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ABSTRACT 

 
We consider the problem of 3D modeling under the environments 
where colors of the foreground objects are similar to the 
background, which poses a difficult problem of foreground and 
background classification. A purely image-based algorithm is 
adopted in this paper, with no prior information about the 
foreground objects. We classify foreground and background by 
fusing the information at the pixel and region levels to obtain the 
similarity probability map, followed by a Bayesian sensor fusion 
framework to infer the space occupancy grid. The estimation of the 
occupancy allows incremental updating once a new observation is 
available, and the contribution of each observation can be adjusted 
according to its reliability. Finally, three parameters in the 
algorithm are analyzed in detail and experiments show the 
effectiveness of this method. 
 

Index Terms—Classification, robust, 3D modeling, 
Bayesian framework 
 

1. INTRODUCTION 
 
Traditional silhouette-based 3D reconstruction [1] is 
advantageous in simplicity and computational efficiency. 
However, the application of these methods is limited under 
experimental environments due to their sensitivities to noise. 
If one pixel is misclassified as none-silhouette, all voxels 
along the viewing line that connects the pixel and the 
camera center are labeled unoccupied, regardless of all the 
other observations. Under the environments where the 
objects and background colors are similar, the simple way 
of background subtraction cannot extract ideal silhouettes. 

Only a few literatures incorporate 3D reconstruction 
under the environments where perfect silhouettes are 
unavailable. Snow et al. [2] used graph cuts to minimize 
formulation of the voxel occupancy problem, which 
incorporates spatial smoothness. Franco et al. [3] introduced 
the notion of occupancy grid from robotics community and 
applied the Bayesian framework to fuse the multi-view 
silhouette cues. Though these algorithms are more robust 
than traditional SFS for 3D modeling, they fail in the case 
of many classification errors. In [4], a learned class-specific 
prior is applied to reduce the effect of classification errors, 
but with limited generality. 

Recently many works resort to the photo-consistency 
information for 3D modeling [5]. These approaches are 

confined to the disadvantage of computational complexity, 
because they have to deal with the visibility relationships of 
points on the objects’ surfaces. Also these algorithms are 
more sensitive to camera calibration errors than the 
silhouette-based algorithms. Though Kutulakos et al. [5] 
declared no necessity of strict foreground objects 
segmentation, no experiments were conducted under 
complex environments. 

In this paper, we improve the foreground and 
background classification by fusing the information at pixel 
and region levels, and succeed combining the classification 
results by modifying the framework presented in [3]. The 
contributions in this paper are the proposing a novel and 
robust way of foreground and background classification, 
and the 3D reconstruction under environments where the 
colors of the foreground matches the background from most 
views. This paper is organized as follows: Section 2 
describes the classification of background and foreground 
on the image level. Section 3 presents the Bayesian 
framework for voxel occupancy inference. In Section 4, we 
discuss about the parameters in detail and show the results. 
The conclusion and future work are presented in Section 5. 
 

2. CLASSIFICATION OF BACKGROUND AND 
FOREGROUND 

 
This section introduces the way of classifying foreground 
and background by fusing the information at pixel and 
region levels to calculate the similarity probability map 
(SPM). The similarity probability for each pixel shows its 
likelihood of representing background. At first, some 
notations used in this paper are introduced. Let Ir denote the 
image captured by camera r, and Ir

p denote the color feature 
vector at position p in image r, r=1,2…n.  
 
2.1 Pixel level Bayesian classification  

The posterior probability of Ir
p representing background can 

be calculated by Bayesian theory [6]: 
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where br
p=1 means that the pixel p in image r represents 

background, while br
p=0 represents foreground. 
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In this paper, no assumptions about the priority is taken, 
so we get P(br

p=1)= P(br
p=0)=1/2 . P(Ir

p | br
p =1) is the 

probability of Ir
p if detection of background happens. The 

classical Gaussian model is used to formulate the 
background: P(Ir

p | br
p =1)=N(Ir

p | r
p , r

p), where r
p, r

p 
are the parameters of the Gaussian function. P(Ir

p | br
p =0) is 

the probability of Ir
p if the pixel p in image r reports a 

foreground object detection. We take no assumptions about 
the color features of foreground objects: P(Ir

p| br
p =0)=U(Ir

p), 
where U( ) represents the uniform distribution. 
 
2.2. Region level classification 

No ideal results can be achieved from the method presented 
in the previous subsection if the colors between the 
foreground and background objects are ambiguous. Some 
recent works [7] applied the notion of super-pixel as a 
significant step to fulfill their algorithms. That is the image 
is over-segmented into small regions according to some 
local features. Its main advantage is that a large number of 
pixels can be reduced to a relatively small number of super-
pixels, hence making algorithms tractable. Since it is less 
likely for a super-pixel in the foreground object to be 
identical with that of background, it will obtain better 
classification if the super-pixels in two images are compared. 

We choose the mean shift [8] out of some excellent 
image segmentation algorithms for two reasons. First, mean 
shift provides discontinuity preserving smoothing, which 
eliminates the image sensor noise, hence ensuring the 
correct segmentation. Second, it is much faster compared to 
normalized cut [9] and Pb detector [10]. This is important 
because the number of multi-view images at one time 
instant is often large. 

Let (R1, R2) denotes the corresponding super-pixels 
from Ir and Br (the image without foreground objects). The 
corresponding super-pixels are the regions with the same 
shape at the same position in Ir and Br. We define f (x, i) as 
the number of pixels in color histogram bin i of region x. 
The similarity between region R1 and R2 is defined as: 
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The parameter will be discussed in Section 4. The value of 
sim, which shows the similarity between R1 and R2, ranges 
from 0 to 1. If R1 and R2 are similar, sim is close to 1, and 
vice versa. Here we resort to (2) instead of some classical 
dissimilarity measures such as Chi-Square distance, because 
in order to fuse the information acquired from the pixel 
level classification, the similarity between 0 and 1 is needed. 

2.3. Similarity probability map 

SPM shows each pixel’s likelihood of representing 
background. That is if the similarity probability of a pixel is 

close to 0, it is more likely to represent the foreground. The 
SPM at position p in image r can be defined as: 

1 2 1min(P( 0| ), ( , ))      (p R )p p p
r r rSPM b I sim R R  (3) 

There are two reasons for this definition: First, note the 
Bayesian classification will usually misclassify the 
foreground as background because of color ambiguities. 
However, it does not tend to misclassify the background as 
foreground. It may happen because of noise, but a few 
misclassifications do not affect the later process of voxel 
reconstruction. Second, this formula reduces the impact of 
occasionally false segmentation around the boundary of 
foreground objects. 

3. FUSION OF THE SPMs 

The Bayesian framework, which is based on occupancy grid, 
is applied to fuse the SPMs of different images. The 
occupancy grid is a multi-dimensional tessellation of space 
into cells, where each cell stores a probabilistic estimate of 
its state. It is extensively used in the area of robotics [11] 
and firstly introduced for 3D modeling by [3]. In order for 
fusing SPMs of different images and clear, easy analysis, 
we modify the framework presented in [3]. 

The volume of interest is subdivided into m voxels with 
equal sizes. We denote the state of voxel i, i=1,2…m as Si. 
We define Si=1 if the voxel is occupied and Si=0 otherwise. 
Since the two states of each voxel are exclusive and 
exhaustive, P(Si=1)+P(Si=0)=1. The purpose in this section 
is to find the posterior probability of each voxel being 
occupied after observations of all the n images P(Si=1|{I}n), 
{I}n={I1,I2…In}. The determination of an optimal estimation 
of occupancy grid is an incremental fusion of sensory 
information. That is the probability of occupancy is updated 
once a new image is available. Given the current estimation 
of a voxel i after observing r-1 images P(Si=1|{I}r-1), {I}r-1 
={I1,I2…Ir-1} and a new observation of Ir , estimation of the 
voxel can be updated by Bayesian theory: 
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In formula (4), the posterior probability P(Si=1|{I}r-1) serves 
as a priori to calculate the posterior probability of the voxel 
state when Ir is available. 

Without any information about the initial prior state 
probability, we assume P(Si=1|I0)=P(Si=1)=1/2. One voxel’s 
projection covers a region on the image. In order to reduce 
computation complexity, we use the projection of each 
voxel’s center to represent the whole region. This 
hypothesis holds in the case the voxel is distant from 
cameras and the voxel size is small. We denote the feature 
vector at the voxel’s projection p in image Ir as Ir

p. 
Therefore we have P(Ir |Si )= P(Ir

p |Si ). 
Two important hidden variables Or

p and Dectr are 
introduced. Let Lr

i denotes the viewing line connecting 
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voxel i and the camera r’s center. Or
p models some other 

object on Lr
i (In this paper, the object refers to part of the 

foreground object, either in front of or behind the voxel i 
along Lr

i). As to Dectr, mainly due to silhouette extraction 
errors, Ir

p does not always correctly reflect the voxel 
occupancy on Lr

i. Dectr=1 means image r reports a 
foreground object anywhere along Lr

i. Dectr is used to 
improve the framework’s robustness to noise. Actually, as 
will be shown in Section 4, Dectr models the reliability of 
image r when updating the occupancy grid, which is very 
important in the whole framework. We propose the 
following formula: 
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Without prior information about Or
p, we assume 

P(Or
p=1)=P(Or

p=0)=1/2. The four parametric distributions 
of P(Dectr| Or

p,Si) are set as follows: 
( 1| 0,0)            ( 1|1,0)
( 1| 0,1)              ( 1|1,1)

r r r r

r r r r

P Dect PFA P Dect PD
P Dect PD P Dect PD

 (6) 

Where PFAr is the false alarm rate and PDr is the detection 
rate. The term P(Dectr =1|Or

p=0, Si=0) is the probability that 
Ir

p falsely reports a foreground object on the viewing line, 
when in fact there is none. Other three terms in (6) is the 
probability that Ir

p correctly detects an object in the viewing 
line Lr

i. Meaningful values of PDr are close to 1, while PFAr 
is generally close to 0. Different values of PDr and PFAr 
can be used for each image according to its reliability. As 
for the term P(Ir

p| Dectr), as SPMr
p is normalized to 1, we 

can obtain the following: 
( | 0 )

( | 1) 1

p p
r r r
p p

r r r
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       (7) 

4. RESULTS AND DISCUSSION 

4.1. Discussion About  

 
Figure 1. Results of sim with different  

There is a close connection between the parameter and the 
quality of images. To illustrate this, we assume one simple 
condition of two ideal images with the same sizes. Image 
one II1, which is uniformly painted by color1, is the 
foreground, Image two II2 simulates background in a 
dynamic process: Originally the whole image is painted by 
color1, and then gradually an increasing part of the image is 
changed to color2. The sim is calculated by formula (2) with 
different . Figure 1 clearly shows when increases, a 

smaller percentage of color difference between II1 and II2 
can result in the same sim. If  is close to positive infinite, 
even one pixel difference between these two regions can 
make sim close to 0, which means the two regions compared 
are defined to be totally different. In reality too large value 
of will result in misclassification of background as 
foreground. In our experiments, we set between 1 and 3. 

4.2. The SPM of Images 

We take Figure 2(a), with some typical characteristics, as an 
example to show the effectiveness of classification. First, 
the image is blurred due to human motion and low quality 
of cameras. Second, the color of the person’s clothes is 
similar to the background. And last, from this view the 
black back of the computer monitor in the scene is merged 
with the foreground, which challenges the algorithm of 
segmentation. Figure 2(b) shows the super-pixel obtained 
by mean shift. By simply thresholding Figure 2(c) with 0.5, 
we can see clearly various artifacts and holes in Figure 2(d). 
Note the SPM in Figure 2(e). There is a considerable 
improvement of the classification compared to Figure 2(c). 
Though there are still small holes in the silhouette, 
observations reveal the similarity probability of the holes is 
around 0.5, which is more meaningful in the step of 
occupancy grid estimation compared to closing to 1. (In 
Figure 2(c), the pixel probability is either close to 0 or 1). 

 
(a)               (b)                  (c)               (d)                  (e) 

Figure 2. (a) The image of frame 42 from one view. (b) Super-
pixels obtained by mean shift. (c)Pixel level Bayesian 
classification. (d) The silhouette achieved by thresholding (c) with 
0.5. (e) The similarity probability map. 

4.3. Analysis of the Bayesian fusion framework 

Detailed Analysis of the Bayesian fusion framework is 
presented in this section. In Figure 3(a), PDr and PFAr are 
set to 1 and 0 respectively. Careful analysis of formula (5) 
and (6) reveals it equals to abandoning the hidden variable 
Dectr, and directly relating Ir

p to Si or Or
p. Figure 3(a) shows 

in the condition that the true state of a voxel is occupied, 
there is no opportunity to recover the correct voxel 
information if 1-SPMr

p is falsely set to 0 from any one view. 
This is similar to the traditional SFS. If we set PDr=0.5 and 
PFAr=0.5 (See Figure 3(c).), which means no observations 
are reliable, the value of P(Ir

p|Dectr=1) has no impact on 
P(Si =1|{I}r-1). In another word, this image is abandoned and 
makes no contributions to the update of grid occupancy. At 
last, from all these three figures as a series, it is shown when 
PDr decreases and PFAr increases, the slope of the curve 
gradually becomes smaller,which means image r contributes 
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(a)     (b)        (c) 

Figure 3. In all these three figures, y axis represents P(Si=1| {I}r), 
and x axis 1-SPMr

p (or P(Ir
p | Dectr=1)). Different curves represent 

different values of P(Si=1| {I}r-1). (PDr ,PFAr) is set (a):(1, 0), (b): 
(0.9, 0.1) and (c): (0.5, 0.5) respectively for all three figures. 
 
less to the update of the occupancy grid. It provides one hint 
that is not discussed in this paper: If the reliability of 
background and foreground classification can be 
automatically evaluated for image r, we can relate the 
reliability to the parameters PDr and PFAr. 

4.4. 3D model 

In our experiments, 15 calibrated cameras (704*576, at 
25Hz) have a common scene of a region of 2m*3m. The 
volume of interest is divided into 200*300*200 voxels. We 
illustrate our algorithm using frame 42 of the walking 
sequence. Figure 4 shows the images used are blurred and 
difficult to extract ideal silhouettes. The surface model can 
be obtained by extracting the isosurface from the occupancy 
grid. As becomes apparent in Figure 5, the surface model 
produced by our algorithm is much smoother and more 
integral than the one calculated by [3]. The model surface 
(in Figure 5(b)) is swollen instead of being improved when 
the isosurface threshold value is lowered. The actual reason 
is that 3D scene contents cannot be well presented because 
of numerous classification errors. 

5. CONCLUSIONS  

This work aims to solve the problem of 3D modeling under 
environments where ideal silhouettes are unavailable. We 
propose a novel method of foreground and background 
classification by fusing the information at pixel and region 
levels, which successfully solves the problem of color 
ambiguities. The SPMs are directly used to incrementally 
update the occupancy grid, hence avoiding the hard 
decisions about silhouette extraction. The experiments of 
our algorithm confirm the effectiveness of this method and 
show a considerable improvement. 
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                (a)      (b)           (c) 
Figure 4. (a): Four of the 15 images of frame 42, seen from 
different views. (b) : The corresponding background of the left 
four images. (c): The corresponding silhouettes computed from 
these images. Morphological operations are used to reduce noise  

        
(a)         (b) 

Figure 5. Comparison of our reconstruction scheme with [1]. (a) 
Two views of the isosurface of probability 0.90 generated by our 
algorithm. We set PDr =0.9, PFAr =0.1 for all images. (b) Two 
views of the isosurface of probability 0.60 generated by the 
algorithm presented in [4]. Parameters are carefully chosen to get 
the best isosurface: Pd =0.9, Pfa =0.1, k=5. 
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