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Abstract — In order to perform valid experiments, traffic gen-
erators used in network simulators and testbeds require contempo-
rary models of traffic as it exists on real network links. Ideally one 
would like a model of the workload created by the full range of 
applications running on the Internet today. Unfortunately, at best, 
all that is available to the research community are a small number 
of models for single applications or application classes such as the 
web or peer-to-peer. We present a method for creating a model of 
the full TCP application workload that generates the traffic flowing 
on a network link. From this model, synthetic workload traffic can 
be generated in a simulation that is statistically similar to the traffic 
observed on the real link. The model is generated automatically 
using only a simple packet-header trace and requires no knowledge 
of the actual identity or mix of TCP applications on the network. 
We present the modeling method and a traffic generator that will 
enable researchers to conduct network experiments with realistic, 
easy-to-update TCP application workloads. An extensive valida-
tion study is performed using Abilene and university traces. The 
method is validated by comparing traces of synthetically generated 
traffic to the original traces for a set of important measures of real-
ism. We also show how workload models can be re-sampled to 
generate statistically valid randomized and rescaled variations.  

1 Introduction 
An important limitation of most experimental networking 
evaluations is that they depend on application-specific 
workload1 models. Given the complexity inherent in this 
approach (e.g., the effort involved in understanding, meas-
uring, and modeling specific application-layer protocols), it 
is quite understandable that workload models usually con-
sider only one or a small number of applications. However, 
few (if any) networks today carry traffic from one or two 
applications or application classes. Most carry traffic from 
hundreds or perhaps thousands of applications in propor-
tions that vary widely from link to link. (In fact simply de-
termining precisely the mix and traffic volume of diverse 
applications is a difficult problem.) This issue of application 
mixes is a serious concern for networking researchers. For 
example, if one wanted to evaluate a new active queue man-
agement scheme (or router architecture, or TCP protocol 
enhancement,…), it stands to reason they should consider its 
impact on all web-based applications, peer-to-peer applica-
tions, streaming media, other non-interactive applications 
                                                             
1 We generally use the term workload for data input to the network 
at the socket level and the term traffic for packets that are gener-
ated by the protocol stack and are carried by the network elements. 

such as mail and news, and on the ensemble of all applica-
tions mixed together. The majority of previous work in 
workload modeling has focused on the development of 
source-level models of single applications, for example [1, 
5, 7, 9, 12, 13, 14]. Because of this, there are no models for 
mixes of networked applications. Worse, the use of analytic 
(distribution-based) models of specific TCP applications 
doesn’t “scale” to developing workload models of applica-
tion mixes comprised of hundreds of applications. Most 
related, and complementary to our work, is the Swing sys-
tem [19]. However, whereas an emphasis in Swing is the 
accurate representation of structural aspects of applications’ 
use of the network (e.g., the use of parallel connections), 
here the focus is more on the accurate representation of in-
dividual connections.  

In this paper we describe a method for constructing statisti-
cally sound workload models from network packet traces. 
These models capture the effects of the full mix of applica-
tions using a given link. In order to validate and apply this 
approach in simulations, we also describe a novel trace-
driven method for workload generation that scales to model-
ing any empirically determined application mix. It also pro-
vides the ability to “replay” the application workload from a 
real network in a simulation or laboratory network and “re-
produce” critical properties of the packet-level traffic found 
on the real network. A fundamental requirement for replay-
ing application workloads is that the inputs to the replay be 
layered over any transport protocol that operates as a closed-
loop mechanism (e.g., TCP). This is in contrast to an open-
loop approach in which packets are injected at the network 
or link layer according to some model of packet arrival 
processes. The open-loop approach ignores the essential role 
of feed-back mechanisms such as TCP congestion control in 
shaping packet-level traffic arrival processes [8]. 

The remainder of this paper is organized as follows. Section 
2 describes our approach to modeling TCP application 
workloads. Section 3 describes a tool to generate TCP work-
loads in a laboratory network. Section 4 presents a series of 
validation experiments using traces from two networks. Sec-
tion 5 discusses methods for resampling from the models to 
generate statistically valid randomized and rescaled varia-
tions. Section 6 summarizes the benefits and implications of 
applying the models in network experiments. 



 

2. The a-b-t Model for TCP Application Workloads 
The workload model is constructed by analyzing packet-
header traces from network links. A trace of TCP/IP headers 
is obtained and “reverse compiled” into a higher-level, ab-
stract representation that captures the dynamics of both end-
user interactions and application-level protocols above the 
socket layer. Each TCP/IP connection traced in the network 
is represented as a single a-b-t connection vector. The con-
nection vector models how an application used that TCP 
connection for a series of data-unit exchanges between the 
TCP connection initiator (“a”) and the connection accepter 
(“b”). The data units we model are not packets or TCP seg-
ments but instead correspond to the objects (e.g., files) or 
protocol elements (e.g., HTTP GET requests or SMTP 
HELO messages) as defined by the application and the ap-
plication protocol. The sizes of these application-data units 
(ADUs) depend only on the application protocol and the 
data objects used in the application and, therefore, are 
(largely) independent of the sizes of the network-dependent 
data units employed at the transport level and below.  

For example, HTTP requests and responses depend on the 
sizes of headers defined by the HTTP protocol and the sizes 
of files referenced but not on the sizes of TCP segments 
used at the transport layer. The data units that are exchanged 
may be separated by time intervals (t) that represent applica-
tion processing times or user “think” times. A sequence of 
such exchanges constitutes the connection’s “vector.” A 
novel aspect of this approach is its ability to construct a 
model of how an application uses the network with no 
knowledge of the application’s identity or operation.  

For example, in a TCP connection between a web server and 
browser, we can represent their behavior over time with the 
simple diagram shown in Figure 1. A browser makes a re-
quest to a server which then responds with the requested 
object. Another common pattern for TCP connections arises 
from application protocols where there are multiple ADU 
exchanges between the endpoints of a logical connection 
(e.g., HTTP/1.1, SMTP, FTP-CONTROL, NNTP, etc.). 
This pattern is shown in Figure 2. In addition to the ADU 
sizes represented by the ai and bi, we also introduce a time 
variable, ti, that represents times between exchanges and 
that is likely to be independent of the network (e.g., human 
“think times” or application-dependent processing times). 
For comparison, a conversation of a mail client with an 
SMTP server would generate the pattern shown in Figure 3.  

More formally, we represent a pattern of ADU exchanges as 
a connection vector Ci = <Ei, E2, ..., Ek> consisting of a set 
of epochs Ei = (ai, bi, ti) where ai is the size of the ith ADU 
sent from connection initiator to connection acceptor, bi is 
the size of the ith ADU sent from connection acceptor to 
connection initiator, and ti is the “think” or processing time 
between the receipt of the ith “response” ADU and the 
transmission of the (i + 1)st “request.”  

For example, if this analysis is applied to a trace of the 
TCP/IP headers from the connection pictured in Figure 2, it 
would produce an a-b-t connection vector, Ci = <(329, 403, 
0.12), (403, 25821, 3.12), and (356, 1198, )> with a start 
time, Ti. Abstractly we say that the connection vector con-
sists of three epochs corresponding to the three HTTP re-
quest/response exchanges. This vector represents a TCP 
connection the browser initiated at Ti as a persistent HTTP 
connection where the browser sends three HTTP requests of 
329, 403, and 356 bytes, respectively, and the server re-
sponds to each of them with HTTP responses (including 
object content) of 403, 25821, and 1198 bytes, respectively. 
The second request was sent 120 milliseconds after the last 
segment of the first response was received and the third re-
quest was sent 3120 milliseconds after the second response 
was received. For more details on additional features of the 
a-b-t model for modeling unidirectional and concurrent 
ADU flows, and for how packets traces are analyzed to cre-
ate connection vectors, see [20, 16].  

3. Workload Generation from a-b-t Traces 
Once the a-b-t trace T has been obtained, it may be used for 
workload modeling and generation in a variety of ways. One 
primary goal is to reproduce the traffic represented by a 
single packet trace simply by “replaying” T at the socket 
API with the same sequence of connection start times. This 
preserves both the order and initiation time of the TCP con-
nections. This is the trace-driven approach we describe and 
validate in this paper.  

A workload generator driven by an a-b-t trace will initiate 
TCP connections at times taken from the Ti and, for each 
connection, send and receive data based on the Ci that mod-
els the application’s use of that connection. We assume that 
the environment in which the generator program runs has an 
interface to the transport layer (e.g., sockets) that can be 
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Figure 1: The pattern of ADU exchange in an  
HTTP 1.0 connection. 
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Figure 2: The pattern of ADU exchanges in an  

HTTP 1.1 connection. 
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Figure 3: The pattern of ADU exchanges in an SMTP connection. 



 

used to initiate the (real or simulated) transmission of appli-
cation data. For example, in ns-2 [2], workload-generating 
code accesses the transport layer via the Full-TCP model 
[20]. Full TCP closely mirrors the implementation of stream 
sockets in actual operating systems. Workload-generating 
applications can send and receive data in much the same 
manner as they would with sockets. 

Workload generators in laboratory or testbed networks can 
use the socket interface in real operating systems to send 
streams of bytes. The results presented in this paper were 
obtained using a workload generating tool, tmix, which im-
plements the trace replay method in a FreeBSD environ-
ment. Two instances of this program, each running on a 
machine at the edge of a network, can perform a replay by 
establishing one TCP connection for each connection vector 
Ci in a trace, with one instance of the program playing the 
role of the connection initiator and the other program the 
connection acceptor. The connection initiator performs 
socket writes to send the number of bytes specified in the 
first data unit a1. The other end point will read as many 
bytes as specified for the data unit a1. This first data unit, is 
also used to synchronize the two instances of tmix, by in-
cluding a 32-bit connection-vector id in the first four bytes 
of the first data unit. With this id, the acceptor can uniquely 
identify the connection vector that it is expected to replay in 
this TCP connection. This approach guarantees that the tmix 
endpoints always remain properly synchronized (i.e., they 
agree on the Ci they replay within each TCP connection) 
even in the face of lost or reordered segments.  

For example, consider the replay of the connection vector, 
Ci = (329, 403, 0.12), (403, 25821, 3.12), and (356, 1198, ) 
that corresponds to the TCP connection in Figure 2. At time 
Ti the tmix connection initiator establishes a new TCP con-
nection to the tmix connection acceptor. The initiator then 
writes 329 bytes to its socket and reads 403 bytes. Con-
versely, the connection acceptor reads 329 bytes from its 
socket and writes 403 bytes. After the initiator has read the 
403 bytes, it sleeps for 120 milliseconds and then writes 403 
bytes and reads 25,821 bytes. The acceptor reads 403 bytes 
and writes 25,821 bytes. After sleeping for 3,120 millisec-
onds, the third exchange of data units is handled in the same 
way, and the TCP connection is terminated.  

The sequential replay of connection vectors at prescribed 
start times raises a number of implementation issues and 
challenges. Scalability is particularly important for labora-
tory environments where a relatively small set of hosts (on 
the order of 100) is being used to generate traffic corre-
sponding to a much larger number of active connections (on 
the order of 10,000-100,000). The first step in trace replay is 
to divide a complete trace into non-overlapping subtraces. 
During workload generation, the connections within a par-
ticular subtrace are implemented by a single host pair, so the 
number of subtraces is equal to the number of available host 
pairs. The detailed selection of the subtraces will depend on 

the load balancing strategy, and the speed of the host ma-
chines. Our experience with the experiments reported in this 
paper showed that a simple round-robin assignment of con-
nection vectors to machine pairs performed well.  

4. Validation Experiments 
In this section we describe a number of experiments de-
signed to validate our approach to workload modeling and 
generation. Our experimental procedure is based on the fol-
lowing steps: 

1. Acquire a TCP/IP header trace from an Internet link and 
filter it to obtain all packets from TCP connections 
where (i) the SYN or SYN+ACK was present in the 
trace (so we can explicitly identify the connection initia-
tor), and (ii) the connection was terminated by FIN or 
RST. This eliminates only those connections that were in 
progress when the packet trace began or ended. In the 
remainder of the paper phrases like “Abilene trace” will 
refer to the trace derived with this filtering method. We 
also refer to these traces as the “original” traces. 

2. Derive a trace, T, of a-b-t connection vectors from the 
packet headers in the original trace. 

3. Use T to generate the workload with the trace-driven 
generator tmix described in Section 3.  

4. Capture a TCP/IP packet header trace of the resulting 
traffic on a laboratory link using tcpdump. In the re-
mainder of this paper phrases like “Abilene replay” or 
just “replay” will refer to the packet traffic captured in 
the laboratory trace. 

5. Compare various properties of the traffic in the original 
trace with the replay trace. 

We report the results from applying this approach to TCP/IP 
header traces from two Internet links: an OC-48 link in the 
Abilene backbone between Indianapolis and Cleveland, and 
a 1 Gbps Ethernet link connecting the campus of the Uni-
versity of North Carolina at Chapel Hill (UNC) with the 
router of its ISP. For Abilene we acquired a 2-hour trace 
from the NLANR repository.2 This is a bi-directional trace 
and was captured in August, 2002, using a DAG monitor 
[4]. The UNC access-link trace is a one-hour bi-directional 
trace taken during a peak traffic period (1 PM) in April 2003 
using tcpdump on a high-end server-class machine. Table 1 
gives summary statistics for the traces obtained after the 
filtering in the first step of the procedure above. 

All the replay results described in this section were obtained 
from the laboratory configuration shown in Figure 4. The 
network consists of approximately 50 Intel-processor ma-
chines running FreeBSD 4.5. Forty-four of these machines 

                                                             
2 We gratefully acknowledge the traces from the NLANR Meas-
urement and Network Analysis Group (NLANR/MNA) which is 
supported by the National Science Foundation cooperative agree-
ment nos. ANI-0129677 (2002) and ANI-9807479 (1998).  



 

execute the trace-driven workload generator, tmix, as de-
scribed in Section 3 (22 pairs, with one machine from  the 
pair on each side of the configuration). The generating ma-
chines have 100 Mbps Ethernet interfaces and are attached 
to switched VLANs on Gigabit Ethernet switches.  

At the core of this network are two 1.4 GHz Intel-processor 
server-class machines (PCI-X busses) acting as routers (IP-
forwarding enabled) with drop-tail FIFO queues. The router 
machines have 1 Gbps interfaces to the Ethernet switches 
and a point-to-point Gigabit Ethernet between the routers.3 
For all the experiments reported here, there is no congestion 
on any router or switch interface and no losses were re-
corded at these interfaces. We also verified that there were 
no CPU or other resource constraints on the generators.  

So that we can emulate TCP connections that traverse a 
longer network path than the one in our lab, we use a lo-
cally-modified version of dummynet [15] to configure in-
bound and out-bound packet delays on the workload gener-
ating machines. These delays emulate different round-trip 
times on each TCP connection (thus giving per-flow de-
lays). This version of dummynet delays all packets from a 
TCP connection by the same amount — a delay that is ran-
domly-chosen for that flow. In many of the experiments 
reported in this section, the distribution of RTT values 
across all TCP connections is an important parameter and 
the values used are described for each experiment. The ver-
sion of TCP used in these experiments is newReno without 
SACK. Unless specified otherwise for certain experiments, 
TCP had an ssthresh of 4 MB, RFC 1323 was disabled, de-
layed ACKs (up to 100 milliseconds) were enabled, ECN 
was disabled, send space was 32K and the receiver maxi-
mum window was 17,520 bytes.  

                                                             
3 The peak load in any 10 millisecond interval of the Abilene OC-
48 trace was always well below 1 Gbps so it could be replayed in 
this lab configuration. 

4.1 Validation against real link traffic 

The most demanding validation experiment that we could 
devise was to use the workloads derived from the Abilene 
and UNC traces with the goal of reproducing certain essen-
tial characteristics of the original link traffic when the work-
loads are replayed at the socket API in the laboratory net-
work. The question being explored is: to what extent can we 
reproduce the packet traffic found on a real network link in 
the laboratory by replaying application-level data units?  
Clearly reproduction would be straightforward if we simply 
used a tool such as tcpreplay [21] to replay the packet trace 
in an open-loop experiment. Instead, we created a closed-
loop simulation driven by the workload model at the socket 
API and show that the generated packet-level traffic has the 
essential properties of the original traces reproduced in it. 

Our metrics for evaluating the fidelity of the synthetic traffic 
that is reproduced from real, measured traffic include:  

• The link load or throughput — the number of bits per 
second (including protocol headers) transmitted on a 
link. Note that because we can replay the applications’ 
use of TCP connections at both endpoints, we are able to 
generate the packet-level traffic flowing in both direc-
tions of the link concurrently. 

• The statistical properties of the time series of counts of 
arriving packets and bytes on a link in an interval of time 
(e.g., use of Hurst parameter estimates from wavelets to 
measure long-range dependence [3]). 

• The number of simultaneous active TCP connections 
over an interval of time (typically one second). This met-
ric is important for experiments where per-flow state is 
maintained in a router. We define a connection as active 
from the time the initial SYN segment appears in the 
trace until the time of the last FIN or RST segment.4 

To reproduce traffic from a real link in a laboratory net-
work, we must consider a second set of factors that are net-
work-dependent but are, to a first approximation, independ-
ent of the applications using the network. The primary net-
work-dependent factors at the endpoints that we consider 
are the TCP sender and receiver window sizes and the 
maximum segment size (MSS). The network-dependent 
factor along the path between endpoints that we use is the 
distributions of per-flow round-trip times.  

We also consider per-flow packet loss rates in our validation 
study. Our purpose is only to get a sense of the impact of 
loss rates on our validation metrics, not to suggest that per-
flow packet loss rates should be used in simulations. Loss 
rates in a simulation should be the output of an experiment 
and not an input to it. Otherwise, closed-loop mechanisms 

                                                             
4 We tried a time threshold of 60 seconds without seeing a packet 
to terminate connections (similar to NetFlow) but found no sub-
stantial differences.  
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Figure 4: Experimental network setup (simplified). 

 

Trace Duration Connections Packets Bytes 

Clev->Ipls 158.2M 128.5GB 

Ipls->Clev 
120 mins. 2,442,548 

160.5M 125.9GB 

UNC->Inet 62.8M 66.4GB 

Inet->UNC 
60 mins. 1,313,072 

54.6M 21.6GB 

Table 1: Summary statistics. 



 

cannot be evaluated. All the network-dependent properties 
described above, RTTs, window size, MSS, etc., are either 
properties of a specific topology and path, or are end-system 
configuration parameters.  

We analyzed the original TCP/IP packet traces to determine 
the distributions of the receiver’s maximum window size 
per connection, and the minimum RTT per connection. The 
distribution of window sizes was determined from the val-
ues advertised on the SYN, SYN+ACK exchange. The re-
play experiments were conducted with the empirical distri-
butions for the receiver’s maximum window size per TCP 
connection approximated by configuring the appropriate 
fraction of the lab machines to use certain window sizes.  

Figure 5 shows the distribution of receiver’s maximum win-
dow size per TCP connection (weighted by the percentage 
of total bytes flowing on TCP connections using that win-
dow size) in the original traces compared with the achieved 
replay distributions. There was clearly a good match be-
tween the receivers’ maximum window sizes in the real 
network and their approximation in the replay. An interest-
ing observation is that over 68% of total bytes in the 
Abilene trace were carried on TCP connections that had 
maximum window sizes less than 20K bytes. In the UNC 
trace (not shown due to space limitations), 75% of total 
bytes were carried on TCP connections that had maximum 
window sizes less than 20K bytes. In both traces over 50% 
of the total bytes were carried on TCP connections where 
the receiver’s maximum window is less than 10K bytes.  

We estimated a minimum RTT value for each TCP connec-
tion in our traces using the timestamps of the segments in 
the initial 3-way connection-initiation handshake. The re-
play experiments were conducted using the empirical distri-
butions for the estimated RTT per TCP connection. We ap-
proximated this distribution in the replay by a mix of distri-
butions used to set the per-flow delays by dummynet at the 
endpoint machines. Figure 6 shows the distribution of esti-
mated RTT per flow in the original traces compared with 
the achieved replay RTT distribution (again estimated from 
the initial 3-way handshake). There was a good match be-
tween the RTTs in the real network and their approximation 
in the replay. Note that the UNC RTT distribution had a 
substantially lighter body than Abilene – 80% of connec-
tions had an estimated RTT of 100 milliseconds or less 
while only 50% of Abilene connections had estimated RTT 
values less than 100 milliseconds. In both cases, however, 
90% of connections had an estimated RTT of 200 millisec-
onds or less. The UNC distribution had a slightly heavier 
tail. 

To get a sense of the impact of losses in our traces, we plot 
retransmissions rates for Abilene and UNC in Figure 7. 
Most connections did not experience any retransmissions, 
suggesting low loss rates. Loss rates for connections that 
suffer losses are directly related to the retransmission rates. 

Figures 8-10 explore the power of our modeling and traffic 
generation approach to reproduce real network traffic in the 
lab. The plots compare the original trace, a baseline replay 
and one or more tuned replays. The baseline replay uses 
some plausible values for the network-dependent properties 
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Figure 5: Abilene empirical and replay win-
dow size distributions. 

Figure 6: Empirical and replay RTT distri-
butions. 

Figure 7:  Number or retransmissions per 
TCP connection in Abilene and UNC traces. 
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Figure 8: Abilene throughput with empirical 
RTT, window sizes, and loss rates,  

Cleveland to Indianapolis. 

Figure 9: Abilene throughput with empirical 
RTT, window sizes, and loss rates,  

Indianapolis to Cleveland. 

Figure 10: Abilene active connections with 
empirical RTT, window sizes and loss rates. 



 

that one might use in the absence of 
empirical data. In particular for the 
baseline, the distribution of round-
trip times was uniformly distributed 
between 10 and 150 milliseconds, 
maximum receiver windows were 
set to 17,520 bytes, and no extra 
random losses were added. The 
tuned replays make use of the net-
work-dependent properties meas-
ured from the original traces as 
shown in Figures 5-7. 

The bytes transmitted on the 
Abilene link in 1-minute intervals 
are shown in Figures 8 and 9. For 
the Cleveland to Indianapolis path, 
the replay appears to track the fluctuations in load quite 
closely, especially for the tuned replay, in which we used 
measured receiver window sizes (Win), round-trip time 
(RTT) and loss rates (Loss). The baseline replay is signifi-
cantly more bursty (note the sharp peaks in the first 30 min-
utes of the replay). The throughput plot for the other direc-
tion shows a sustained burst between 35 and 45 minutes. 
Interestingly, the baseline replay reproduces this burst more 
accurately than the tuned one. Our results for UNC (not 
shown) are very comparable.  

Figure 10 compares the number of active connection per 
second for Abilene. The baseline replay results in a number 
of active connections that is significantly smaller than the 
one in the original trace. As we tune the replay by adding 
more network-dependent properties, the number of active 
connection in the replays increases and becomes much more 
realistic. Similarly, the replay of UNC showed that network-
dependent properties affect the number of active connection 
significantly. This shows that it is essential for experiments 
to combine source-dependent and network-properties to 
obtain a realistic workload. 

For evaluating how well we reproduced the long-range de-
pendence in the packet- and byte-arrival time series, we 
used the methods (and software) developed by Abry and 
Veitch [18] to study the wavelet spectrum of the time series. 
The output of this tool is a log-scale diagram that provides a 
visualization of the scale-dependent variability in the data. 
Briefly, the logscale diagram plots the log2 of the (esti-
mated) variance of the Daubechies wavelet coefficients for 
the time series (I) against the log2 of the scale (j) used in 
computing the coefficients. The wavelet coefficients are 
computed for scales up to 216. Since the scale effectively 
sets the time scale at which the wavelet analysis is applied, 
there is a direct relationship between scale and time inter-
vals (see the top labels of Figure 11). For processes that 
exhibit long-range dependence, the logscale diagram will 
exhibit a region in which there is an approximately linear 
relationship with slope > 0 between j and I. An estimate of 

the Hurst parameter along with con-
fidence intervals on the estimate can 
be obtained from the slope of this 
line (H=(slope+1)/2). For more in-
formation than this simplified sum-
mary, see [18]. 

Figure 11 shows the logscale dia-
gram for one of the directions of the 
Abilene trace. Both the original and 
the replay show strong scaling start-
ing around 500 milliseconds, so the 
replay substantially reproduces the 
long-range dependence of the traf-
fic. The strength of this scaling, as 
estimated by the Hurst parameters 
was H = 1.04 for the original (the 

confidence interval was between 1.03 and 1.05), H = 1.17 
for the baseline replay (C.I. = [1.16, 1.18]) and H = 1.12 for 
the tuned replay (C.I. = [1.11, 1.13]). These values are 
above 1.0, so the packet arrival process is to some extent 
non-stationary and the Hurst parameter may be influenced 
by this. Note the “ditch” at small time scales, which sug-
gests a lack of variance at type scales around 300 millisec-
onds corresponding to the 90% percentile of RTT. Thus 
most of the long-range dependence exists, as expected, at 
time scales beyond the network RTTs.  

Combined, these results show that it is possible to use work-
load models and reproduce the traffic from backbone links 
like Abilene or access links like UNC in a laboratory with a 
relatively small number of machines using network hard-
ware with sufficient transmission speeds. This validates the 
workload modeling and generation approach.  

5. Trace Resampling and Load Scaling 
The traffic generation method described above provides a 
method for reproducing, in a closed-loop manner, the char-
acteristics of the TCP connections observed in network 
links. Conducting a complete experimental program using 
this method would involve obtaining a set of traces from a 
variety of network links and generating traffic according to 
them. However, it is often desirable to have more modeling 
flexibility. 

For other modeling approaches we can derive from the val-
ues recorded in T the distributions for the key random vari-
ables that characterize applications at the source level (e.g., 
distributions of ADU sizes, time values, number of epochs, 
etc.). These can be used to populate analytic or empirical 
models of the workload in much the same way as has been 
done for application-specific models (e.g., SURGE for web  

browsing [1]). If one wanted to model a “representative” 
workload for an entire network, traces from several links in 
the network could be processed to produce their a-b-t repre-
sentations and these pooled into a “library” of TCP connec-
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Figure 11: Abilene logscale diagram of packet 
arrivals (Cleveland to Indianapolis). 



 

tion vectors. From this library, random samples could be 
drawn to create a new trace that would model the represen-
tative workload. To generate this workload in a simulation, 
one could assign start times for each TCP connection ac-
cording to an analytic or empirical model of connection 
arrivals (perhaps derived from the original packet traces).  

Another form of modeling one could use is strongly related 
to the methods of semi-experiments introduced in [11] but 
applied at the application level instead of the packet level. 
For example, one could replace the recorded start times for 
TCP connections with start times randomly selected from a 
given distribution of inter-arrival times (e.g., Weibull [15]) 
in order to study the effects of changes in the connection 
arrival process on a simulation. Other interesting transforms 
to consider include replacing the recorded ADU sizes with 
sizes drawn from analytic distributions (e.g., LogNormal 
[14]) with different parameter settings. One might replace 
all multi-epoch connections with single-epoch connections 
where the new a and b values are the sums of the original a 
and b values and the t values are eliminated (this is similar 
to using NetFlow data to model TCP connections as is done 
in Harpoon [17]).  

All such transforms provide researchers with a powerful 
new tool to use in simulations for studying the effects of 
changing workload characteristics in networks. In practice, 
however, researchers most often want to introduce some 
(controlled) variability in their experiments and perform 
several repetitions with “similar” traffic (e.g., “traffic that 
looks like UNC at 1 PM”) to, for example, compute confi-
dence intervals, or they want to scale link loads for a con-
stant mix of applications. 

In this section, we consider another approach that is better 
suited to experimenters’ needs to randomize experimental 
inputs or to scale network loads. In order to generate traffic 
that is “similar” to that found in a measured trace, we create 
a new trace by randomly sampling from the connection vec-
tors in the original trace. The idea is to construct a new trace 
T´ = {(Ti, Ci, Ni) | i = 1,…, m} by resampling the connec-
tions in a measured trace T = {(Ti, Ci, Ni) | i = 1,…, n}, so 
for each connection vector in T´ there exists another connec-
tion vector in T with the same source-level (Ci) and net-
work-level (Ni) characteristics. This leaves the problem of 
assigning start times (Ti) to the connections in T´.  

We propose and analyze two solutions, Poisson resampling 
and block resampling. In addition to creating randomiza-
tions of input traces, resampling provides a means to satisfy 
another common need of experimentalists: generating traffic 
with a range of offered loads. For example, active queue 
management mechanisms have very different performance 
depending on the level of saturation of the output link, so 
researchers generally explore a range of values between 
50% and 120% of the link bandwidth. Rather than trying to 
find or collect traces with the exact range of loads needed, 
we can use a collection of resampled traces with the in-

tended range of offered loads. Intuitively, the offered load of 
T´ will be higher than that of T when m > n and lower when 
m < n over the same time interval. We will demonstrate that 
the number of connections in T´ and the resulting offered 
load are only loosely correlated, so we propose to refine the 
resampling to make the load of the T´s more predictable.  

Our first resampling technique is Poisson resampling. The 
starting point of this method is the assumption that connec-
tions are independent of each other, and therefore naturally 
arrive according to Poisson arrivals. The analysis of the 
connection inter-arrival distributions shown in Figure 12 
appears to support this assumption.5 As we can see, the bod-
ies of the connection inter-arrival distributions are very 
well-approximated by exponential distributions with the 
same mean. The tails of the distributions shown in Figure 13 
show a more substantial deviation from the exponential 
model, which would motivate the use of a two-parameter 
model such as Weibull.6 Note, however, that fitting a 
Weibull model is significantly more complicated, so we 
have chosen to use the simpler exponential model, which 
does very well for the vast majority of the distribution. The 
exponential nature of the inter-arrival distribution does not 
however prove that connection arrivals follow a Poisson 
arrival process — they must also be independent. Figure 14 
shows the logscale diagrams of the connection arrival proc-
ess in the same traces, and for one simulated Poisson arrival 
process with the mean of the Leipzig trace. The presence of 
linear regions with positive slope starting at octaves 5-6 
reveals long-range dependence in the connection arrivals in 
these traces, while the flat curve for the Poisson arrivals is 
consistent with short-range dependence. Our first resam-
pling method, which relies on Poisson connection arrivals, 
ignores this fact and derives start times from an exponential 
distribution without any dependencies. However, our second 
resampling method, described later in this section, makes 
use of an idea from statistical bootstrapping to assign start 
time to connections in T´ in a manner that preserves the ob-
served long-range dependence.  

Given a target duration d´ for T´, our basic Poisson resam-
pling method proceeds by iteratively sampling connection 
vectors from T with replacement (so that T´ can be longer 
than T, i.e., so that d´ > d), and assigning them a start time 
T´i = T´i–1 + i until T´i > d´. The i are independent and 
identically distributed according to an exponential distribu-
tion. Given the light tail of the exponential distribution, the 
final number m of connections in T´ is always very close to 
d´/ , where  is the mean of the exponential distribution.  
 

                                                             
5 For our resampling results we include a second NLANR trace: a 
2003 trace from a Gigabit Ethernet link between the University of 
Leipzig, Germany, and the rest of the Internet.  
6 Weibull was proposed by Feldmann [16]. Note that the fit of the 
exponential bodies is far better for our data, and that [16] does not 
show the tail of the distribution. 



 

 
Using this fact, we may consider that modifying the load 
offered by T´ can be achieved by simply changing the value 
of . However, this method is unstable with respect to load 
as Figure 15 illustrates. In order to be able to study a very 
large number of trace resamplings (1,000 in the plot) with-
out running in the testbed, the average offered load of the 
UNC outbound link is computed using the formula l ´ = 
s´/d´, where s´ is the total ADU size, given by 

  s = a j +
jc initiators

b j
jc acceptors

. (1) 

Figure 15 shows a “+” symbol for each of the 1,000 trace 
resamplings, which are all clustered around 1.41 millions of 
connection vectors. The important observation, also illus-
trated with the histogram in Figure 16, is that, despite the 
very similar number of connection vectors in each resample, 
because of the heavy tails in the ADU size distributions, the 
range of offered load is very wide. This makes the basic 
Poisson resampling approach unreliable for scaling the of-
fered load in a predictable manner. A researcher that wished 
to explore a range of workloads would be forced to repeat 
the resampling over and over until the desired load is 
achieved. In order to address this problem, we propose byte-
driven Poisson resampling. Here the resampling has two 
steps: (1) construct a sample of connections by randomly 
choosing connections from T until s´ is equal to the intended 
duration d´ times the intended offered load l ´, and (2) assign 
start times by iteratively sampling 

 
pling an exponential with mean d´/m where m is the number 
of connections in the sample constructed in the first step. 
This approach results in a T´ with connection that arrive 
according to Poisson arrival, but the offered load is far more 
predictable, as Figures 15 and 17 demonstrate. Figure 18 
shows results from 12 testbed experiments in which 1-hour 
resampled traces (T´s) were replayed. The achieved offered 
loads, which include both payloads and packet header over-
head, were very close to the intended values, demonstrating 
the benefits of our byte-driven Poisson resampling method. 

The goal of our second resampling method, Block resam-
pling, is to preserve the observed long-range dependence in 
connection arrivals shown in Figure 14. The key idea is to 
sample blocks of time rather than individual connections, as 
performed in the Moving Block Bootstrap method [6]. 
Given a trace T = {(Ti, Ci, Ni)}, we divide it in blocks of 
duration , so the first block B1 groups together connections 
started in [0, ), the second block B2 those in [ , 2 ), and so 
on. The resampled trace is obtained by concatenating ran-
domly chosen blocks, and adjusting the start time of connec-
tions by the offset of the new block location. For example, if 
the random selection put block B2 as the first block of T´, 
the start of the connection vectors in this block are set to  
Ti – . Choosing the block duration  can be a difficult 
problem [6]. In our case, we found a clear trade-off between 
the amount of long-range dependence preserved by the 
block resample and the block duration. The shorter the 
block duration, the larger the number of trace resamplings 
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Figure 12: Bodies of the distr. of connection 

inter-arrivals and their exponential fits. 
Figure 13: Tails of the distr. of connection 

inter-arrivals and their exponential fits. 
Figure 14: Wavelet spectra for the connection 

arrival time-series and one Poisson fit. 
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Figure 15: Scatterplot of results of 2,000 
trace resamplings. 

Figure 16: Histogram of the average offered 
loads in 1,000 basic Poisson resamplings. 

Figure 17:  Histogram of the average loads in 
1,000 byte-driven Poisson resamplings. 



 

that can be performed from the same trace. However, if the 
duration of the blocks is too small, the resampled process of 
connection arrivals exhibits a scaling structure that does not 
resemble that of the original trace. Figure 19 shows the log-
scale diagrams of the connection arrivals of the UNC 1 PM 
trace and five block-resamples where the block duration was 
1 second. There is a clear and consistent flat region after 
octave 8, which shows that blocks of 1 second are inade-
quate for preserving the long-range dependence of the con-
nection arrival process. Our systematic exploration of the 
block duration revealed that durations above 30 seconds 
perform very well. This is illustrated in Figure 20 where the 
resamplings were performed with blocks of duration equal 
to 1 minute. 

Block resampling makes it possible to construct a T´of arbi-
trary duration but it does not provide a method for adjusting 
the load precisely. In order to perform this task, we can rely 
on thinning the blocks when the offered load of T is above 
our intended offered load, and on thickening when the of-
fered load is below our intended offered load. Thinning in-
volves randomly removing connections from T´. Theoretical 
work has shown that thinning of a long-range dependent 
process does not change the scaling of the process [10], and 
our own experimentation is consistent with this result. 
Thickening is performed by superimposing more than one 
block from T. If the intended offered load is two times the 
original load, a superposition of pairs of randomly-chosen 
blocks from T is required to make T´ reach that load. If the 

intended load is not a multiple of the load in T, T´ is con-
structed in two steps. First, we put a superposition of blocks 
in T´ with as many blocks as possible without exceeding the 
target load. Second, we combine this trace with another 
block-resampled trace that has been thinned in such a man-
ner that the combined load of the two traces matches the 
intended load. We can therefore achieve any intended load 
with this resampling method, so it is as flexible as our first 
resampling technique. As in the case of Poisson resampling, 
we could try to perform thinning by assuming a good corre-
lation between the number of connections and the offered 
load, but the variance would be too high (the lesson illus-
trated in Figures 15-17). Consequently, we propose to drive 
the thinning using Eq. 1, so our final resampling technique 
is byte-driven block resampling. Figure 21 shows the result 
of several testbed experiments with block-resampled traces. 
The achieve loads are very good approximations of the in-
tended target offered loads. 

One interesting question is whether the effort to preserve the 
scaling of the connection arrival process has any effect on 
the generated traffic aggregate. The logscale diagrams of 
packet arrivals from several testbed experiments with re-
sampled traces are compared to that of UNC 1 PM  in Fig-
ures 22 and 23. Both resampling methods achieve very close 
approximations of the packet scaling found in the original 
trace. In other words, for long-range dependence in the 
packet arrival process, the simpler Poisson resampling 
method performs as well as the more elaborate block resam-
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Figure 18:  Average offered loads in the 
testbed replay of 12 Poisson resamplings. 

Figure 19: Wavelet spectra of connection 
arrivals in 5 block resamplings (  = 1 s.). 

Figure 20:  Wavelet spectra of connection 
arrivals in 5 block resamplings (  = 1 m.). 
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Figure 21:  Average offered loads in the 

testbed replay of 8 block resamplings. 
Figure 22: Wavelet spectra of packet arri-

vals in the outbound direction. 
Figure 23:  Wavelet spectra of packet arrivals 

in the outbound direction. 



 

pling method. This is a confirmation, using a closed-loop 
traffic generation approach, of the result in [11] obtained 
using open-loop semi-experiments. Other metrics (and ex-
perimental results) may, however, be influenced by the 
long-range dependence in the arrival of connections (e.g., 
arrival of flow state or cache misses at a router). This long-
range dependence of connection arrivals is preserved for 
precisely scaled loads only by using the byte-driven block 
resampling method. 

6. Summary 
The quality of an experiment is only as good as the quality 
of its inputs. A key issue is the problem of generating realis-
tic synthetic workloads to drive a simulation or a labora-
tory/testbed experiment. We have developed an empirically-
based approach to workload generation. Starting from a 
trace of TCP/IP headers on a production network, a model is 
constructed for all the TCP connections observed in the 
network. The model, a set of a-b-t connection vectors, can 
be used in workload generators (such as tmix) to replay the 
connections and reproduce the application-level and packet-
level behaviors observed on the original network. There are 
four fundamental requirements that are satisfied jointly by 
this approach: 

• Closed-loop mechanisms (e.g., TCP with ECN) can be 
evaluated because workload inputs occur at the applica-
tion layer and all end-to-end effects can be in play during 
an experiment.  

• The complete mix of applications using a network can be 
represented in an experiment.  

• Empirically determined network-dependent parameters 
(e.g., per-flow RTTs) can be combined with application 
workloads to create high-fidelity reproductions of link-
level packet traffic.  

• Workload randomizations and packet load scaling can be 
accomplished with proven statistical properties.  

For these reasons, we believe this work holds the potential 
to improve the level of realism in network simulations and 
laboratory or testbed experiments.  
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