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Abstract

In this paper, we introduce a new dataset consisting of
360,001 focused natural language descriptions for 10,738
images. This dataset, the Visual Madlibs dataset, is col-
lected using automatically produced fill-in-the-blank tem-
plates designed to gather targeted descriptions about: peo-
ple and objects, their appearances, activities, and interac-
tions, as well as inferences about the general scene or its
broader context. We provide several analyses of the Vi-
sual Madlibs dataset and demonstrate its applicability to
two new description generation tasks: focused description
generation, and multiple-choice question-answering for im-
ages. Experiments using joint-embedding and deep learn-
ing methods show promising results on these tasks.

1. Introduction
Much of everyday language and discourse concerns the

visual world around us, making understanding the rela-
tionship between the physical world and language describ-
ing that world an important challenge problem for AI.
Understanding this complex and subtle relationship will
have broad applicability toward inferring human-like under-
standing for images, producing natural human robot interac-
tions, and for tasks like natural language grounding in NLP.
In computer vision, along with improvements in deep learn-
ing based visual recognition, there has been an explosion of
recent interest in methods to automatically generate natural
language descriptions for images [6, 10, 16, 35, 17, 22] or
videos [34, 9]. However, most of these methods and exist-
ing datasets have focused on only one type of description, a
generic description for the entire image.

In this paper, we collect a new dataset of focused, tar-
geted, descriptions, the Visual Madlibs dataset1, as illus-
trated in Figure 1. To collect this dataset, we introduce
automatically produced fill-in-the-blank templates designed
to collect a range of different descriptions for visual con-
tent in an image. This is inspired by Madlibs, a childrens’

1http://tamaraberg.com/visualmadlibs/

Figure 1. An example from the Visual Madlibs Dataset, including
a variety of targeted descriptions for people and objects.

word game where one player prompts another for a list of
words to substitute for blanks in a story. In our case, a user
might be presented with an image and a fill-in-the-blank
template such as “The frisbee is [blank]” and asked to fill
in the [blank] with a description of the appearance of fris-
bee. Alternatively, they could be asked to fill in the [blank]
with a description of what the person is doing with the fris-
bee. Fill-in-the-blank questions can be targeted to collect
descriptions about people and objects, their appearances,
activities, and interactions, as well as descriptions of the
general scene or the broader emotional, spatial, or temporal
context of an image (examples in Fig 2). Using these tem-
plates, we collect 360,001 targeted descriptions for 10,738
images from the MS COCO collection [23].

With this new dataset, we can develop methods to gen-
erate more focused descriptions. Instead of asking an algo-

http://tamaraberg.com/visualmadlibs/


Figure 2. Example Visual Madlibs fill-in-the-blank descriptions.

rithm to “describe the image” we can now ask for more fo-
cused descriptions such as “describe the person”, “describe
what the person is doing,” or “describe the relationship be-
tween the person and the frisbee.” We can also ask ques-
tions about aspects of an image that are somewhat beyond
the scope of the directly depicted content. For example,
“describe what might have happened just before this picture
was taken.” or “describe how this image makes you feel.”
These types of descriptions reach toward high-level goals of
producing human-like visual interpretations for images.

In addition to focused description generation, we also in-
troduce a multiple-choice question-answering task for im-
ages. In this task, the computer is provided with an image
and a partial description such as “The person is [blank]”.
A set of possible answers is also provided, one answer that
was written about the image in question, and several ad-
ditional answers written about other images. The com-
puter is evaluated on how well it can select the correct
choice. In this way, we can evaluate performance of de-
scription generation on a concrete task, making evaluation
more straightforward. Varying the difficulty of the nega-
tive answers—adjusting how similar they are to the correct
answer—provides a nuanced measurement of performance.

For both the generation and question-answering tasks,
we study and evaluate a recent state of the art approach
for image description generation [35], as well as a simple
joint-embedding method learned on deep representations.
The evaluation also includes extensive analysis of the Vi-
sual Madlibs dataset and comparisons to the existing MS
COCO dataset of natural language descriptions for images.
In summary, our contributions are:
1) A new description collection strategy, Visual Madlibs, for
constructing fill-in-the-blank templates to collect targeted
natural language descriptions.
2) A new Visual Madlibs Dataset consisting of 360,001 tar-
geted descriptions, spanning 12 different types of templates,
for 10,738 images, as well as analysis of the dataset and
comparisons to existing MS COCO descriptions.
3) Evaluation of a generation method and a simple joint em-
bedding method for targeted description generation.

4) Definition and evaluation of generation and joint-
embedding methods on a new task, multiple-choice fill-in-
the-blank question answering for images.

The rest of our paper is organized as follows. First, we
review related work (Sec 2). Then, we describe our strat-
egy for automatically generating fill-in-the-blank templates
and introduce our Visual Madlibs dataset (Sec 3). Next we
outline the multiple-choice question answering and targeted
generation tasks (Sec 4) and provide several analyses of our
dataset (Sec 5). Finally, we provide experiments evaluating
description generation and joint-embedding methods on the
proposed tasks (Sec 6) and conclude (Sec 7).

2. Related work
Description Generation: Recently, there has been an

explosion of interest in methods for producing natural lan-
guage descriptions for images or video. Early work in this
area focused on detecting content elements and then com-
posing captions [20, 36, 28, 11, 18] or made use of exist-
ing text either directly associated with an image [12, 1] or
retrieved from visually similar images [29, 21, 26]. With
the advancement of deep learning for content estimation,
there have been many exciting recent attempts to generate
image descriptions using neural network based approaches.
Some methods first detect words or phrases using Convo-
lutional Neural Network (CNN) features, then generate and
re-rank candidate sentences [10, 22]. Other approaches take
a more end-to-end approach to generate output descriptions
directly from images [17, 35, 16, 6]. These new methods
have shown great promise for image description generation,
under some measures (e.g. BLEU-1) achieving near-human
performance levels.

Description Datasets: Along with the development of
image captioning algorithms there have been a number of
datasets collected for this task. One of the first datasets
collected for this problem was the UIUC Pascal Sentence
data set [11] which contains 1,000 images with 5 sentences
per image written by workers on Amazon Mechanical Turk.
Based on this, PASCAL-50s [33] further collected 50 sen-
tences per image. As the description problem gained pop-
ularity larger and richer datasets were collected, including



the Flickr8K [30] and Flickr30K [37] datasets. In an al-
ternative approach, the SBU Captioned photo dataset [29]
contains 1 million images with existing captions collected
from Flickr, but the text tends to contain more contextual
information since captions were written by the photo own-
ers. Most recently, Microsoft released the MS COCO [23]
dataset, containing 120,000 images depicting 80 common
object classes, with object segmentations and 5 turker writ-
ten descriptions per image. We make use of MS COCO,
extending the types of descriptions associated with images.

Question-answering Natural language question-
answering has been a long standing goal of NLP, with
commercial companies like Ask-Jeeves or Google playing a
significant role in developing effective methods. Recently,
embedding and deep learning methods have shown great
promise [32, 3, 4]. Lin et al. [24] take an interesting multi-
modal approach to question-answering. A multiple-choice
text-based question is first constructed from 3 sentences
written about an image; 2 of the sentences are used as the
question, and 1 is used as the positive answer, mixed with
several negative answers from sentences written about other
images. The authors develop ranking methods to answer
these questions and show that generating abstract images
for each potential answer can improve results. Note, here
the algorithms are not provided with an image as part of
the question. Some recent work has started to look at the
problem of question-answering for images. Malinowski
et al. [25] introduced two scene-based QA datasets and
combine computer vision and NLP in a Bayesian frame-
work. DAQUAR is made by collecting human questions
and answers, and SynthQA is automatically generated
based on object segmentation and question templates.
Geman et al. [13] design a visual Turing test to evaluate
image understanding using a series of binary questions
about image content. We design question-answering tasks
that are somewhat broader in scope than the previous
works, allowing us to ask a variety of different types of
natural language questions about images.

3. Designing and collecting Visual Madlibs
The goal of Visual Madlibs is to study targeted natu-

ral language descriptions of image content that go beyond
generic descriptions of the whole image. The experiments
in this paper begin with a dataset of images where the
presence of some objects have already been labeled. The
prompts for the questions are automatically generated based
on image content, in a manner designed to elicit more de-
tailed descriptions of the objects, their interactions, and the
broader context of the scene shown in each image.
Visual Madlibs: Image+Instruction+Prompts+Blank
A single fill-in-the-blank question consists of a prompt and
a blank, e.g., Person A is [blank] the car. The implicit ques-
tion is, “What goes in the blank?” This is presented to a

person along with an image and instructions, e.g., Describe
the relationship between the indicated person and object.
The same image and prompt may be used with different in-
structions to collect a variety of description types.
Instantiating Questions
While the general form of the questions for the Visual
Madlibs were chosen by hand, see Table 1, most of the ques-
tions are instantiated depending on a subset of the objects
present in an image. For instance, if an image contained
two people and a dog, questions about each person (ques-
tion types 9-11 in Table 1), the dog (types 6-8), relationships
between the two people and the dog (type 12), could be in-
stantiated. For each possible instantiation, the wording of
the questions will be automatically altered slightly to main-
tain grammatical consistency. In addition to these types of
questions, other questions (types 1-5) can be instantiated for
an image regardless of the objects present.

Notice in particular the questions about the temporal
context – what might have happened before or what might
happen after the image was taken. People can make in-
ferences beyond the specific content depicted in an image.
Sometimes these inferences will be consistent between peo-
ple (e.g., when what will happen next is obvious), and other
times these descriptions may be less consistent. We can
use the variability of returned responses to select images
for which these inferences are reliable.

Asking questions about every object and all pairs of ob-
jects quickly becomes unwieldy as the number of objects
increases. To combat this, we choose a subset of objects
present to use in instantiating questions. Such selection
could be driven by a number of factors. The experiments
in this paper consider comparisons to existing, general, de-
scriptions of images, so we instantiate questions about the
objects mentioned in those existing natural language de-
scriptions, an indication of the object’s importance [2].

3.1. Data Collection
To collect the Visual Madlibs Dataset we use a subset of

10,738 human-centric images from MS COCO, that make
up about a quarter of the validation data [23], and instanti-
ate fill-in-the-blank templates as described above. The MS
COCO images are annotated with a list of objects present in
the images, segmentations for the locations of those objects,
and 5 general natural language descriptions of the image. To
select the subset of images for collecting Madlibs, we start
with the 19,338 images with a person labeled. We then look
at the five descriptions for each and perform a dependency
parse [8], only keeping those images where a word refer-
ring to person is the head noun of the parse. This leaves
14,150 images. We then filter out the images whose de-
scriptions do not include a synonym for any of the 79 non-
person object categories labeled in the MS COCO dataset.
This leaves 10,738 human-centric images with at least one
other object from the MS COCO data set mentioned in the



Type Instruction Prompt #words
1. image’s scene Describe the type of scene/place shown in this picture. The place is a(n) . 4+1.45
2. image’s emotion Describe the emotional content of this picture. When I look at this picture, I feel . 8+1.14
3. image’s interesting Describe the most interesting or unusual aspect of this picture. The most interesting aspect of this picture is . 8+3.14
4. image’s past Describe what happened immediately before this picture was taken. One or two seconds before this picture was taken, . 9+5.45
5. image’s future Describe what happened immediately after this picture was taken. One or two seconds after this picture was taken, . 9+5.04
6. object’s attribute Describe the appearance of the indicated object. The object(s) is/are . 3.20+1.62
7. object’s affordance Describe the function of the indicated object. People could the object(s). 4.20+1.74
8. object’s position Describe the position of the indicated object. The object(s) is/are . 3.20+3.35
9. person’s attribute Describe the appearance of the indicated person/people. The person/people is/are . 3+2.52
10. person’s activity Describe the activity of the indicated person/people. The person/people is/are . 3+2.47
11. person’s location Describe the location of the indicated person/people. The person/people is/are . 3.20+3.04
12. pair’s relationship Describe the relationship between the indicated person and object. The person/people is/are the object(s). 5.20+1.65

Table 1. All 12 types of Madlibs instructions and prompts. Right-most column shows the average number of words for each description
(#words for prompt + #words for answer).

general image descriptions. Before final instantiation of the
fill-in-the blank templates, we need to resolve a potential
ambiguity regarding which objects are referred to in the de-
scriptions. We would like to collect Madlibs for objects
described in the MS COCO captions, but since correspon-
dences between the segmented objects and description men-
tions are not available, we first try to automatically estimate
this assignment by parsing the descriptions. We consider
two possible cases: 1) there are fewer annotated instances
than the sentences describe, 2) there are more annotated in-
stances than the sentences describe. It is easy to address
the first case, just construct templates for all of the labeled
instances. For the second case, we sort the area of each seg-
mented instance, and pick the largest ones up to the parsed
number for instantiation. Using this procedure, we obtain
26,148 labeled object or person instances in 10,738 images.

Each Visual Madlib is answered by 3 workers on Ama-
zon Mechanical Turk. To date, we have collected 360,001
answers to Madlib questions and are continuing collection
to include the training portion of the MS COCO dataset.

4. Tasks: Multiple-choice question answering
and targeted generation

We design two tasks to evaluate targeted natural lan-
guage description for images. The first task is to automat-
ically generate natural language descriptions of images to
fill in the blank for one of the Madlibs questions. The in-
put to this task is an image, instructions, and a Madlibs
prompt. As has been discussed in the community work-
ing on description generation for images, it can be dif-
ficult to evaluate free form generation [33]. Our sec-
ond task tries to address this issue by developing a new
targeted multiple-choice question answering task for im-
ages. Here the input is again an image, instruction, and a
prompt, but instead of a free form text answer, there are
a fixed set of multiple-choice answers to fill in the blank.
The possible multiple-choice answers are sampled from the
Madlibs responses, one that was written for the particular
image/instruction/prompt as the correct answer, and distrac-
tors chosen from either similar images or random images

depending on the level of difficulty desired. This ability to
choose distractors to adjust the difficulty of the question as
well as the relative ease of evaluating multiple choice an-
swers are attractive aspects of this new task.

In our experiments we randomly select 20% of the
10,738 images to use as our test set for evaluating these
tasks. For the multiple-choice questions we form two sets of
answers for each, with one set designed to be more difficult
than the other. We first establish the easy task distractor an-
swers by randomly choosing three descriptions (of the same
question type) from other images [24]. The hard task is de-
signed more delicately. Instead of randomly choosing from
the other images, we now only look for those containing
the same objects as our question image, and then arbitrarily
pick three of their descriptions. Sometimes, the descriptions
sampled from “similar” images could also be good answers
for our questions (later we experiment with using Turkers to
select less ambiguous multiple-choice questions from this
set). For the targeted generation task, for question types
1-5, algorithms generate descriptions given the image, in-
structions, and prompt. For the other question types whose
prompts are related to some specific person or object, we
additionally provide the algorithm with the location of each
person/object mentioned in the prompt. We also experiment
with estimating these locations using object detectors.

5. Analyzing the Visual Madlibs Dataset
We begin by conducting quantitative analyses of the re-

sponses collected in the Visual Madlibs Dataset in Sec. 5.1.
A main goal is understanding what additional information is
provided by the targeted descriptions in the Visual Madlibs
Dataset vs general image descriptions. Therefore, we also
provide analyses comparing Visual Madlibs to MS COCO
descriptions collected for the same images in Sec. 5.2.
5.1. Quantifying Visual Madlibs responses

We analyze the length, structure, and consistency of the
Visual Madlibs responses. First, the average length of each
type of description is shown in the far right column of Ta-
ble 1. Note that descriptions of people tend to be longer
than descriptions of other objects in the dataset.



Second, we use phrase chunking [7] to analyze which
phrasal structures are commonly used to fill in the blanks
for different questions. Fig. 3, top row, shows relative fre-
quencies for the top-5 most frequent templates used for sev-
eral question types. Object attributes are usually described
briefly with a simple adjectival phrase. On the other hand,
people use more words and a wider variety of structures to
describe possible future events. Except for future and past
descriptions, the distribution of structures is generally con-
centrated on a few likely choices for each question type.

Third, we analyze how consistent the Mechanical Turk
workers’ answers are for each type of question. To com-
pute a measure of similarity between a pair of responses we
use the cosine similarity between representations of each
response. A response is represented by the mean of the
Word2Vec [27] vectors for each word in the response, fol-
lowing [24, 22]. Word2Vec is a 300 dimensional embedding
representation for words that encodes the distributional con-
text of words learned over very large word corpora. This
measure takes into account the actual words used in a re-
sponse, as opposed to the previous analyses of parse struc-
ture. Each Visual Madlibs question is answered by three
workers, providing 3 pairs for which similarity is computed.
Fig. 3, bottom row, shows a histogram of all pairwise simi-
larities for several question types. Generally the similarities
have a normal-like distribution with an extra peak around 1
indicating the fraction of responses that agree almost per-
fectly. Once again, descriptions of the future and past are
least likely to be (near) identical, while object attributes and
affordances are often very consistent.

5.2. Visual Madlibs vs general descriptions
We compare the targeted descriptions in the Visual

Madlibs Dataset to the general image descriptions in MS
COCO. First, we analyze the words used in Visual Madlibs
compared to MS COCO descriptions of the same images.
For each image, we extract the unique set of words from
all descriptions of that image from both datasets, and com-
pute the coverage of each set with respect to the other.
We find that on average (across images) 22.45% of the
Madlibs’s words are also present in MS COCO descriptions,
while 52.38% of the MS COCO words are also present in
Madlibs. We also compute the vocabulary size of Madlibs
that is 12,329, compared with MS COCO’s 9,683 on the
same image set.

Second, we compare how Madlibs and MS COCO an-
swers describe the people and objects in images. We ob-
serve that the Madlibs questions types, Table 1, cover much
of the information in MS COCO descriptions [22]. As one
way to see this, we run the StanfordNLP parser on both
datasets [5]. For attributes of people, we use the parsing
template shown in Fig. 4(a) to analyze the structures be-
ing used. The refer name indicates whether the person was
mentioned in the description. Note that the Madlibs descrip-

Figure 4. Template used for parsing person’s attributes, activity
and interaction with object, and object’s attribute. The percentages
below compares Madlibs and MS COCO on how frequent these
templates are used for description.

Figure 5. Frequency that a word in a position in the people and
object parsing template in one dataset is in the same position for
the other dataset.

tions always have one reference to a person in the prompt
(The person is [blank].). Therefore, for Madlibs, we report
the presence of additional references to the person (e.g., the
person is a man). The general attribute directly describes
the appearance of the person or object (e.g., old or small);
the affiliate object indicates whether additional objects are
used to describe the targeted person (e.g. with a bag, coat,
or glasses) and the affiliate attribute are appearance char-
acteristics of those secondary objects (e.g., red coat). The
templates for object’s attribute and verbs are more straight-
forward as shown in Fig. 4(b)(c). The table in Fig. 4 shows
the frequency of each parse component. Overall, more of
the potential descriptive elements in these constructions are
used in response to the Madlibs prompts than in the general
descriptions found in MS COCO.

We also break down the overlap between Visual Madlibs
and MS COCO descriptions over different parsing tem-
plates for descriptions about people and object (Fig. 5). Yel-
low bars show how often words for each parse type in MS
COCO descriptions were also found in the same parse type
in the Visual Madlibs answers, and green bars measure the
reverse direction. Observations indicate that Madlibs pro-
vides more coverage in its descriptions than MS COCO for
all templates except for person’s refer name. One possible
reason is that the prompts already indicates “the person” or
“people” explicitly, so workers need not add an additional
reference to the person in their descriptions.
Extrinsic comparison of Visual Madlibs Data and gen-
eral descriptions: We perform an extrinsic analysis by us-
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Figure 3. First row shows top-5 most frequent phrase templates for image’s future, object’s attribute, object’s affordance and person’s
activity. Second row shows the histograms of similarity between answers. (We put the plots for all 12 types in the supplementary file.)
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Figure 6. The accuracy of Madlibs, MS COCO and
CNN+LSTM [35] (trained on MS COCO) used as references to
answer the Madlibs hard multiple-choice questions.

ing either: a) the MS COCO descriptions for an image,
or b) Visual Madlibs responses from other Turkers for an
image, to select answers for our multiple-choice evalua-
tion task. Specifically, we use one of the human provided
descriptions, and select the multiple-choice answer that is
most similar to that description. Similarity is measured as
cosine similarity between the mean Word2Vec vectors for
the words a description compared to the multiple-choice
answers. In addition to comparing how well the Madlibs
or MS COCO descriptions can select the correct multiple-
choice answer, we also use the descriptions automatically
produced by a recent CNN+LSTM description generation
system [35]2. trained on MS COCO dataset. This allows us
to make one possible measurement of how close current au-

2In this paper, we use Karpathy’s implementation: https://
github.com/karpathy/neuraltalk

tomatically generated image descriptions are to our Madlibs
descriptions. Fig. 6 shows the accuracies resulting from us-
ing Madlibs, MS COCO, or CNN+LSTM [35] to select the
correct multiple-choice answer.

Although this approach is quite simple, it allows us we
make two interesting observations. First, Madlibs outper-
forms MS COCO on all types of multiple-choice ques-
tions. If Madlibs and MS COCO descriptions provided the
same information, we would expect their performance to
be comparable. Second, the automatically generated de-
scriptions from the pre-trained CNN+LSTM perform much
worse than the actual MS COCO descriptions, despite doing
well on general image description generation.

6. Experiments
In this section we evaluate a series of methods on the

targeted natural language generation and multiple-choice
question answering tasks. As methods, we evaluate a lan-
guage only baseline, which computes the 4-gram perplex-
ity for each sentence using Google-1T statistics (frequen-
cies of all n-grams on the web). We also try simple joint-
embedding methods – canonical correlation analysis (CCA)
and normalized CCA (nCCA) [15] – as well as a recent
deep-learning based method for image description gener-
ation CNN+LSTM [35]. We train these models on 80% of
the images in the MadLibs collection and evaluate their per-
formance on the remaining 20%.

In our experiments we extract image features using
the VGG Convolutional Neural Network (VGGNet) [31],
trained on the ILSVRC-2012 dataset to recognize 1000 ob-
ject classes.For comparison, we also extract image features
using the Places-CNN, which is trained on 205 scene cate-
gories of Places Database [38] using AlexNet [19]. On the
sentence side, we average the Word2Vec of all words in a
sentence to obtain a representation.

CCA finds a joint embedding between two multi-

https://github.com/karpathy/neuraltalk
https://github.com/karpathy/neuraltalk


Easy Task

#Q n-gram CCA nCCA nCCA nCCA nCCA CNN+LSTM CNN+LSTM(r) Human(place) (bbox) (all) (madlibs) (madlibs)
1. scene 6277 24.8% 75.7% 86.8% 85.4% − 87.6% 74.2% 77.6% 93.2%
2. emotion 5138 26.7% 41.3% 49.2% 50.4% − 42.4% 37.0% 44.5% 48.3%
3. past 4903 24.3% 61.8% 77.5% 72.6% − 80.3% 50.1% 47.3% 93.5%
4. future 4658 27.7% 61.2% 78.0% 72.1% − 80.2% 50.6% 50.6% 94.5%
5. interesting 5095 24.2% 66.8% 76.5% 72.0% − 78.9% 55.4% 49.9% 94.7%
6. obj attr 7194 30.6% 44.1% 47.5% 44.7% 54.7% 50.9% 46.9% 59.0% 88.9%
7. obj aff 7326 30.1% 59.8% 73.0% 69.6% 72.2% 76.7% − 88.9% 93.1%
8. obj pos 7290 28.0% 53.0% 65.9% 64.2% 58.9% 69.7% 53.9% 69.6% 91.4%
9. per attr 6651 27.2% 40.4% 48.0% 44.5% 53.1% 44.5% 36.5% 46.0% 83.8%
10. per act 6501 27.3% 70.0% 80.7% 76.9% 75.6% 82.8% 64.7% 68.9% 96.7%
11. per loc 6580 24.4% 69.8% 82.7% 82.6% 73.8% 82.7% 60.8% 71.6% 92.2%
12. pair rel 7595 29.2% 54.3% 63.0% 61.3% 64.2% 67.2% − 72.3% 91.7%

Hard Task

#Q n-gram CCA nCCA nCCA nCCA nCCA CNN+LSTM CNN+LSTM(r) Human(place) (bbox) (all) (madlibs) (madlibs)
1. scene 6277 22.8% 63.8% 70.1% 70.7% − 68.2% 63.6% 64.2% 75.6%
2. emotion 5138 25.1% 33.9% 37.2% 38.3% − 33.2% 34.6% 37.6% 38.4%
3. past 4903 22.4% 47.9% 52.8% 49.5% − 54.0% 42.2% 39.5% 73.9%
4. future 4658 24.4% 47.5% 54.3% 50.5% − 53.3% 41.1% 39.5% 75.1%
5. interesting 5095 27.6% 51.4% 53.7% 50.5% − 55.1% 44.0% 37.1% 76.7%
6. obj attr 7194 29.5% 42.2% 43.6% 41.5% 49.8% 39.3% 41.6% 42.3% 70.5%
7. obj aff 7326 32.2% 54.5% 63.5% 60.9% 63.0% 48.5% − 69.4% 52.7%
8. obj pos 7290 29.2% 49.0% 55.7% 53.3% 50.7% 53.4% 46.7% 50.2% 70.8%
9. per attr 6651 23.3% 33.9% 38.6% 35.5% 46.1% 31.6% 35.5% 42.4% 70.5%
10. per act 6501 24.0% 59.7% 65.4% 62.6% 65.1% 66.6% 57.3% 53.7% 85.1%
11. per loc 6580 22.3% 56.8% 63.3% 65.5% 57.8% 62.6% 50.4% 56.8% 72.9%
12. pair rel 7595 30.1% 49.4% 54.3% 52.2% 56.5% 52.0% − 54.6% 74.7%

Table 2. Accuracies computed for different approaches on the easy and hard multiple-choice answering task. CCA, nCCA, and
CNN+LSTM are trained on the whole image representation for each type of question. nCCA(place) uses Places-CNN feature. nCCA(box)
is trained and evaluated on ground-truth bounding-boxes from MS COCO segmentations. nCCA(all) trains a single embedding using all
question types. CNN+LSTM(r) ranks the perplexity of {prompt+choice}.

Figure 7. Some hard multiple-choice question examples. The results are made by nCCA. First row shows correct choices. Second row
shows incorrect choices. Corresponding human accuracies are provided as reference.

dimensional variables, in our case image and text vector
representations. To increase the flexibility of the feature
selection and for improving computational efficiency, Gong
et al. [15] proposed nCCA a scalable approximation scheme
of explicit kernel mapping followed by dimension reduction
and linear CCA. In the projected latent space, the similarity
is measured by the eigenvalue-weighted normalized corre-

lation. We train CCA and nCCA models for each ques-
tion type separately using the training portion of the Visual
Madlibs Dataset. These models allow us to map from an
image representation, to the joint-embedding space, to vec-
tors in the Word2Vec space, and vice versa. For targeted
generation, we map an image to the joint-embedding space
and then choose the answer from the training set text that is



closest to this embedded point. To answer multiple-choice
questions, we embed each multiple choice answer and then
select the answer whose embedding is closest.

Following recent description generation techniques [35,
16], we train a CNN+LSTM model for each question type.
These models learn a mapping from an image and prompt
to a sequence of wordse.g., The chair is, and then let
the CNN+LSTM system generate the remaining words of
the description. For the multiple choice task, we evalu-
ate two ways to select an answer. The first method se-
lects the answer with largest cosine Word2Vec similarity
to the generated description. The second method ranks the
prompt+choices by perplexity and selects the best one.

6.1. Discussion of results
Table 2 shows accuracies of each algorithm on the easy

and hard versions of the multiple-choice task3 and Fig. 7
shows example correct and incorrect answer choices. There
are several interesting observations we can make. From the
results of the language only n-gram baseline, we conclude
that answering Madlibs questions strongly requires visual
information. Second, training nCCA on all types of ques-
tions together, nCCA(all), is helpful for the easy variant of
the task, but less useful on the more fine-grained hard ver-
sion of the task. Third, extracting visual features from the
bounding box of the relevant person/object yields higher ac-
curacy for predicting attributes, but not for other questions.
Based on this finding, we evaluate answering the attribute
question using automatic detection methods. The detectors
are trained on ImageNet using R-CNN [14], covering 42
MS COCO categories. We observe similar performance be-
tween ground-truth and detected bounding boxes in Table 4.
Fourth, we observe that the Places-CNN helps answer ques-
tions related to image’s scene, person’s location, and im-
age’s emotion.

As an additional experiment we ask 5 people to answer
each multiple choice question. The last column of Table 2
shows human accuray as a reference. We further use human
agreement to select a subset of the multiple-choice ques-
tions where at least 3 Turkers choose the correct answer.
Results of the methods on this question subset are shown
in Table 3, displaying similar patterns as the unfiltered set,
with slightly higher accuracy.

Finally, Table 5 shows BLEU-1 and BLEU-2 scores for
targeted generation. Although the CNN+LSTM models we
trained on Madlibs were not quite as accurate as nCCA for
selecting the correct multiple-choice answer, they did result
in better, sometimes much better, accuracy (as measured by
BLEU scores) for targeted generation.

3The missing entries for questions 7 and 12 are due to priming not being
valid for questions with blanks in the middle of the sentence.

Filtered Questions from Hard Task

#Q nCCA nCCA nCCA nCCA CNN+LSTM(r)
(place) (bbox) (all) (madlibs)

1. scene 4940 77.6% 77.8% − 76.3% 69.7%
2. emotion 2052 49.0% 49.5% − 43.8% 43.0%
3. past 3976 57.4% 53.8% − 59.4% 41.3%
4. future 3820 59.2% 54.2% − 58.3% 41.7%
5. interesting 4159 59.5% 55.1% − 61.3% 40.3%
6. obj attr 5436 47.2% 44.7% 54.6% 42.8% 46.3%
7. obj aff 4581 71.0% 67.6% 70.5% 57.6% 79.0%
8. obj pos 5721 60.2% 57.7% 54.6% 57.7% 54.3%
9. per attr 4893 42.4% 38.8% 52.1% 34.4% 46.4%
10. per act 5813 68.3% 65.3% 67.9% 69.6% 55.3%
11. per loc 5096 69.9% 71.7% 62.6% 70.0% 60.6%
12. pair rel 5981 57.6% 55.4% 60.0% 56.5% 57.4%

Table 3. Accuracies for different approaches on the filtered ques-
tions from hard task. The filtered questions are those with human
accuracies higher than 0.6. Full tables for filtered easy and hard
task are in the supplementary file.

Easy Task Hard Task

#Q nCCA nCCA nCCA nCCA nCCA nCCA
(bbox) (dbox) (bbox) (dbox)

6. obj attr 2021 47.6% 53.6% 51.4% 43.9% 47.9% 45.2%
9. per attr 4206 50.2% 55.4% 51.2% 40.0% 47.0% 43.3%

Table 4. Multiple-choice answering using automatic detection for
42 object/person categories. “bbox” denotes ground-truth bound-
ing box and “dbox” denotes detected bounding box.

BLEU-1 BLEU-2

nCCA nCCA CNN+LSTM nCCA nCCA CNN+LSTM

(box) (madlibs) (bbox) (madlibs)
1. scene 0.52 − 0.62 0.17 − 0.19
2. emotion 0.17 − 0.38 0 − 0
3. future 0.38 − 0.39 0.12 − 0.13
4. past 0.39 − 0.42 0.12 − 0.12
5. interesting 0.49 − 0.65 0.14 − 0.22
6. obj attr 0.28 0.36 0.48 0.02 0.02 0.01
7. obj aff 0.56 0.60 − 0.10 0.11 −
8. obj pos 0.53 0.55 0.71 0.24 0.25 0.49
9. per attr 0.26 0.29 0.57 0.06 0.07 0.25
10. per act 0.47 0.41 0.53 0.14 0.11 0.20
11. per loc 0.52 0.46 0.63 0.22 019 0.39
12. pair rel 0.46 0.48 − 0.07 0.08 −

Table 5. BLEU-1 and BLEU-2 computed on Madlibs testing
dataset for different approaches.

7. Conclusions
We have introduced a new fill-in-the blank strategy for

collecting targeted natural language descriptions. Our anal-
yses show that these descriptions are usually more detailed
than generic whole image descriptions. We also introduce
a targeted natural language description generation task, and
a multiple-choice question answering task, then train and
evaluate joint-embedding and generation models. Data pro-
duced by this paper will be publicly released.
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