
In: Proceedings of the Fourth IEEE International Conference on Broadband Communications,
Networks, and Systems (BroadNets 2007), Raleigh, NC, September 2007.

Modeling and Generating TCP Application Workloads
INVITED PAPER

Félix Hernández-Campos Kevin Jeffay F. Donelson Smith
Department of Computer Science

University of North Carolina at Chapel Hill

http://www.cs.unc.edu/Research/dirt

Abstract — In order to perform valid experiments, traffic gen-
erators used in network simulators and testbeds require contempo-
rary models of traffic as it exists on real network links. Ideally one
would like a model of the workload created by the full range of
applications running on the Internet today. Unfortunately, at best,
all that is available to the research community are a small number
of models for single applications or application classes such as the
web or peer-to-peer. We present a method for creating a model of
the full TCP application workload that generates the traffic flowing
on a network link. From this model, synthetic workload traffic can
be generated in a simulation that is statistically similar to the traffic
observed on the real link. The model is generated automatically
using only a simple packet-header trace and requires no knowledge
of the actual identity or mix of TCP applications on the network.
We present the modeling method and a traffic generator that will
enable researchers to conduct network experiments with realistic,
easy-to-update TCP application workloads. An extensive valida-
tion study is performed using Abilene and university traces. The
method is validated by comparing traces of synthetically generated
traffic to the original traces for a set of important measures of real-
ism. We also show how workload models can be re-sampled to
generate statistically valid randomized and rescaled variations.

1 Introduction
An important limitation of most experimental networking
evaluations is that they depend on application-specific
workload1 models. Given the complexity inherent in this
approach (e.g., the effort involved in understanding, meas-
uring, and modeling specific application-layer protocols), it
is quite understandable that workload models usually con-
sider only one or a small number of applications. However,
few (if any) networks today carry traffic from one or two
applications or application classes. Most carry traffic from
hundreds or perhaps thousands of applications in propor-
tions that vary widely from link to link. (In fact simply de-
termining precisely the mix and traffic volume of diverse
applications is a difficult problem.) This issue of application
mixes is a serious concern for networking researchers. For
example, if one wanted to evaluate a new active queue man-
agement scheme (or router architecture, or TCP protocol
enhancement,…), it stands to reason they should consider its
impact on all web-based applications, peer-to-peer applica-
tions, streaming media, other non-interactive applications

1 We generally use the term workload for data input to the network
at the socket level and the term traffic for packets that are gener-
ated by the protocol stack and are carried by the network elements.

such as mail and news, and on the ensemble of all applica-
tions mixed together. The majority of previous work in
workload modeling has focused on the development of
source-level models of single applications, for example [1,
5, 7, 9, 12, 13, 14]. Because of this, there are no models for
mixes of networked applications. Worse, the use of analytic
(distribution-based) models of specific TCP applications
doesn’t “scale” to developing workload models of applica-
tion mixes comprised of hundreds of applications. Most
related, and complementary to our work, is the Swing sys-
tem [19]. However, whereas an emphasis in Swing is the
accurate representation of structural aspects of applications’
use of the network (e.g., the use of parallel connections),
here the focus is more on the accurate representation of in-
dividual connections.

In this paper we describe a method for constructing statisti-
cally sound workload models from network packet traces.
These models capture the effects of the full mix of applica-
tions using a given link. In order to validate and apply this
approach in simulations, we also describe a novel trace-
driven method for workload generation that scales to model-
ing any empirically determined application mix. It also pro-
vides the ability to “replay” the application workload from a
real network in a simulation or laboratory network and “re-
produce” critical properties of the packet-level traffic found
on the real network. A fundamental requirement for replay-
ing application workloads is that the inputs to the replay be
layered over any transport protocol that operates as a closed-
loop mechanism (e.g., TCP). This is in contrast to an open-
loop approach in which packets are injected at the network
or link layer according to some model of packet arrival
processes. The open-loop approach ignores the essential role
of feed-back mechanisms such as TCP congestion control in
shaping packet-level traffic arrival processes [8].

The remainder of this paper is organized as follows. Section
2 describes our approach to modeling TCP application
workloads. Section 3 describes a tool to generate TCP work-
loads in a laboratory network. Section 4 presents a series of
validation experiments using traces from two networks. Sec-
tion 5 discusses methods for resampling from the models to
generate statistically valid randomized and rescaled varia-
tions. Section 6 summarizes the benefits and implications of
applying the models in network experiments.

2. The a-b-t Model for TCP Application Workloads
The workload model is constructed by analyzing packet-
header traces from network links. A trace of TCP/IP headers
is obtained and “reverse compiled” into a higher-level, ab-
stract representation that captures the dynamics of both end-
user interactions and application-level protocols above the
socket layer. Each TCP/IP connection traced in the network
is represented as a single a-b-t connection vector. The con-
nection vector models how an application used that TCP
connection for a series of data-unit exchanges between the
TCP connection initiator (“a”) and the connection accepter
(“b”). The data units we model are not packets or TCP seg-
ments but instead correspond to the objects (e.g., files) or
protocol elements (e.g., HTTP GET requests or SMTP
HELO messages) as defined by the application and the ap-
plication protocol. The sizes of these application-data units
(ADUs) depend only on the application protocol and the
data objects used in the application and, therefore, are
(largely) independent of the sizes of the network-dependent
data units employed at the transport level and below.

For example, HTTP requests and responses depend on the
sizes of headers defined by the HTTP protocol and the sizes
of files referenced but not on the sizes of TCP segments
used at the transport layer. The data units that are exchanged
may be separated by time intervals (t) that represent applica-
tion processing times or user “think” times. A sequence of
such exchanges constitutes the connection’s “vector.” A
novel aspect of this approach is its ability to construct a
model of how an application uses the network with no
knowledge of the application’s identity or operation.

For example, in a TCP connection between a web server and
browser, we can represent their behavior over time with the
simple diagram shown in Figure 1. A browser makes a re-
quest to a server which then responds with the requested
object. Another common pattern for TCP connections arises
from application protocols where there are multiple ADU
exchanges between the endpoints of a logical connection
(e.g., HTTP/1.1, SMTP, FTP-CONTROL, NNTP, etc.).
This pattern is shown in Figure 2. In addition to the ADU
sizes represented by the ai and bi, we also introduce a time
variable, ti, that represents times between exchanges and
that is likely to be independent of the network (e.g., human
“think times” or application-dependent processing times).
For comparison, a conversation of a mail client with an
SMTP server would generate the pattern shown in Figure 3.

More formally, we represent a pattern of ADU exchanges as
a connection vector Ci = <Ei, E2, ..., Ek> consisting of a set
of epochs Ei = (ai, bi, ti) where ai is the size of the ith ADU
sent from connection initiator to connection acceptor, bi is
the size of the ith ADU sent from connection acceptor to
connection initiator, and ti is the “think” or processing time
between the receipt of the ith “response” ADU and the
transmission of the (i + 1)st “request.”

For example, if this analysis is applied to a trace of the
TCP/IP headers from the connection pictured in Figure 2, it
would produce an a-b-t connection vector, Ci = <(329, 403,
0.12), (403, 25821, 3.12), and (356, 1198,)> with a start
time, Ti. Abstractly we say that the connection vector con-
sists of three epochs corresponding to the three HTTP re-
quest/response exchanges. This vector represents a TCP
connection the browser initiated at Ti as a persistent HTTP
connection where the browser sends three HTTP requests of
329, 403, and 356 bytes, respectively, and the server re-
sponds to each of them with HTTP responses (including
object content) of 403, 25821, and 1198 bytes, respectively.
The second request was sent 120 milliseconds after the last
segment of the first response was received and the third re-
quest was sent 3120 milliseconds after the second response
was received. For more details on additional features of the
a-b-t model for modeling unidirectional and concurrent
ADU flows, and for how packets traces are analyzed to cre-
ate connection vectors, see [20, 16].

3. Workload Generation from a-b-t Traces
Once the a-b-t trace T has been obtained, it may be used for
workload modeling and generation in a variety of ways. One
primary goal is to reproduce the traffic represented by a
single packet trace simply by “replaying” T at the socket
API with the same sequence of connection start times. This
preserves both the order and initiation time of the TCP con-
nections. This is the trace-driven approach we describe and
validate in this paper.

A workload generator driven by an a-b-t trace will initiate
TCP connections at times taken from the Ti and, for each
connection, send and receive data based on the Ci that mod-
els the application’s use of that connection. We assume that
the environment in which the generator program runs has an
interface to the transport layer (e.g., sockets) that can be

TIME341 bytes

2,555 bytes

WEB BROWSER

WEB SERVER

HTTP Request

HTTP Response

Figure 1: The pattern of ADU exchange in an
HTTP 1.0 connection.

TIME329 bytes

403 bytes

BROWSER

SERVER

HTTP Request 1

HTTP Response 1

403 bytes

25,821 bytes

HTTP Request 2

HTTP Response 2

356 bytes

1,198 bytes

HTTP Request 3

HTTP Response 3

0.12 secs 3.12 secs

Document 1 Document 2

Figure 2: The pattern of ADU exchanges in an

HTTP 1.1 connection.

TIME

93 bytes

SMTP SENDER

SMTP RECEIVER

220 Host Info

32 bytes
HELO

191 bytes

250 Domain Info

MAIL
 77 bytes

59b

250 Ok

RCPT
75b

38b

250 Ok

DATA
6b 22,568 bytes

Email Message

50b

250 Ok

44b

250 Ok

Figure 3: The pattern of ADU exchanges in an SMTP connection.

used to initiate the (real or simulated) transmission of appli-
cation data. For example, in ns-2 [2], workload-generating
code accesses the transport layer via the Full-TCP model
[20]. Full TCP closely mirrors the implementation of stream
sockets in actual operating systems. Workload-generating
applications can send and receive data in much the same
manner as they would with sockets.

Workload generators in laboratory or testbed networks can
use the socket interface in real operating systems to send
streams of bytes. The results presented in this paper were
obtained using a workload generating tool, tmix, which im-
plements the trace replay method in a FreeBSD environ-
ment. Two instances of this program, each running on a
machine at the edge of a network, can perform a replay by
establishing one TCP connection for each connection vector
Ci in a trace, with one instance of the program playing the
role of the connection initiator and the other program the
connection acceptor. The connection initiator performs
socket writes to send the number of bytes specified in the
first data unit a1. The other end point will read as many
bytes as specified for the data unit a1. This first data unit, is
also used to synchronize the two instances of tmix, by in-
cluding a 32-bit connection-vector id in the first four bytes
of the first data unit. With this id, the acceptor can uniquely
identify the connection vector that it is expected to replay in
this TCP connection. This approach guarantees that the tmix
endpoints always remain properly synchronized (i.e., they
agree on the Ci they replay within each TCP connection)
even in the face of lost or reordered segments.

For example, consider the replay of the connection vector,
Ci = (329, 403, 0.12), (403, 25821, 3.12), and (356, 1198,)
that corresponds to the TCP connection in Figure 2. At time
Ti the tmix connection initiator establishes a new TCP con-
nection to the tmix connection acceptor. The initiator then
writes 329 bytes to its socket and reads 403 bytes. Con-
versely, the connection acceptor reads 329 bytes from its
socket and writes 403 bytes. After the initiator has read the
403 bytes, it sleeps for 120 milliseconds and then writes 403
bytes and reads 25,821 bytes. The acceptor reads 403 bytes
and writes 25,821 bytes. After sleeping for 3,120 millisec-
onds, the third exchange of data units is handled in the same
way, and the TCP connection is terminated.

The sequential replay of connection vectors at prescribed
start times raises a number of implementation issues and
challenges. Scalability is particularly important for labora-
tory environments where a relatively small set of hosts (on
the order of 100) is being used to generate traffic corre-
sponding to a much larger number of active connections (on
the order of 10,000-100,000). The first step in trace replay is
to divide a complete trace into non-overlapping subtraces.
During workload generation, the connections within a par-
ticular subtrace are implemented by a single host pair, so the
number of subtraces is equal to the number of available host
pairs. The detailed selection of the subtraces will depend on

the load balancing strategy, and the speed of the host ma-
chines. Our experience with the experiments reported in this
paper showed that a simple round-robin assignment of con-
nection vectors to machine pairs performed well.

4. Validation Experiments
In this section we describe a number of experiments de-
signed to validate our approach to workload modeling and
generation. Our experimental procedure is based on the fol-
lowing steps:

1. Acquire a TCP/IP header trace from an Internet link and
filter it to obtain all packets from TCP connections
where (i) the SYN or SYN+ACK was present in the
trace (so we can explicitly identify the connection initia-
tor), and (ii) the connection was terminated by FIN or
RST. This eliminates only those connections that were in
progress when the packet trace began or ended. In the
remainder of the paper phrases like “Abilene trace” will
refer to the trace derived with this filtering method. We
also refer to these traces as the “original” traces.

2. Derive a trace, T, of a-b-t connection vectors from the
packet headers in the original trace.

3. Use T to generate the workload with the trace-driven
generator tmix described in Section 3.

4. Capture a TCP/IP packet header trace of the resulting
traffic on a laboratory link using tcpdump. In the re-
mainder of this paper phrases like “Abilene replay” or
just “replay” will refer to the packet traffic captured in
the laboratory trace.

5. Compare various properties of the traffic in the original
trace with the replay trace.

We report the results from applying this approach to TCP/IP
header traces from two Internet links: an OC-48 link in the
Abilene backbone between Indianapolis and Cleveland, and
a 1 Gbps Ethernet link connecting the campus of the Uni-
versity of North Carolina at Chapel Hill (UNC) with the
router of its ISP. For Abilene we acquired a 2-hour trace
from the NLANR repository.2 This is a bi-directional trace
and was captured in August, 2002, using a DAG monitor
[4]. The UNC access-link trace is a one-hour bi-directional
trace taken during a peak traffic period (1 PM) in April 2003
using tcpdump on a high-end server-class machine. Table 1
gives summary statistics for the traces obtained after the
filtering in the first step of the procedure above.

All the replay results described in this section were obtained
from the laboratory configuration shown in Figure 4. The
network consists of approximately 50 Intel-processor ma-
chines running FreeBSD 4.5. Forty-four of these machines

2 We gratefully acknowledge the traces from the NLANR Meas-
urement and Network Analysis Group (NLANR/MNA) which is
supported by the National Science Foundation cooperative agree-
ment nos. ANI-0129677 (2002) and ANI-9807479 (1998).

execute the trace-driven workload generator, tmix, as de-
scribed in Section 3 (22 pairs, with one machine from the
pair on each side of the configuration). The generating ma-
chines have 100 Mbps Ethernet interfaces and are attached
to switched VLANs on Gigabit Ethernet switches.

At the core of this network are two 1.4 GHz Intel-processor
server-class machines (PCI-X busses) acting as routers (IP-
forwarding enabled) with drop-tail FIFO queues. The router
machines have 1 Gbps interfaces to the Ethernet switches
and a point-to-point Gigabit Ethernet between the routers.3
For all the experiments reported here, there is no congestion
on any router or switch interface and no losses were re-
corded at these interfaces. We also verified that there were
no CPU or other resource constraints on the generators.

So that we can emulate TCP connections that traverse a
longer network path than the one in our lab, we use a lo-
cally-modified version of dummynet [15] to configure in-
bound and out-bound packet delays on the workload gener-
ating machines. These delays emulate different round-trip
times on each TCP connection (thus giving per-flow de-
lays). This version of dummynet delays all packets from a
TCP connection by the same amount — a delay that is ran-
domly-chosen for that flow. In many of the experiments
reported in this section, the distribution of RTT values
across all TCP connections is an important parameter and
the values used are described for each experiment. The ver-
sion of TCP used in these experiments is newReno without
SACK. Unless specified otherwise for certain experiments,
TCP had an ssthresh of 4 MB, RFC 1323 was disabled, de-
layed ACKs (up to 100 milliseconds) were enabled, ECN
was disabled, send space was 32K and the receiver maxi-
mum window was 17,520 bytes.

3 The peak load in any 10 millisecond interval of the Abilene OC-
48 trace was always well below 1 Gbps so it could be replayed in
this lab configuration.

4.1 Validation against real link traffic

The most demanding validation experiment that we could
devise was to use the workloads derived from the Abilene
and UNC traces with the goal of reproducing certain essen-
tial characteristics of the original link traffic when the work-
loads are replayed at the socket API in the laboratory net-
work. The question being explored is: to what extent can we
reproduce the packet traffic found on a real network link in
the laboratory by replaying application-level data units?
Clearly reproduction would be straightforward if we simply
used a tool such as tcpreplay [21] to replay the packet trace
in an open-loop experiment. Instead, we created a closed-
loop simulation driven by the workload model at the socket
API and show that the generated packet-level traffic has the
essential properties of the original traces reproduced in it.

Our metrics for evaluating the fidelity of the synthetic traffic
that is reproduced from real, measured traffic include:

• The link load or throughput — the number of bits per
second (including protocol headers) transmitted on a
link. Note that because we can replay the applications’
use of TCP connections at both endpoints, we are able to
generate the packet-level traffic flowing in both direc-
tions of the link concurrently.

• The statistical properties of the time series of counts of
arriving packets and bytes on a link in an interval of time
(e.g., use of Hurst parameter estimates from wavelets to
measure long-range dependence [3]).

• The number of simultaneous active TCP connections
over an interval of time (typically one second). This met-
ric is important for experiments where per-flow state is
maintained in a router. We define a connection as active
from the time the initial SYN segment appears in the
trace until the time of the last FIN or RST segment.4

To reproduce traffic from a real link in a laboratory net-
work, we must consider a second set of factors that are net-
work-dependent but are, to a first approximation, independ-
ent of the applications using the network. The primary net-
work-dependent factors at the endpoints that we consider
are the TCP sender and receiver window sizes and the
maximum segment size (MSS). The network-dependent
factor along the path between endpoints that we use is the
distributions of per-flow round-trip times.

We also consider per-flow packet loss rates in our validation
study. Our purpose is only to get a sense of the impact of
loss rates on our validation metrics, not to suggest that per-
flow packet loss rates should be used in simulations. Loss
rates in a simulation should be the output of an experiment
and not an input to it. Otherwise, closed-loop mechanisms

4 We tried a time threshold of 60 seconds without seeing a packet
to terminate connections (similar to NetFlow) but found no sub-
stantial differences.

FreeBSD
Router

1
Gbps100

Mbps

Ethernet
Switches

Tmix + dummynet
endsystems

1
Gbps

Tmix + dummynet
endsystems

... 1
Gbps

FreeBSD
Router Ethernet

Switches

100
Mbps

tcpdump
Monitor

...

Figure 4: Experimental network setup (simplified).

Trace Duration Connections Packets Bytes

Clev->Ipls 158.2M 128.5GB

Ipls->Clev
120 mins. 2,442,548

160.5M 125.9GB

UNC->Inet 62.8M 66.4GB

Inet->UNC
60 mins. 1,313,072

54.6M 21.6GB

Table 1: Summary statistics.

cannot be evaluated. All the network-dependent properties
described above, RTTs, window size, MSS, etc., are either
properties of a specific topology and path, or are end-system
configuration parameters.

We analyzed the original TCP/IP packet traces to determine
the distributions of the receiver’s maximum window size
per connection, and the minimum RTT per connection. The
distribution of window sizes was determined from the val-
ues advertised on the SYN, SYN+ACK exchange. The re-
play experiments were conducted with the empirical distri-
butions for the receiver’s maximum window size per TCP
connection approximated by configuring the appropriate
fraction of the lab machines to use certain window sizes.

Figure 5 shows the distribution of receiver’s maximum win-
dow size per TCP connection (weighted by the percentage
of total bytes flowing on TCP connections using that win-
dow size) in the original traces compared with the achieved
replay distributions. There was clearly a good match be-
tween the receivers’ maximum window sizes in the real
network and their approximation in the replay. An interest-
ing observation is that over 68% of total bytes in the
Abilene trace were carried on TCP connections that had
maximum window sizes less than 20K bytes. In the UNC
trace (not shown due to space limitations), 75% of total
bytes were carried on TCP connections that had maximum
window sizes less than 20K bytes. In both traces over 50%
of the total bytes were carried on TCP connections where
the receiver’s maximum window is less than 10K bytes.

We estimated a minimum RTT value for each TCP connec-
tion in our traces using the timestamps of the segments in
the initial 3-way connection-initiation handshake. The re-
play experiments were conducted using the empirical distri-
butions for the estimated RTT per TCP connection. We ap-
proximated this distribution in the replay by a mix of distri-
butions used to set the per-flow delays by dummynet at the
endpoint machines. Figure 6 shows the distribution of esti-
mated RTT per flow in the original traces compared with
the achieved replay RTT distribution (again estimated from
the initial 3-way handshake). There was a good match be-
tween the RTTs in the real network and their approximation
in the replay. Note that the UNC RTT distribution had a
substantially lighter body than Abilene – 80% of connec-
tions had an estimated RTT of 100 milliseconds or less
while only 50% of Abilene connections had estimated RTT
values less than 100 milliseconds. In both cases, however,
90% of connections had an estimated RTT of 200 millisec-
onds or less. The UNC distribution had a slightly heavier
tail.

To get a sense of the impact of losses in our traces, we plot
retransmissions rates for Abilene and UNC in Figure 7.
Most connections did not experience any retransmissions,
suggesting low loss rates. Loss rates for connections that
suffer losses are directly related to the retransmission rates.

Figures 8-10 explore the power of our modeling and traffic
generation approach to reproduce real network traffic in the
lab. The plots compare the original trace, a baseline replay
and one or more tuned replays. The baseline replay uses
some plausible values for the network-dependent properties

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 (

o
f

T
o

ta
l B

yt
es

)

Receiver Window Size in Bytes

Original
Approximation

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Abilene Original
Abilene Approximation

University Original
University Approximation

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Probability of Segment Retransmission (Per Connection)

Abilene
University

Figure 5: Abilene empirical and replay win-
dow size distributions.

Figure 6: Empirical and replay RTT distri-
butions.

Figure 7: Number or retransmissions per
TCP connection in Abilene and UNC traces.

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

(1
-M

in
u

te
 B

in
s)

Time in Minutes

Original
Baseline

Win+RTT+Loss

40

60

80

100

120

140

160

180

200

220

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

(1
-M

in
u

te
 B

in
s)

Time in Minutes

Original
Baseline

Win+RTT+Loss

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

Original
Baseline

Win
Win+RTT

Win+RTT+Loss

Figure 8: Abilene throughput with empirical
RTT, window sizes, and loss rates,

Cleveland to Indianapolis.

Figure 9: Abilene throughput with empirical
RTT, window sizes, and loss rates,

Indianapolis to Cleveland.

Figure 10: Abilene active connections with
empirical RTT, window sizes and loss rates.

that one might use in the absence of
empirical data. In particular for the
baseline, the distribution of round-
trip times was uniformly distributed
between 10 and 150 milliseconds,
maximum receiver windows were
set to 17,520 bytes, and no extra
random losses were added. The
tuned replays make use of the net-
work-dependent properties meas-
ured from the original traces as
shown in Figures 5-7.

The bytes transmitted on the
Abilene link in 1-minute intervals
are shown in Figures 8 and 9. For
the Cleveland to Indianapolis path,
the replay appears to track the fluctuations in load quite
closely, especially for the tuned replay, in which we used
measured receiver window sizes (Win), round-trip time
(RTT) and loss rates (Loss). The baseline replay is signifi-
cantly more bursty (note the sharp peaks in the first 30 min-
utes of the replay). The throughput plot for the other direc-
tion shows a sustained burst between 35 and 45 minutes.
Interestingly, the baseline replay reproduces this burst more
accurately than the tuned one. Our results for UNC (not
shown) are very comparable.

Figure 10 compares the number of active connection per
second for Abilene. The baseline replay results in a number
of active connections that is significantly smaller than the
one in the original trace. As we tune the replay by adding
more network-dependent properties, the number of active
connection in the replays increases and becomes much more
realistic. Similarly, the replay of UNC showed that network-
dependent properties affect the number of active connection
significantly. This shows that it is essential for experiments
to combine source-dependent and network-properties to
obtain a realistic workload.

For evaluating how well we reproduced the long-range de-
pendence in the packet- and byte-arrival time series, we
used the methods (and software) developed by Abry and
Veitch [18] to study the wavelet spectrum of the time series.
The output of this tool is a log-scale diagram that provides a
visualization of the scale-dependent variability in the data.
Briefly, the logscale diagram plots the log2 of the (esti-
mated) variance of the Daubechies wavelet coefficients for
the time series (I) against the log2 of the scale (j) used in
computing the coefficients. The wavelet coefficients are
computed for scales up to 216. Since the scale effectively
sets the time scale at which the wavelet analysis is applied,
there is a direct relationship between scale and time inter-
vals (see the top labels of Figure 11). For processes that
exhibit long-range dependence, the logscale diagram will
exhibit a region in which there is an approximately linear
relationship with slope > 0 between j and I. An estimate of

the Hurst parameter along with con-
fidence intervals on the estimate can
be obtained from the slope of this
line (H=(slope+1)/2). For more in-
formation than this simplified sum-
mary, see [18].

Figure 11 shows the logscale dia-
gram for one of the directions of the
Abilene trace. Both the original and
the replay show strong scaling start-
ing around 500 milliseconds, so the
replay substantially reproduces the
long-range dependence of the traf-
fic. The strength of this scaling, as
estimated by the Hurst parameters
was H = 1.04 for the original (the

confidence interval was between 1.03 and 1.05), H = 1.17
for the baseline replay (C.I. = [1.16, 1.18]) and H = 1.12 for
the tuned replay (C.I. = [1.11, 1.13]). These values are
above 1.0, so the packet arrival process is to some extent
non-stationary and the Hurst parameter may be influenced
by this. Note the “ditch” at small time scales, which sug-
gests a lack of variance at type scales around 300 millisec-
onds corresponding to the 90% percentile of RTT. Thus
most of the long-range dependence exists, as expected, at
time scales beyond the network RTTs.

Combined, these results show that it is possible to use work-
load models and reproduce the traffic from backbone links
like Abilene or access links like UNC in a laboratory with a
relatively small number of machines using network hard-
ware with sufficient transmission speeds. This validates the
workload modeling and generation approach.

5. Trace Resampling and Load Scaling
The traffic generation method described above provides a
method for reproducing, in a closed-loop manner, the char-
acteristics of the TCP connections observed in network
links. Conducting a complete experimental program using
this method would involve obtaining a set of traces from a
variety of network links and generating traffic according to
them. However, it is often desirable to have more modeling
flexibility.

For other modeling approaches we can derive from the val-
ues recorded in T the distributions for the key random vari-
ables that characterize applications at the source level (e.g.,
distributions of ADU sizes, time values, number of epochs,
etc.). These can be used to populate analytic or empirical
models of the workload in much the same way as has been
done for application-specific models (e.g., SURGE for web

browsing [1]). If one wanted to model a “representative”
workload for an entire network, traces from several links in
the network could be processed to produce their a-b-t repre-
sentations and these pooled into a “library” of TCP connec-

2 4 6 8 10 12 14
6

8

10

12

14

16

18

20

22

24

j = log
2
(scale)

lo
g

2 V
ar

ia
n

ce
(j

)

Clev−>Ipls Original
Baseline
Win+RTT+Loss

0.02 0.16 0.64 2.56 10.24 40.96 secs.

Figure 11: Abilene logscale diagram of packet
arrivals (Cleveland to Indianapolis).

tion vectors. From this library, random samples could be
drawn to create a new trace that would model the represen-
tative workload. To generate this workload in a simulation,
one could assign start times for each TCP connection ac-
cording to an analytic or empirical model of connection
arrivals (perhaps derived from the original packet traces).

Another form of modeling one could use is strongly related
to the methods of semi-experiments introduced in [11] but
applied at the application level instead of the packet level.
For example, one could replace the recorded start times for
TCP connections with start times randomly selected from a
given distribution of inter-arrival times (e.g., Weibull [15])
in order to study the effects of changes in the connection
arrival process on a simulation. Other interesting transforms
to consider include replacing the recorded ADU sizes with
sizes drawn from analytic distributions (e.g., LogNormal
[14]) with different parameter settings. One might replace
all multi-epoch connections with single-epoch connections
where the new a and b values are the sums of the original a
and b values and the t values are eliminated (this is similar
to using NetFlow data to model TCP connections as is done
in Harpoon [17]).

All such transforms provide researchers with a powerful
new tool to use in simulations for studying the effects of
changing workload characteristics in networks. In practice,
however, researchers most often want to introduce some
(controlled) variability in their experiments and perform
several repetitions with “similar” traffic (e.g., “traffic that
looks like UNC at 1 PM”) to, for example, compute confi-
dence intervals, or they want to scale link loads for a con-
stant mix of applications.

In this section, we consider another approach that is better
suited to experimenters’ needs to randomize experimental
inputs or to scale network loads. In order to generate traffic
that is “similar” to that found in a measured trace, we create
a new trace by randomly sampling from the connection vec-
tors in the original trace. The idea is to construct a new trace
T´ = {(Ti, Ci, Ni) | i = 1,…, m} by resampling the connec-
tions in a measured trace T = {(Ti, Ci, Ni) | i = 1,…, n}, so
for each connection vector in T´ there exists another connec-
tion vector in T with the same source-level (Ci) and net-
work-level (Ni) characteristics. This leaves the problem of
assigning start times (Ti) to the connections in T´.

We propose and analyze two solutions, Poisson resampling
and block resampling. In addition to creating randomiza-
tions of input traces, resampling provides a means to satisfy
another common need of experimentalists: generating traffic
with a range of offered loads. For example, active queue
management mechanisms have very different performance
depending on the level of saturation of the output link, so
researchers generally explore a range of values between
50% and 120% of the link bandwidth. Rather than trying to
find or collect traces with the exact range of loads needed,
we can use a collection of resampled traces with the in-

tended range of offered loads. Intuitively, the offered load of
T´ will be higher than that of T when m > n and lower when
m < n over the same time interval. We will demonstrate that
the number of connections in T´ and the resulting offered
load are only loosely correlated, so we propose to refine the
resampling to make the load of the T´s more predictable.

Our first resampling technique is Poisson resampling. The
starting point of this method is the assumption that connec-
tions are independent of each other, and therefore naturally
arrive according to Poisson arrivals. The analysis of the
connection inter-arrival distributions shown in Figure 12
appears to support this assumption.5 As we can see, the bod-
ies of the connection inter-arrival distributions are very
well-approximated by exponential distributions with the
same mean. The tails of the distributions shown in Figure 13
show a more substantial deviation from the exponential
model, which would motivate the use of a two-parameter
model such as Weibull.6 Note, however, that fitting a
Weibull model is significantly more complicated, so we
have chosen to use the simpler exponential model, which
does very well for the vast majority of the distribution. The
exponential nature of the inter-arrival distribution does not
however prove that connection arrivals follow a Poisson
arrival process — they must also be independent. Figure 14
shows the logscale diagrams of the connection arrival proc-
ess in the same traces, and for one simulated Poisson arrival
process with the mean of the Leipzig trace. The presence of
linear regions with positive slope starting at octaves 5-6
reveals long-range dependence in the connection arrivals in
these traces, while the flat curve for the Poisson arrivals is
consistent with short-range dependence. Our first resam-
pling method, which relies on Poisson connection arrivals,
ignores this fact and derives start times from an exponential
distribution without any dependencies. However, our second
resampling method, described later in this section, makes
use of an idea from statistical bootstrapping to assign start
time to connections in T´ in a manner that preserves the ob-
served long-range dependence.

Given a target duration d´ for T´, our basic Poisson resam-
pling method proceeds by iteratively sampling connection
vectors from T with replacement (so that T´ can be longer
than T, i.e., so that d´ > d), and assigning them a start time
T´i = T´i–1 + i until T´i > d´. The i are independent and
identically distributed according to an exponential distribu-
tion. Given the light tail of the exponential distribution, the
final number m of connections in T´ is always very close to
d´/ , where is the mean of the exponential distribution.

5 For our resampling results we include a second NLANR trace: a
2003 trace from a Gigabit Ethernet link between the University of
Leipzig, Germany, and the rest of the Internet.
6 Weibull was proposed by Feldmann [16]. Note that the fit of the
exponential bodies is far better for our data, and that [16] does not
show the tail of the distribution.

Using this fact, we may consider that modifying the load
offered by T´ can be achieved by simply changing the value
of . However, this method is unstable with respect to load
as Figure 15 illustrates. In order to be able to study a very
large number of trace resamplings (1,000 in the plot) with-
out running in the testbed, the average offered load of the
UNC outbound link is computed using the formula l ´ =
s´/d´, where s´ is the total ADU size, given by

 s = a j +
jc initiators

b j
jc acceptors

. (1)

Figure 15 shows a “+” symbol for each of the 1,000 trace
resamplings, which are all clustered around 1.41 millions of
connection vectors. The important observation, also illus-
trated with the histogram in Figure 16, is that, despite the
very similar number of connection vectors in each resample,
because of the heavy tails in the ADU size distributions, the
range of offered load is very wide. This makes the basic
Poisson resampling approach unreliable for scaling the of-
fered load in a predictable manner. A researcher that wished
to explore a range of workloads would be forced to repeat
the resampling over and over until the desired load is
achieved. In order to address this problem, we propose byte-
driven Poisson resampling. Here the resampling has two
steps: (1) construct a sample of connections by randomly
choosing connections from T until s´ is equal to the intended
duration d´ times the intended offered load l ´, and (2) assign
start times by iteratively sampling

pling an exponential with mean d´/m where m is the number
of connections in the sample constructed in the first step.
This approach results in a T´ with connection that arrive
according to Poisson arrival, but the offered load is far more
predictable, as Figures 15 and 17 demonstrate. Figure 18
shows results from 12 testbed experiments in which 1-hour
resampled traces (T´s) were replayed. The achieved offered
loads, which include both payloads and packet header over-
head, were very close to the intended values, demonstrating
the benefits of our byte-driven Poisson resampling method.

The goal of our second resampling method, Block resam-
pling, is to preserve the observed long-range dependence in
connection arrivals shown in Figure 14. The key idea is to
sample blocks of time rather than individual connections, as
performed in the Moving Block Bootstrap method [6].
Given a trace T = {(Ti, Ci, Ni)}, we divide it in blocks of
duration , so the first block B1 groups together connections
started in [0,), the second block B2 those in [, 2), and so
on. The resampled trace is obtained by concatenating ran-
domly chosen blocks, and adjusting the start time of connec-
tions by the offset of the new block location. For example, if
the random selection put block B2 as the first block of T´,
the start of the connection vectors in this block are set to
Ti – . Choosing the block duration can be a difficult
problem [6]. In our case, we found a clear trade-off between
the amount of long-range dependence preserved by the
block resample and the block duration. The shorter the
block duration, the larger the number of trace resamplings

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Connection Inter-arrival Time in Microseconds

UNC 1 PM
Exponential (Mean=1,700 usecs.)

Abilene-I
Exponential (Mean=3,075 usecs.)

Leipzig-II
Exponential (Mean=5,230 usecs.)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Connection Inter-arrival Time in Microseconds

UNC 1 PM
Exponential (Mean=1,700 usecs.)

Abilene-I
Exponential (Mean=3,075 usecs.)

Leipzig-II
Exponential (Mean=5,230 usecs.)

 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM
Abilene−I
Leipzig−II
Exponential (Mean=5,230 usecs.)

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 12: Bodies of the distr. of connection

inter-arrivals and their exponential fits.
Figure 13: Tails of the distr. of connection

inter-arrivals and their exponential fits.
Figure 14: Wavelet spectra for the connection

arrival time-series and one Poisson fit.

140

145

150

155

160

165

170

175

180

185

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

A
ve

ra
g

e
O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Number of Connection Vectors (in Millions)

Basic Poisson
Byte-Driven Poisson
Target Offered Load

Figure 15: Scatterplot of results of 2,000
trace resamplings.

Figure 16: Histogram of the average offered
loads in 1,000 basic Poisson resamplings.

Figure 17: Histogram of the average loads in
1,000 byte-driven Poisson resamplings.

that can be performed from the same trace. However, if the
duration of the blocks is too small, the resampled process of
connection arrivals exhibits a scaling structure that does not
resemble that of the original trace. Figure 19 shows the log-
scale diagrams of the connection arrivals of the UNC 1 PM
trace and five block-resamples where the block duration was
1 second. There is a clear and consistent flat region after
octave 8, which shows that blocks of 1 second are inade-
quate for preserving the long-range dependence of the con-
nection arrival process. Our systematic exploration of the
block duration revealed that durations above 30 seconds
perform very well. This is illustrated in Figure 20 where the
resamplings were performed with blocks of duration equal
to 1 minute.

Block resampling makes it possible to construct a T´of arbi-
trary duration but it does not provide a method for adjusting
the load precisely. In order to perform this task, we can rely
on thinning the blocks when the offered load of T is above
our intended offered load, and on thickening when the of-
fered load is below our intended offered load. Thinning in-
volves randomly removing connections from T´. Theoretical
work has shown that thinning of a long-range dependent
process does not change the scaling of the process [10], and
our own experimentation is consistent with this result.
Thickening is performed by superimposing more than one
block from T. If the intended offered load is two times the
original load, a superposition of pairs of randomly-chosen
blocks from T is required to make T´ reach that load. If the

intended load is not a multiple of the load in T, T´ is con-
structed in two steps. First, we put a superposition of blocks
in T´ with as many blocks as possible without exceeding the
target load. Second, we combine this trace with another
block-resampled trace that has been thinned in such a man-
ner that the combined load of the two traces matches the
intended load. We can therefore achieve any intended load
with this resampling method, so it is as flexible as our first
resampling technique. As in the case of Poisson resampling,
we could try to perform thinning by assuming a good corre-
lation between the number of connections and the offered
load, but the variance would be too high (the lesson illus-
trated in Figures 15-17). Consequently, we propose to drive
the thinning using Eq. 1, so our final resampling technique
is byte-driven block resampling. Figure 21 shows the result
of several testbed experiments with block-resampled traces.
The achieve loads are very good approximations of the in-
tended target offered loads.

One interesting question is whether the effort to preserve the
scaling of the connection arrival process has any effect on
the generated traffic aggregate. The logscale diagrams of
packet arrivals from several testbed experiments with re-
sampled traces are compared to that of UNC 1 PM in Fig-
ures 22 and 23. Both resampling methods achieve very close
approximations of the packet scaling found in the original
trace. In other words, for long-range dependence in the
packet arrival process, the simpler Poisson resampling
method performs as well as the more elaborate block resam-

90

100

110

120

130

140

150

160

170

180

90 100 110 120 130 140 150 160 170 180

A
ch

ie
ve

d
 O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Target Offered Load in Mbps

Testbed Experiments
Byte-Driven Poisson Resampling

Target Scaling Curve

2 4 6 8 10 12 14

2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Conn. Arrivals
1−Second Block Resample 1
1−Second Block Resample 2
1−Second Block Resample 3
1−Second Block Resample 4
1−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14

2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Conn. Arrivals
1−Minute Block Resample 1
1−Minute Block Resample 2
1−Minute Block Resample 3
1−Minute Block Resample 4
1−Minute Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 18: Average offered loads in the
testbed replay of 12 Poisson resamplings.

Figure 19: Wavelet spectra of connection
arrivals in 5 block resamplings (= 1 s.).

Figure 20: Wavelet spectra of connection
arrivals in 5 block resamplings (= 1 m.).

90

100

110

120

130

140

150

160

170

180

90 100 110 120 130 140 150 160 170 180

A
ch

ie
ve

d
 O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Target Offered Load in Mbps

Testbed Experiments
Byte-Driven Block Resampling

Target Scaling Curve

 2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

24

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM
Block Resampling 1
Block Resampling 2

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14

8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM
Poisson Resampling 1
Poisson Resampling 2
Poisson Resampling 3

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 21: Average offered loads in the

testbed replay of 8 block resamplings.
Figure 22: Wavelet spectra of packet arri-

vals in the outbound direction.
Figure 23: Wavelet spectra of packet arrivals

in the outbound direction.

pling method. This is a confirmation, using a closed-loop
traffic generation approach, of the result in [11] obtained
using open-loop semi-experiments. Other metrics (and ex-
perimental results) may, however, be influenced by the
long-range dependence in the arrival of connections (e.g.,
arrival of flow state or cache misses at a router). This long-
range dependence of connection arrivals is preserved for
precisely scaled loads only by using the byte-driven block
resampling method.

6. Summary
The quality of an experiment is only as good as the quality
of its inputs. A key issue is the problem of generating realis-
tic synthetic workloads to drive a simulation or a labora-
tory/testbed experiment. We have developed an empirically-
based approach to workload generation. Starting from a
trace of TCP/IP headers on a production network, a model is
constructed for all the TCP connections observed in the
network. The model, a set of a-b-t connection vectors, can
be used in workload generators (such as tmix) to replay the
connections and reproduce the application-level and packet-
level behaviors observed on the original network. There are
four fundamental requirements that are satisfied jointly by
this approach:

• Closed-loop mechanisms (e.g., TCP with ECN) can be
evaluated because workload inputs occur at the applica-
tion layer and all end-to-end effects can be in play during
an experiment.

• The complete mix of applications using a network can be
represented in an experiment.

• Empirically determined network-dependent parameters
(e.g., per-flow RTTs) can be combined with application
workloads to create high-fidelity reproductions of link-
level packet traffic.

• Workload randomizations and packet load scaling can be
accomplished with proven statistical properties.

For these reasons, we believe this work holds the potential
to improve the level of realism in network simulations and
laboratory or testbed experiments.

7. Acknowledgements
This work was supported in parts by the National Science

Foundation (grants CCR-0208924, EIA-0303590, and ANI-
0323648), Cisco Systems Inc., and the IBM Corporation.

8. References

[1] P. Barford, M. E. Crovella, A Performance Evaluation of
HyperText Transfer Protocols, ACM SIGMETRICS ’99.

[2] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H.
Yu, Advances in Network Simulation, IEEE Computer, 33(5):
59-67, May 2000.

[3] M. Crovella, and A. Bestavros, Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes, IEEE/ACM ToN,
5(6): 835 46, Dec. 1997.

[4] The DAG Project, http://dag.cs.waikato. ac.nz.
[5] P. Danzig, S. Jamin, R. Caceres, D. Mitzel, and D. Estrin, An

Empirical Workload Model for Driving Wide-Area TCP/IP
Network Simulations, Internetworking: Research and Experi-
ence, 3(1): 1 26.

[6] B. Efron and R. Tibshirani, An Introduction to the Bootstrap.
Chapman & Hall, 1993.

[7] Feldmann, P. Huang, A.C. Gilbert, and W. Willinger, Dynam-
ics of IP traffic: A study of the role of variability and the im-
pact of control, Proc. ACM SIGCOMM 1999.

[8] S. Floyd, and V. Paxson, Difficulties in Simulating the Inter-
net, IEEE/ACM ToN, vol. 9, no. 4, August 2001, pp. 392 403.

[9] D. Heyman, and T.V. Lakshman, Source Models for VBR
Broadcast Video Traffic, In IEEE/ACM ToN, vol. 4, no 1, pp.
37 46, Feb. 1996.

[10] N. Hohn, D. Veitch, Inverting sampled traffic, Proceedings of
ACM SIGCOMM IMC 2003

[11] N. Hohn, D. Veitch, and P. Abry, Does fractal scaling at the
IP level depend on TCP flow arrival processes?, Proc. ACM
SIGCOMM IMW 2002

[12] B. Mah, An Empirical Model of HTTP Network Traffic,
Proc. IEEE INFOCOM ‘97.

[13] M. Mena, and J. Heidemann, An Empirical Study of Real
Audio Traffic, Proc. IEEE INFOCOM 2000.

[14] V. Paxson. Empirically Derived Analytic Models of Wide-
Area TCP Connections, IEEE/ACM ToN, 2 (4) 316-36,
August 1994.

[15] L. Rizzo, Dummynet: A simple approach to the evaluation of
network protocols, ACM CCR, Vol. 27, No. 1, January 1997,
pp. 31-41.

[16] F.D. Smith, F. Hernández-Campos, and K. Jeffay. What
TCP/IP Protocol Headers Can Tell Us About the Web, Proc.
ACM SIGMETRICS ’01, pp. 245-256.

[17] J. Sommers and P. Barford, Self-Configuring Network Traffic
Generation, Proceedings of ACM SIGCOMM IMC 2004, pp.
68-81.

[18] D. Veitch, Code for the Estimation of Scaling Exponents,
http://www.emulab.ee.mu.oz.au/ ~darryl.

[19] K.V. Vishwanath, A. Vahdat, Realistic and Responsive Net-
work Traffic Generation, ACM SIGCOMM ’06, pp. 111-122.

[20] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay,
F. D. Smith, “Tmix: a tool for generating realistic TCP appli-
cation workloads in ns-2”, ACM SIGCOMM Computer
Communication Review, Vol. 36, No. 3, July 2006, pp. 65-76

[21] http://tcpreplay.sourceforge.net/

