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Figure 1: A short segment of a long multi-perspective panorama generated by our system from a video sequence of a street scene.

Abstract

In this paper, we present an efficient technique for gen-
erating multi-perspective panoramic images of long scenes.
The input to our system is a video sequence captured by a
moving camera navigating through a long scene, and our
goal is to efficiently generate a panoramic summary of the
scene. This problem has received considerable attention
in recent years, leading to the development of a number
of systems capable of generating high-quality panoramas.
However, a significant limitation of current systems is their
computational complexity: most current techniques employ
computationally expensive algorithms (such as structure-
from-motion and dense stereo), or require some degree of
manual interaction. In turn, this limits the scalability of
the algorithms as well as their ease of implementation. In
contrast, the technique we present is simple, efficient, easy
to implement, and produces results of comparable quality
to state of the art techniques, while doing so at a fraction
of the computational cost. Our system operates entirely in
the 2D image domain, performing robust image alignment
and optical flow based mosaicing, in lieu of more expensive
3D pose/structure computation. We demonstrate the effec-
tiveness of our system on a number of challenging image
sequences.

1. Introduction

Recent years have seen a growing interest in the mapping
and visualization of the world’s cities and sights. For in-

stance, systems such as Google Street View and Bing Maps
enable users to browse street level imagery by presenting
a panorama-based visualization of video captured at street
level from a moving vehicle. In addition, a number of recent
efforts have been directed towards enabling the visualiza-
tion of large internet-based photo collections by generating
3D models of landmarks and cities [1, 6]. With the rapid
growth of digital image content, enabling the visualization
of this content in efficient and effective ways is an interest-
ing research problem.

In this work, we consider the problem of summariz-
ing video sequences captured by a camera translating hor-
izontally through a long scene. One of the most com-
pelling means of visualizing data of this form is via multi-
perspective panoramas [15, 2]. In their most simple form
(“strip panoramas”), this amounts to extracting narrow ver-
tical strips from each frame of a video sequence and then
aligning them to generate the final panorama. Since each
strip of the final panorama is captured from a slightly d-
ifferent viewpoint, these panormas simulate orthographic
projection along the horizontal axis. In addition, since each
individual strip is obtained from a single perspective im-
age, the projection along the vertical axis of the panorama
is perspective in nature. While this often leads to reason-
able results, the simple technique outlined here has a num-
ber of practical shortcomings, and considerable effort has
been made to improve upon this basic technique. Excit-
ing results have been achieved in recent years, with the de-
velopment of more sophisticated techniques for generating
high-quality multi-viewpoint panoramic images [2, 13, 8].

A significant limitation of these state of the art tech-
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niques, however, is their computational complexity. In or-
der to achieve high quality results, these techniques often
require the use of expensive operations (such as structure
from motion and dense stereo), which implies that the s-
calability of these techniques is limited. In addition, this
also poses a challenge in terms of implementation, since
building these systems is a non-trivial task. Furthermore,
deploying these techniques on low cost mobile computing
platforms, such as cellphones, poses significant difficulties.

In this paper, we aim to overcome some of these limita-
tions, by presenting a very simple technique for generating
multi-viewpoint panoramas, which produces results that are
comparable in quality to the state of the art. While most
current techniques rely on 3D information obtained either
by performing rigorous structure from motion, or via man-
ual interaction, we demonstrate that using a combination
of robust alignment techniques and simple 2D optical flow
information is often sufficient to obtain good results in a
number of scenarios of practical interest. Our main con-
tributions in this work are: (a) a novel method for aligning
frames of an image sequence that is robust to scale and rota-
tion drift and (b) a new cost function based on optical flow,
that allows the selection of regions from each image while
also minimizing visual artifacts. The modules of our system
are simple, and even an unoptimized implementation yields
an order of magnitude improvement in speed compared to
current techniques.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly discusses related work in multi-perspective
panorama generation. In section 3, we describe in detail
our proposed technique and outline the various modules of
our system. In Section 4, we present results on a number
of challenging image sequences. Section 5 concludes the
paper with a discussion of possible future extensions.

2. Related Work
Generating panoramic images is a topic that has been

well studied over the years, and a wide body of work ex-
ists in this area [17, 11, 16, 2, 15, 3, 13, 8]. While it is
beyond the scope of this work to fully summarize the many
contributions made over the years, in this section we briefly
survey some of the most related work.

Over the years, a number of techniques have been pro-
posed to generate multi-perspective panoramas. Some of
these techniques include pushbroom panoramas [16], x-
slit images [18] and manifold mosaics [11], all of which
describe techniques for creating strip panoramas of long
scenes. However, these techniques all suffer from charac-
teristic distortion effects for scenes with large depth varia-
tions. In particular, distant objects typically become wider
and closer objects become narrower. Much effort, there-
fore, has been spent on reducing these distortion effects.
For instance, [14] defines a cost function based on aspec-

t ratio distortion, which is then minimized by appropriate
choice of scene segments. The work of [2] moves away
from the selection of simple strips, instead using a Markov
Random Field (MRF) optimization approach to select arbi-
trarily shaped regions of the source images that possess var-
ious desirable properties. This technique, however, requires
some degree of manual interaction to “clean up” visual dis-
tortions created by the algorithm. In addition, the technique
is computationally intensive, and is thus limited to working
with a set of photographs (as opposed to a video sequence).
Most recently, the work of [8] presents a complete navi-
gational system that attempts to combine the strengths of
single- and multi-perspective panoramas, with smooth tran-
sitions between the two modes.

Our work is perhaps most inspired by the recen-
t minimal-aspect distortion (MAD) panorama work from
[13]. In this work, it is observed that for scenes with large
depth variations only perspective projection results in an
undistorted image, while for constant-depth scenes, virtu-
ally any projection will result in an undistorted mosaic. The
process of mosaicing and strip selection is thus cast as a
problem of cost minimization, where the objective function
incorporates knowledge of camera motion and scene depth.
Our proposed approach assumes a similar framework, but
uses a much simpler cost function, based on 2D optical flow
information. The intuition behind this approach is that for
a properly aligned sequence, optical flow can be used as a
proxy for disparity information. Our modified cost function
is thus much simpler, and far more efficient.

Finally, we note that a number of techniques address the
case of single viewpoint panoramas, typically obtained by
rotating the camera about a common optical center. Such
techniques (for instance, [3]) have attained an impressive
level of maturity, with many consumer cameras today in-
cluding a panoramic mode that produces rotational panora-
mas “on-the-fly”. However, for the case of multi-viewpoint
panoramas, much work remains to be done before this level
of widespread adoption can be attained. It is our view that
using simple techniques for panorama generation encour-
ages the implementation of our method on low-cost mobile
computing platforms, such as cellphones.

3. The method

In this section, we describe in detail the steps of our pro-
posed approach. Our approach to panorama generation is
inspired by that of [13], where the process of strip selec-
tion is formulated in terms of finding a cut in the space-time
volume of a video sequence. However, while [13] requires a
full 3D reconstruction pipeline, including dense stereo com-
putation, we choose to make use of simpler 2D constraints
and flow information. An overview of our proposed ap-
proach is shown in Figure 2.



������

��	�
��
�

���	
��

��
����

���	�


������

���	����

���� ����� �

��������	�


��	��

������	�

� ��	
�

��
����

Figure 2: Overview of the proposed system, showing the various
modules.

3.1. Image alignment

The first step in our processing pipeline is the pairwise
alignment of the frames in the video sequence. In this step,
the goal is to align all frames into a common coordinate sys-
tem. Once this alignment has been performed, the process
of panorama generation amounts to finding the best region-
s from each frame to be mosaiced into the final panorama.
Performing an alignment of this form is reasonable when
the camera motion is mainly translational with a rotation
around the optical axis. While this covers a number of cases
of practical interest, we note that in cases of more complex
motion, this might lead to visual artifacts.

It is worth noting that there is no single “correct” multi-
viewpoint panorama, in the sense that no fixed camera can
capture a multi-viewpoint image at a single point in time
that is perspectively correct from every viewpoint. This
observation is also made in [8], where the goal is to gen-
erate an “as-perspective-as-possible” panorama. We adopt
the same view, though we use much simpler techniques to
try and achieve similar results.

Given a video sequence, we assume that the motion be-
tween frames is small, implying that the transformation be-
tween adjacent frames can be modeled as a 2D affine trans-
formation [10]. It has been observed that using this type of
rigid alignment has some limitations. For instance, using a
pairwise alignment method to incrementally register frames
into a single reference coordinate system (usually defined
by the first frame of the sequence) leads to a drift prob-
lem. While the pairwise transformations are locally correc-
t, the error in this transformation accumulates over a long
sequence, leading to curved panoramas [19]. In addition,
when the camera motion is non-orthogonal to the dominan-

t scene structure, this can sometimes cause changes in s-
cale, with the panorama either shrinking or expanding in
the vertical direction. While current techniques solve these
problems by relying on camera pose and 3D structure infor-
mation obtained via structure from motion combined with
computationally expensive bundle adjustment, we attemp-
t to use simpler and less computationally expensive tech-
niques. In particular, we look to combat these effects by us-
ing a simple constrained affine transformation model, mak-
ing the assumption that the motion of the camera is primar-
ily translational or rotational about a fixed camera center
(note that a similar assumption is made in [13]).

Using a feature-based alignment method, assume that we
have a set ofN feature correspondences between successive
image frames. We denote this by xi ↔ x′i, i = 1, 2...N .
Given a set of tentative correspondences, we use RANSAC
[5] to estimate a set of I inliers, and then attempt to estimate
a transformation HA, which is of the form(

A t
0T 1

)
where A is a 2 × 2 non-singular matrix and t is a 2-
vector consisting of [tx, ty]T , denoting horizontal and ver-
tical translations, respectively. This transformation is es-
timated by carrying out a minimization over the set of I
inliers, using the following formulation:

minimize : ‖HAx′i − xi‖+ λ|ty| (1a)
subject to : ‖Au‖ <= 1− β (1b)

‖Av‖ <= 1− β (1c)
1− α <= u′Au <= 1− α (1d)
1− α <= v′Av <= 1− α (1e)

Where u and v are the unit vectors [1, 0] and [0, 1] in the
x and y directions respectively, ty is the translation in the
y-direction, λ is a weighting factor, and α and β are con-
stants close to zero. Intuitively, the goal of these constraints
is the following: we would like the panorama to be rela-
tively straight, and to have a consistent scale. The effect of
the matrix A is a rotation and a non-isotropic scaling [7].
While we would like our estimated transform to be more
flexible than a strict similarity transformation, we would al-
so like to ensure that the rotation is not too large, and that
the scale does not drift. To do so, we impose constraints
on the effect of the tranformation HA on the unit vectors u
and v. The first two constraints in the above equations (1b
and 1c) ensure that the scale does not drift, while the last
two (1d and 1e) ensure that the vectors are not rotated by
too large an angle. The parameters α and β are set to small
values (≈ 10−4). Finally, the parameter λ is used to bal-
ance the effects of vertical translation and alignment error.
The problem formulated above is a typical inequality con-
strained convex optimization problem, and can be solved



by the interior-point algorithm [9]. Note that estimating the
transformation using the constraints discussed in this sec-
tion can lead to slight local misalignments, while simulta-
neously improving the global alignment and reducing drift.
However, we have observed that in practice, this decrease
in local alignment quality is acceptable.

We use a fast GPU implementation of SIFT feature de-
tection and matching 1 to detect tentative feature correspon-
dences, and then use an efficient RANSAC implementation
[12] to find inlier matches. The speed of this stage of the
pipeline is on the order of 12 Hz on a PC equipped with an
Intel Xeon 2GHz processor and an Nvidia GTX285 graph-
ics card.

3.2. Transformation

Once the initial alignment has been performed, the es-
timated pairwise transformations are used to derotate and
vertically align the images. More specifically, an inverse
rotation is applied to each image, followed by a vertical
translation by the computed ty . Thus, the only remaining
component of the image motion is a translation in the hor-
izontal direction. We exploit this remaining component in
order to perform the selection of regions from each image.

3.3. Optical flow computation

While planar scenes are well suited for multi-viewpoint
panoramas, scenes with large variation in depth pose sig-
nificant problems. Due to the effect of parallax, using a
feature-based alignment method (as described in Sec 3.1)
to align images and select strips from each image results
in visual artifacts, with foreground objects being truncated
and background objects being duplicated. While the content
within each image strip exhibits perspective projection, the
artifacts occur near the border of two image strips, due to
inconsistent strip boundary selection that does not account
for local motion. The boundary of the strips selected from
each image must thus be adapted to the depth of the scene.
While current techniques such as [13] use dense stereo to
estimate the scene depth at every pixel, we use optical flow
information as a proxy for pixel disparities. In particular,
our technique is based on the intuition that if we are able to
select an image strip where the optical flow at the strip bor-
der corresponds to the overall horizontal translation, then
we have obtained a cut that does not distort the dominant
aspect of the scene. This process of panorama generation
is further illustrated in Figure 3. As seen from the figure,
we extract an image patch from each image and warp it to
a rectangular strip before placing it in the panorama. Given
the (t − 1)th and tth images, I(t − 1) and I(t), let us de-
note the position of the right boundary of the strip in image
I(t) by CR(t), and the left boundary by CL(t). Assume
that we know CR(t− 1) (the selection of CR is introduced

1Available online: http://cs.unc.edu/∼ccwu/siftgpu/
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Figure 3: Illustration of the optical flow based strip selection
method used in our approach.

in Section 3.4), then CL(t) is predicted using the computed
optical flow between I(t− 1) and I(t), as:

CL(t) = CR(t− 1) +OCR(t−1) (2)

whereOCR(t−1) is the optical flow for each pixel in CR(t−
1). Some points are worth noting here. Firstly, as CR(t−1)
is straight, the shape of CL(t) is determined by OCR(t−1).
If this boundary deviates significantly from a line, there
will be more distortion when warping the image patch in-
to a rectangular strip (we discuss warping in more detail in
Section 3.5). In other words, strips that have a border with
lower variance in their optical flow imply that less distortion
will occur during the compositing phase. This is similar to
the conclusion reached in [13], where the variance of pix-
el disparities (computed from dense stereo) is used for strip
selection. In our case, we use optical flow as a proxy for
disparity, which provides similar results.

To perform the process of strip selection, we formulate
a cost function which is then minimized over the set of im-
ages. Assume that each patch has an associated cost. Ac-
cording to the analysis above, the cost function should be
defined as the variance of OCR(t−1). However, the comput-
ed optical flow is not perfect, and sometimes has errors, par-
ticularly in the case of large motion. In this case, the com-
puted border CL(t) will be inconsistent, and hence leads to
visual artifacts. In our technique, we define the following
cost function, which is more robust to errors in the optical
flow:

cost(CR(t− 1)) = ‖OCR(t−1) − tx1‖1 (3)

whereOCR(t−1) is the optical flow atCR(t−1) and 1 repre-
sents a vector with each component equal to 1. As we have



derotated and vertically aligned the images, ideally the ver-
tical component of the optical flow should be zero. tx is the
translation that is estimated using the dominant scene struc-
ture, and we thus attempt to select strips that align this part
well. In other words, if we find a cut Cmin that minimizes
Eqn. (3), there are two implications: (a) the optical flow
calculated on CR(t − 1) is reliable and (b) the variance of
the optical flow for the pixels in CR(t − 1) is small. When
the cost function equals zero, the optical flow is exactly the
same as the horizontal translation between the image pair
and we obtain a well aligned panorama. For scenes with
large depth variation where no “perfect” cut exists, the in-
tuition is to find the minimum cost cut, which makes the
optical flow at the seam match the dominant scene motion
and minimizes any visual distortion effects. The exact pro-
cess of minimizing this cost function over the complete set
of images is discussed in the next section.

In our system, we make use of a fast GPU-based optical
flow algorithm 2, which operates at speeds of ≈ 5 Hz for
720x480 images.

3.4. Strip extraction

In the previous section, we introduced a cost function
that seeks to minimize the seam effect between a pair of
images. To generate the final panorama, we need to find all
strips across the entire image sequence and composite them
into a single image. To do so, we adopt a similar strategy as
in [13].

In order to make a panorama with the minimum overall
distortion, the total cost is defined as the sum of the cost for
each successive image in the sequence:

S =
∑
t

cost(CR(t)) (4)

Minimizing the total cost given in equation (4) is equiv-
alent to finding the best strip from each image. Solv-
ing the minimization problem can be formulated as find-
ing the minimum path in the graph, which is constructed
as shown in Figure 4. In Figure 4, the x-axis represents
image columns, while the y-axis represents different image
frames. Each node thus corresponds to a column in a giv-
en image. The edges connecting the source node S and the
nodes of the first row have cost(CR(1)). Each node for im-
age I(t) is connected to all nodes in image I(t + 1), with
the weight of the edge being defined by the cost function
cost(CR(t + 1)). For efficiency, we exclude those edges
that make CR(t+1) < CL(t+1), which prevents the strips
from going spatially backwards. To find the panorama with
least distortion, we compute the shortest path from the node
S to the last row (i.e., the last frame in the image sequence).

2Available online: http://www.inf.ethz.ch/personal/chzach/opensource
.html
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Figure 4: Graph used to perform the minimization of Eqn. 4.
The x-axis represents image columns, while the y-axis represents
different image frames. Each node thus corresponds to a column
in a given image, and there exists a path from the source (S) to
the last frame in the sequence. The goal is to find the path with
minimum cost.

This graph can be easily and efficiently solved by dynamic
programming [4].

3.5. Warping

To composite the final panorama, the right border of the
image patch, which is a perpendicular line, is found through
calculating the minimum path of the graph. The left curved
border of the image patch is calculated using (2). By warp-
ing each line of the image patch to the size of the aver-
age width of the patch, we obtain a rectangular image strip,
which is then inserted into the final panorama (Figure 3).

4. Results
In this section, we present the results of our panorama

generation algorithm on a number of challenging image se-
quences. We use the same parameter values for all exper-
iments, setting α = 10−4 and β = 10−5 (for Equation
(1)). The results of our algorithm are not very sensitive to
the λ weighting factor, and we obtained acceptable result-
s for values ranging from 0.1 − 10. To demonstrate the
effectiveness of our technique, we compare our results a-
gainst the work of [13], which is one of the state of the art
techniques for multi-perspective panorama generation. We
use the same video sequences as in [13] to generate multi-
viewpoint panoramas.
The Hillel sequence is a long street-level video sequence,
consisting of 2200 frames with resolution 720x480. The fi-
nal panorama has a resolution of 49057x720 3. Figures 5(a)

3Sample results available online: http://www.cs.unc.edu/∼ezheng
/panorama/panorama.html



and 5(b) show short excerpts from the final panorama, con-
structed from 350 frames of the input video. Figure 5(a) is
the result of our proposed method, while Figure 5(b) is the
result obtained using the MAD algorithm [13]. It can be
seen that the overall quality is comparable across the two
methods. While the result produced by our system shows
more local distortion effects, note that the MAD method
is prone to drift (visible towards the right edge of the Fig-
ure 5(b)). In addition, our technique was able to process
frames at a rate of approximately 1 Hz (using an unopti-
mized MATLAB implementation), whereas [13] report pro-
cessing times of 10-30 seconds per frame, even when using
downsampled 320x240 images (half the resolution at which
our system operates). This is a considerable improvement
in efficiency, while achieving results of similar quality. Fig-
ure 6 shows a second comparison of our technique with the
MAD algorithm, using 450 from the same Hillel sequence.
It can be seen that our system provides results of good qual-
ity, due to the robust alignment and optical flow-based strip
selection methods.
The Train and Boat sequences contain 543 and 449 frames
of video, respectively. The resolution of the Train sequence
is 640x360, while that of the Boat sequence is 345x466.
The resulting panoramas are shown in Figure 7 and 8. For
brevity, we do not present the results from [13], which are
all available online at: http://www.vision.huji.ac.il/mad/.
We note that the panoramas we generate are very similar in
overall quality to those obtained using the MAD technique.

5. Conclusion
In this paper, we have presented a simple, yet effective

method for multi-viewpoint panorama generation. Our sys-
tem provides results that are similar in quality to state of the
art techniques, while achieving computational speed-ups of
up to an order of magnitude. Our system leverages simple
and robust 2D alignment and flow techniques in order to ef-
fectively generate panoramas for long video sequences. The
simplicity of our technique is encouraging, particularly with
a view towards implementation on low-end mobile comput-
ing devices such as cellphones, which are slowly beginning
to incorporate more computing power, including on-board
GPU units. In future work, we aim to transition our system
to these mobile devices, so as to produce multi-viewpoint
panoramas “on the fly”.
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(a)

(b)
Figure 5: Comparison of our proposed technique (top) with the MAD algorithm (bottom) [13]. Our system produces results of comparable
quality to the state of the art, while obtaining a speedup factor of up to an order of magnitude.

(a)

(b)

Figure 6: A second comparison of our technique (top) against the MAD algorithm (bottom), on a different and more challenging part
of the Hillel sequence. Note that the MAD panorama appears curved, while our panorama remains undistorted due to the constrained
alignment and robust optical flow estimation. In addition, note that some forground objects, such as the trees, in Figure 6(b) are misaligned
and truncated, whereas our system is able to better handle these objects.

Figure 7: Results of our system on the Train sequence.

Figure 8: Results of our system on the Boat sequence.


