Deeply Cascaded Networks

Eunbyung Park
Department of Computer Science
University of North Carolina at Chapel Hill
eunbyung@cs.unc.edu

1 Introduction

After the seminal work of Viola-Jones[/13]] fast object detection algorithm, cascade classifier frame-
works have been dominant in many of computer vision applications, especially for the ones that real
time processing is necessary(e.g. pedestrian detection for autonomous cars and face detection for
mobile devices). The cascade framework consists of many of weak and strong features and classi-
fiers top of them, and they are ordered by their performance (or computational cost). Most of image
patches are filtered out by weak classifiers at early stages of the cascade and only a few of them
survive throughout the cascade. That being said, it can significantly reduce computational cost by
removing the necessity of strong classifier evaluations on every image patches.

More advanced features have been adopted in this framework to improve the performance in the past
decade. More recently, deep convolutional neural network(CNN) has been prevalent method because
of its overwhelming discriminative power and it started to emerge as a strong classifier at late stages
in the cascade at the expense of its expensive computation[1} 10, [3]. Common approaches are either
combination with traditional hand-crafted features for early stage classifiers[l, 3] or presence of
smaller and shallower networks followed by larger and deeper networks([[10].

Although late stage deep CNNs are responsible for a few of patches that passed through the
cascade, their computational complexity are still concerned. Therefore, restricted size of CNNs
were encouraged in current approaches, e.g. smaller size of filters, thinner layers and shallower
networks|1} [10} 3]. However, it is widely accepted view that deeper and larger networks outper-
form shallower and smaller networks|[7, [13} |14} 5]. Thus, it is necessary to adopt deeper and larger
networks in order to build more accurate system. In this work, we propose deeply cascaded net-
works that allows us to deploy deeper and larger CNNs in the cascade framework with much lower
computational complexity.

We construct the cascade inside a deep CNN rather than using multiple CNNs to construct the
cascadd!} Each layer of the network has its own classifier and each classifier at each layer works
as a stage of the cascade. In other words, an image patch is examined by each layer classifier to
see if it should pass to the next layer. For example, binary classification of image patches, such as
pedestrian detection, the only patches that passed all the layers are considered as positive examples.
And, many of patches that failed to reach the top of the network will be considered as false examples.
So, computational complexity will be significantly reduced if we can successfully reject many of
negative examples in lower layers of the network.

In addition, the proposed approach has more efficient feature extraction process. Each layer fea-
tures that are used by each layer classifiers are extracted based on previous layers. Unlike other
approaches that the network should extract the features from the scratch, features for each layers
are shared across the layers. Hence, only one convolutional layer operations are required to extract
upper level features no matter how many layers are used in higher layer classifiers.

'Recently, similar idea was presented in [16]).

Finally, we propose to use the soft cascade objective[2}[12] that enable us to jointly train all the clas-
sifiers together in the network. Not only it provided a convenient way of training process compared
to hard cascade training, but also it gave an additional performance.

2 Deeply Cascaded CNN

2.1 Soft Cascade Training

We assume typical binary classifier on the top of patches produced by existing object proposal
methods. Given a training set of positive and negative examples D = {(x;, y;)}Y,, where x; € R¢
is an image patch and y; € {0, 1} is binary label. In soft cascade, an image patch will be positive
if all classifiers in the cascade predict it as positive. Thus, the probability for an image patch to be
positive will be

plyi = 1xi, w) = [[pr(vi = 1xi, w)

, where T is the number of stage in the casecade and w is the model parameter. We define our loss
function as negative log likelihood. Given the assumption that image patches are independent and
identically distributed, the loss function over the training set D can be written as

N T
L(D;w) = —log [[[[o+ (v: = 11xi, w)

i=1t=1

T N
—ZZlogpt yi = 1xi,w) == logpi(yi = 1xi, w)

=1 t=1 t=1 i=1

T
ZZLDW
t=1

Therefore, we can easily construct the overall cascade loss function as sum of each stage loss func-
tions. We minimize this loss function with traditional stochastic gradient descent method and gradi-
ents of loss functions at each stage depends only on the gradients of loss functions at higher stage.
Hence, the gradient w.r.t the model parameter at stage k is

aLt aLf
8wk Z&wk Zawk

Since the features of higher stage classifiers depend only on the features of the previous stage, com-
puting gradients of the cascade can perfectly be embedded in standard backpropagation algorithm.
In practice, we can simply insert branches at each layers of the network and put classifiers followed
by individual loss layers. This formulation is very related to recent works[14} |8]. However, they
only used intermediate loss function as auxiliary loss function to help to efficiently train final stage
classifier. In our case, every intermediate classifiers plays important role in entire cascade frame-
work.

2.2 Network Architecture

In this work, we explored and built DC-CNN on top of two most popular CNN architectures[13} 5],
depicted in figure[] For the VGG16 network, each convolutional layer is considered as one stage of
the cascade. Input size will shrink by factor of 2 after every max-pooling layer(in total 5, so factor
of 32) and we put the classifiers after the pooling layers. On the other hand, for the residual network,
each basic building block is considered as one stage of the cascade. Each basic building block are
constructed by two convolutional layers and one shortcut layer. No pooling layers were used and
strided convolution was used for size reduction. Even if the number of layers in residual network is
higher than vggl6, it requires lower computational cost and has smaller number of parameters. In
our experiments, DC-CNN based on vggl6 networks performed slightly better than one based on
residual network. For classifiers at each stage, we used simple average pooling layer followed by
linear classifier, which was explored in several places [3} [L1].

3
]
=
-
3
=
2
8
S

Classifier 4 (1024)
Classifier 5 (1280)
Classifier 6 (1536)
Classifier 7 (2048)
Classifier 8 (2306)
Classifier 8 (2560)
Classifier 10 (4096)
Classifier 11 (4096)
Classifier 12 (4096)
Classifier 13 (4096)

g
L
-
3
=
2
K
S

Classifier 2 (64)
Classifier 3 (64)
Classifier 4 (64)

Classifier 5 (128)

Classifier 6 (128)

Classifier 7 (128)

Classifier 8 (128)

Classifier 9 (256)

Classifier 10 (256)
Classifier 11 (256)
Classifier 13 (256)
Classifier 14 (256)
Classifier 15 (512)
Classifier 16 (512)
Classifier 17 (512)

res res res
res res e res res res e res res res res res &0 res res
64 64 2 128 128 128 2 256 256 256 256 256 2 512 512

Figure 1: Deeply Cascaded Convolutional Neural Network(DC-CNN): Top. DC-CNN based on
vggl6 network[[13]]. In total, it has 13 stage classifiers. 12 of them are located right after the con-
volutional layers and final one is two fully connected layer appeared in original vggl6 network.
Bottom. DC-CNN based on 34 layer residual network[5]. It has 17 stage classifiers. The first one
after the first convolutional layer and rest of them are located after every basic building blocks of
residual network. Each basic building block consists of two convolutional layers and one shortcut
layer. ReLLU and batch normalization layers were omitted for simplicity.

1
80H o &
= S
.64)
50 F N
.40 t
~
30F N
al
% 1Y
-
= .20
w \
0 \
£ \
~
\
.10 X
26.2% DeepCascade+
17.1% Checkerboards+
12.5% resnet34-cascade-1.00 €
11.9% resnet34 4
11.7% CompACT-Deep
.05 F 9.9% vgg16
== == 9.3% vggl6-cascade-1.00
I |
1072 10°

false positives per image

Figure 2: Results of our baseline method on the Caltech testset: vgg/6 is normal deep network with
only one classifier at the end of the network. vggl6-cascade-1.00 is trained with intermediate clas-
sifiers via joint soft cascade training, but only last classifier was used for testing. Checkerboards+
is our proposal method[|6]. DeepCascade+ is a cascade method that used two small deep networks
and fast proposal method[[1]. And CompACT-Deep[3]] combines deep CNN features and other hand-
craft features together with complexity aware boosting mechanism. The number next to the name of
methods is area under curve(AUC).

3 Experiments

3.1 Datasets

We performed the experiments on standard Caltech Pedestrian detection dataset[4]. It is collected
from a dashboard camera and contains suburban and city scenes. It has 11 video streams. The first
five videos are used for training, the sixth training video is used for validation, and rest of videos are

Table 1: Performance of stage classifiers on validation set: vgg/6 model has 13 stage classifiers
and resnet-34 model has 17 stage classifiers. We measured accuracy on positive examples(pos) and
negative(neg) examples. fotal indicates accuracy for both of them. complexity represents floating
point operations required, scaled 0 to 1.

vggl6 resnet-34
stage pos neg total complexity | pos neg total complexity
0.710 0.590 0.600 0.004 0.582 0.621 0.618 0.008
0.590 0.680 0.670 0.093 0.671 0.681 0.680 0.073
0.650 0.800 0.790 0.137 0.757 0.673 0.679 0.137
0.767 0.832 0.827 0.226 0.830 0.676 0.688 0.202
0.735 0929 00915 0.271 0.874 0.683 0.697 0.252
0.839 0.935 0.928 0.360 0.892 0.751 0.761 0.316
0.878 0.951 0.945 0.450 0913 0.807 0.815 0.381
0.886 0.961 0.955 0.494 0.926 0.811 0.819 0.445
0.891 0972 0.966 0.586 0.932 0.817 0.825 0.497
10 0.881 0.980 0.973 0.679 0.931 0.852 0.858 0.562
11 0.889 0981 0.975 0.705 0.925 0.899 0.901 0.626
12 0.894 0.980 0.974 0.734 0917 0932 0.931 0.690
13 0921 0.974 0.970 1.000 0915 0945 0.943 0.755

OO0 JIONWNB WN =

14 0.914 0.950 0.947 0.819
15 0.918 0.951 0.948 0.871
16 0.921 0.951 0.949 0.935
17 0.920 0.950 0.948 1.000

used for testing. Inspired by [6], we increase the training data tenfold by sampling one out of three
frames(instead of one out of thirty frames in the standard setup). We used the proposal method that
was used in [6]. By using this proposal method, we collected negative samples. In total we could
collect total 17,000 positive samples and 230,000 negative examples.

3.2 Baseline results compared to existing methods

Figure [2] shows the results of our baseline methods. We could achieve better results than current
state-of-the-art results by [3]. It is mainly because we used deeper layer network(vggl6). Surpris-
ingly, when we trained network with intermediate classifiers jointly, we could get better results than
the one with only one classifier at the end of the network(compare vgg16 and vggl6-cascade-1.00).
We believe it is because the fact that intermediate losses are sometimes helpful to learn better feature
representation| 14, 8]

3.3 Performance of stage classifiers

Table [T] shows classification accuracy of positive and negative examples from validation set, when
we used only each stage classifier. As we expected, classifiers in deeper stage tend to achieve better
accuracy.

3.4 Performance of deeply cascaded networks

Figure [3] and [4] shows the results of deeply cascaded networks. We set the threshold of each layers
manually and the computational complexity was presented in the legends. For examples, vggl6-
cascade-0.5 means it only requires half of computational complexity compared to vggl6 network
without cascade. For both of vgg 16 and resnet-34 models we could reduce the computation to almost
half of the original model without losing accuracy.

miss rate

miss rate

.80
.64

.50
.40

.30

.20

.10

.05

16.2% vggl6-cascade-0.35
11.2% vggle6-cascade-0.45
10.6% vggl6-cascade-0.50
9.9% vggl6

9.3% vggl6-cascade-1.00
9.3% vggl6-cascade-0.55

1072

10°

false positives per image

Figure 3: Results of deeply cascaded network(vgg16)

.80
.64
.50
.40

.30

.20

.10

.05

s 16.7% resnet34-cascade-0.40

e 13.6% resnet34-cascade-0.53

17.8% resnet34-cascade-0.36
14.9% resnet34-cascade-0.44
12.9% resnet34-cascade-0.60

12.5% resnet34-cascade-1.00
11.9% resnet34

1

1072

10°

false positives per image

Figure 4: Results of deeply cascaded network(resnet-34)

4 Conclusion and Future Work

We introduced new cascade framework within a single deep convolutional neural network and
showed that it can achieve same accuracy with half of the computation complexity. Followings
are several suggestions for further improvement.

First, the proposal method we used in this work is already very good detector, which takes more
than 1 seconds to process an image on fast GPU. For real-time purpose, this proposal method is not
suitable. Thus, we need to use more computationally efficient but less accurate proposal methods,
such as the one used in [1]. In this case, the proposal method will produce more negative examples
and many of them will be rejected in the early stage of the cascade, which leads much dramatic
computational complexity reduction in our cascade framework.

Second, we could explicitly introduce boosting method in our soft cascade training. Joint boosting
method[9] could be incorporated in our training procedure so that earlier stage classifiers focus on
the rejection of easy negative examples.

References
[1] Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit Ogale, and Dave Ferguson. Real-time
pedestrian detection with deep networks. In BMVC, 2015.
[2] Lubomir Bourdev and Jonathan Brandt. Robust object detection via soft cascade. In CVPR, 2005.

[3] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. Learning complexity-aware cascades for
deep pedestrian detection. In ICCV, 2015.

[4] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A benchmark. In CVPR, 2009.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In arXiv prepring arXiv:1506.01497, 2015.

[6] J. Hosang, R. Benenson, M. Omran, , and B. Schiele. Taking a deeper look at pedestrians. In CVPR,
2015.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012.

[8] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised
nets. In AISTATS, 2015.

[9] Leonidas Lefakis and Francois Fleuret. Joint cascade optimization using a product of boosted classifier.
In NIPS, 2010.

[10] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A convolutional neural network
cascade for face detection. In CVPR, 2015.

[11] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. 2013.

[12] Vikas C. Raykar, Balaji Krishnapuram, and Shipeng Yu. Designing efficient cascaded classifiers: Tradeoff
between accuracy and cost. In KDD, 2010.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-
nition. In /CLR, 2015.

[14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[15] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. In
CVPR, 2001.

[16] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the layers: Fast and accurate cnn object detector
with scale dependent pooling and cascaded rejection classifier. In CVPR, 2016.

	Introduction
	Deeply Cascaded CNN
	Soft Cascade Training
	Network Architecture

	Experiments
	Datasets
	Baseline results compared to existing methods
	Performance of stage classifiers
	Performance of deeply cascaded networks

	Conclusion and Future Work

