes”, pp. 455-465 in Geo-
metric Modeling in Computer Graphics, Springer-Verlag, Eds. B. Fal-
cidieno and T.L. Kunii, Genova, Italy, 6/28/93-7/2/93. Also published
as IBM Research Report RC17697 (77951) 2/19/92.

[Schroeder 92] Schroeder, William, J. Zarge and W. Lorenson, “Deci-
mation of Triangle Meshes”, Computer Graphics, Vol. 26 (SIGGRAPH
92)

[Taubin 96] Taubin, Gabriel, and J. Rossignac. “Geometric Compres-
sion through Topological Surgery”, IBM Research Technical Report
RC-20340 (1996).

[Taubin 97] Taubin, Gabriel (Chair). “VRML Compressed Binary For-
mat Working Group Home Page”. For more information see:
http://www.vrml.org/WorkingGroups/vrml-cbf/cbfwg.html.

 [Teller 91] Teller, Seth, and C. Sequin. “Visibility Preprocessing for
Interactive Walkthroughs”, Computer Graphics, Vol. 25 (SIGGRAPH
91).

[Turk 92] Turk, Greg. “Re-tiling Polygonal Surfaces”, Computer
Graphics, Vol. 26 (SIGGRAPH 92).

[Xia 96] Xia, Julie, and A. Varshney. “Dynamic View-Dependent Sim-
plification for Polygonal Models”, Visualization 96.

