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Abstract

Manifold learning of medical images has been successfully used for many ap-
plications, such as segmentation, registration, and classification of clinical pa-
rameters by modeling anatomical variability. In many applications, two aspects,
generative property and capturing shape variability have been considered very
important[4]. In this project, we analyze brain MRI images by applying varia-
tional auto-encoder(VAE)[7, 8], which was introduced very recently and has re-
ceived much attention in machine learning and computer vision community due
to its promising generative results and manifold learning perspective. We evaluate
the VAE on the OASIS dataset and experimental results show that it can learn low
dimensional manifold that can be used for generation and classification of many
clinical parameters. such as age, MMSE, and CDR.

1 Introduction

In medical image modalities, such as MRI and CT images, they can be regarded as a data point in a
very high-dimensional space, while the real data only lies in a much lower intrinsic dimension space.
The manifold learning have been suggested for uncovering meaningful low dimensional space from
the data in high dimensional space. In contrast to linear dimensionality reduction techniques, such
as principle component analysis(PCA), the manifold learning can provide more powerful non-linear
dimensionality reduction by preserving the local structure of the input data. Many applications,
including clustering and classification, now become much more effective in the transformed low
dimensional space.

There have been various approaches for manifold learning, such as locally linear
embedding(LLE)[10], Laplacian eigenmaps(LEM)[2], Isomaps[12], and so on. Most of ex-
isting approaches are based on the proximity graph that requires the assumption that the manifold
space is locally linear. In addition, they are very sensitive to the choice of a distance measure,
which means we should explore appropriate distance measures for each image modalities and
tasks[4]. In this project, we propose to apply the variational autoencoder(VAE), which is one of the
deep learning methods, for learning the manifold without the assumption of linearity and specific
distance measure.

In many neuroimaging applications, two important aspects have been considered in manifold
learning[4]. First, it should be able to capture shape variability across the sets of images since
shape is a statistically significant predictor for various clinical studies. Another important property
is generative capability that can construct brain images given manifold coordinates. Unlike existing
auto-encoder based methods, the proposed method VAE inherently has generative property.1

1There have been some ideas about the probabilistic interpretation of auto-encoders as a generative
model.[3]
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(a) Basic (b) Denoising[15] (c) Variational[7, 8]

Figure 1: Various auto-encoder models

2 Variational Auto-encoder

2.1 Various auto-encoder models

Figure 1 shows various auto-encoder models. (a) is a basic form of auto-encoder. First, it takes an in-
put and the input goes through an encoder, which gives us low dimensional output. We can interpret
this as coordinates of the manifold. Second, it takes the output of the encoder and produces recon-
structed outputs with same dimension as the input. We optimize this model with reconstruction error
between the input and the output, e.g. squared error or bernoulli cross entropy. The performance
of this traditional auto-encoder has fallen short compared to RBM(Restricted Boltzmann Machine)
approaches[5] in terms of good feature learning. There have been many approaches in order to im-
prove performance. [15] suggested denoising auto-encoder depicted in (b). It inserted noise to the
inputs before the inputs are fed into the encoder in order to learn features that are more robust to
small perturbations of the input. [9] suggested contractive auto-encoder that introduce sensitivity
penalization term in the objective function, measured as the Frobenius norm of Jacobian of the non-
linear mapping of the inputs. It encourages the model to be less sensitive to small variations around
example. Very recently, variational auto-encoder was introduced and its representation units are
random variables. In other words, the model itself is probabilistic directed graphical model unlike
the previous deterministic models.

2.2 Variational auto-encoder

VAE is a deep directed graphical model with latent variable z(outputs of the encoder). It is known
to be intractable to compute posterior pθ(z|x). In the VAE framework, qφ(z|x) is introduced which
learns to approximate the true posterior by optimizing the variational lower bound. It uses encoder
network to map input image into continuous latent variables(qφ(z|x)) and uses decoder network to
map latent variables to reconstructed image(pθ(x|z)). The variational lower bound for individual
datapoint xi can be written as following,

L(θ,φ;xi) = −DKL(qφ(z|xi)||pθ(z)) + Eqφ(z|xi)

[
log pθ(xi|z))

]
(1)

The first RHS term is the KL divergence of the approximate from the true posterior. And the second
RHS term is expected reconstruction error w.r.t the approximate posterior qφ(z|xi). In order to
optimize the lower bound, we might want to differentiate L(θ,φ;xi) and do gradient descent with
standard back propagation algorithm. In our model, we assumed that both qφ(z|xi) and pθ(z) are
gaussian. So, we can integrate KL divergence term analytically.

−DKL(qφ(z|xi)||pθ(z)) =
1

2

J∑
j=1

(1 + log(σ2
j )− µ2

j − σ2
j ) (2)
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, where J is the number of dimension of z. Mean µ and standard deviation σ are simply outputs
of encoder function of x and the variational parameter φ. However, for the expected reconstruction
term, the gradient of Eqφ(z|xi)

[
log pθ(xi|z))

]
is not straightforward. [7, 8] suggested practical esti-

mator of its derivatives w.r.t. the parameters with the reparameterization trick. They reparameterize
the random variable z using a differentiable transformation with auxiliary noise random variable ε.
And now we can form Monte Carlo estimates of expectation of transformed function f(z). The
resulting estimator for a datapoint xi is

L(θ,φ;xi) ≈
1

2

J∑
j=1

(1 + log(σ2
j )− µ2

j − σ2
j ) +

1

L

L∑
l=1

log pθ(xi|zi,l))

where zi,j = µi + σi � εl and εi ∼ N (0, I)

Again, we can compute µ and σ with deterministic encoder network. For log pθ(x|z), we can use
bernoulli cross-entropy loss function with deterministic decoder network. You can find more detail
version in [7].

In practice, we put data examples into the encoder network and get the parameters of distribution
of the latent variables, e.g. mean and standard deviation for gaussian distribution. And, we sample
from the distribution of the latent variables given the parameters. Once we get the samples, we put
them into the decoder network and compute loss function, e.g. bernoulli cross-entropy. Because we
have differentiable lower bound estimates, we can do back propagation to compute gradient w.r.t the
parameters of the encoder and decoder network.

3 Experiments

3.1 OASIS Dataset

The OASIS brain database consists of T1 weighted MRI of 416 subjects aged between 18 and 96. It
contains several clinical parameters, such as age, mini mental state examination (MMSE), clinical
dementia rating (CDR) and so on. Image resolution is 176x208x176. We trained the network with
2d image using only one axial slice(middle) of volumetric brain images.

3.2 Training and Implementation

We used torch library for implementation[1]. For the encoder and decoder architecture, we chose
the convolutional encoder and decoder inspired by [11]. All layers are convolutional, upsampling,
and downsampling layers. We used rmsprop[13] as a gradient descent method. We set learning rate
as -0.0005 and batchsize 16, and go through around 30000 iterations.

3.3 Results and Discussion

First, We project input data into 2D manifold space using the proposed method. We visualize learned
2D manifold space in Figure 2. Prior of the latent space is gaussian. So, we transformed unit square
coordinate space according to inverse CDF of the gaussian to produce values of the latent variables.
Here, we have equally spaced 11x11 grid. Note that all images in Figure 2 are generated images.
As you noted, it can capture the shape variability very well. From the images in left-bottom side to
the images in right-top side, the size of X shape in the middle of the brain(ventricle) are gradually
changed.

In 2D latent space, we couldn’t get very clear image. We have gotten blurry images except for
ventricle part, which is the most significant visual attribute. Furthermore, we might also lose another
important visual information. Therefore, we also trained the network with more high dimensional
latent space(120). It turns out that the images with high dimensional latent space are much more
clear. We couldn’t tell the difference between real images and generated images. We show some
of real images on latent space in figure 3. With the network with high dimensional latent space,
we used t-sne[14] method for visualization. Here, we project original real images into 120 latent
dimensional space, and find 2 dimensional position with t-sne method for visualization.
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Figure 2: Visualization of 2d manifold space(Note that all images are synthesized images)

Figure 3: T-sne visualization of learned high dimensional manifold space

In figure 4, we show the relationship between visual cues and clinical parameters, age, MMSE, and
CDR. We can easily figure out the relationship between important visual cue(ventricle) and three
clinical parameters. The larger ventricle usually means the older person, the higher chance that
people had cognitive impairment(MMSE), and more serious stage of dementia(CDR).

Note that this is fully unsupervised learning approach. We didn’t introduce any clinical parameters
during the training process. The network learned everything from the only visual information.

4 Conclusion and Future Work

We applied recently proposed variational auto-encoder for brain MRI images. We showed promising
results on manifold learning and its generative capability. Due to the time constraint, we haven’t
compared to existing methods and we leave it as future work. In addition, we could have done
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Figure 4: T-sne visualization of relationship between learned manifold and clinical parameters

classification task top of the learned manifold space. We can simple apply existing classifier or
introduce clinical knowledge into the network during the training process[6].
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