

Methodology For Developing Empirical Models of
TCP-Based Applications*

(Extended Abstract)

F. Hernández Campos,1 K. Jeffay, F.D. Smith
 Department of Computer Science

S. Marron, A. Nobel
 Department of Statistics

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA

http://www.cs.unc.edu/Research/dirt

Abstract: We report on a large-scale empirical study to
create application-level models for TCP traffic generation
in simulations and network test-beds. A novel aspect of the
study is the development of a method to construct empirical
application-level models for arbitrary client/server (re-
quest/response) application-level protocols based on an
analysis of unidirectional traces of only the TCP/IP head-
ers in the traffic generated by the applications. By analyz-
ing large collections of application-specific traces from a
number of sources, we are producing empirical distribu-
tions to populate stochastic models of HTTP, FTP, and
SMTP. However, combined, these applications represent
less than 50% of the observed TCP traffic on our campus.
We are also investigating the use of cluster analysis to
identify sets of statistically homogenous TCP connection
traces. Once these clusters have been identified we can
then model each cluster by fitting stochastic models to the
set of TCP connections identified as belonging to that clus-
ter. 1

1. Background and Motivation
A critical component of Internet simulations and test-bed
measurements is the generation of synthetic traffic. Floyd
and Paxson [12] provide an excellent analysis of the issues
and pitfalls, especially traffic-generating models that are
based on empirical data that has already been “shaped” by
network influences. They conclude, “… if we take care to
use traffic traces to characterize source behavior, rather
than packet-level behavior, we can use the source-level
descriptions in simulations to synthesize plausible traffic.”
In particular, for TCP-based applications, TCP’s end-to-end
congestion control (perhaps influenced by router-based
mechanisms such as RED packet drops or ECN markings)
shapes the low-level packet-by-packet traffic processes.
Thus the generation of TCP traffic must be accomplished
by using application-dependent but network-independent
traffic sources layered over (real or simulated) TCP imple-
mentations. Two important pre-Web measurement efforts
that produced application-dependent traffic models (Telnet,
FTP, NNTP, SMTP), were conducted by Danzig et al., [5,

1Student author.
*This work supported in parts by grants from the National Science Foun-
dation (grants CDA-9624662, ITR-0082870, and ITR-0082866), the
Cisco, IBM, Intel, Sun, Cabletron, and Aprisma corporations, and NCNI.

10, 11], and by Paxson [15]. Web traffic generators in use
today are usually based on data from two seminal meas-
urement projects that focused on capturing web-browsing
source behaviors: the Mah [13], and Barford, Crovella, et
al., [1, 3, 8, 9] studies. Traffic generators based on these
sources have been built into the widely used ns network
simulator [4] and have also been used to generate traffic in
laboratory test-bed networks [2, 6].

Constructing traffic generators for TCP applications de-
pends ultimately on the availability of high-quality Internet
measurement data from a variety of sites that can be used to
obtain characteristics of source (application-level) behav-
ior. Our research is concerned with capturing and analyzing
large-scale collections of Internet traces of TCP/IP protocol
headers to create contemporary source-level models for
traffic generation. We are further concerned with doing this
with low-cost, low-overhead methods that can be used at
multiple sites as an ongoing effort to create up-to-date
models because Internet applications (and their use) con-
tinue to evolve rapidly.

We are currently working with traces of TCP/IP packet
headers from two sources – (1) a collection we obtained by
placing a network monitor on the Gigabit Ethernet link
connecting the University of North Carolina at Chapel Hill
(UNC) campus network to the Internet, and (2) a sample of
traces taken from the collection maintained by
NLANR/MOAT [18]. The UNC collection consists of
traces taken in September 1999 (42 one-hour traces taken at
six intervals on each of seven days), October 2000 (42 one-
hour traces taken at six intervals on each of seven days),
and April 2001 (21 four-hour traces taken at three intervals
on each of seven days). The aggregate size of these TCP/IP
headers is about 500GB. The NLANR/MOAT traces are
from a number of sites and have been collected regularly
over several years. Most of these traces only cover 90-
second intervals and present problems in trying to capture
very large data objects. We have, however, recently ob-
tained traces from the NLANR/MOAT Auckland-IV col-
lection [19] that are 24-hour traces taken at the University
of Auckland by the WAND research group [20] during
April 2001.

2

2. Application-Specific Models
In [16] we described a method for analyzing unidirectional
traces of only TCP/IP headers in order to infer application-
level characteristics of HTTP. We showed that detailed
information about the sizes of HTTP requests and re-
sponses, user browsing behaviors, the structure of web
pages, and the use of the HTTP protocol (e.g., the relative
use of HTTP 1.0 v. HTTP 1.1), can all be determined with-
out ever examining HTTP headers. Moreover, tracing only
TCP/IP headers has the distinct advantages of easily allow-
ing us to respect users’ privacy (by anonymizing source and
destination addresses in our traces) and reducing the com-
plexity and storage overhead required for capturing applica-
tion-level protocol headers. In addition, unidirectional trac-
ing further reduces the acquisition overhead and eliminates
problems with buffering and synchronization encountered
when tracing simultaneously on two network interfaces (as
is required when tracing on a fiber link).

The details of the analysis are described in [16] so we do
not repeat that description here or the accompanying dis-
cussion of the complications and limitations of the method.
We have now generalized the analysis methods so that they
can be applied to TCP connections used for arbitrary appli-
cation-level protocols and have used them to begin
constructing models for FTP and SMTP.

The terminology used in describing this generalization is
based on arbitrarily calling the TCP end-point initiating the
connection (sends SYN) a client and the end-point accept-
ing the connection (sends SYN+ACK) a server. The analy-
sis assumes the application using a TCP connection imple-
ments a protocol where the client and server take turns
sending application-defined protocol data units (PDUs) to
each other in one or more exchanges. An exchange is de-
fined as a pair of PDUs, one sent in each direction. Either
the client or the server may send the initial PDU after the
connection is established and an incomplete exchange (one
endpoint does not send a PDU) is allowed. For example, in
HTTP, an exchange consists of an HTTP-request PDU sent
from the client to the server and an HTTP-response PDU
sent from the server to the client (more exchanges may fol-
low if persistent connections are used). FTP-CONTROL
connections follow a multi-exchange pattern of FTP com-
mand and response PDUs while an FTP-DATA connection
is comprised of a single (incomplete) exchange where the
client either sends or receives one PDU that is the file (or
directory listing). SMTP connections typically have several
exchanges of SMTP command and response PDUs, along
with PDUs that are email messages.

Since our analysis method sees only the TCP segments
flowing in one direction on the connection, it uses changes
in sequence numbers in those segments to compute PDU
sizes flowing in the direction traced and changes in ACK
values to infer PDU sizes flowing in the opposite direction
(not traced). Fundamental to the analysis is the assumption
of alternating PDU flows (one in each direction per ex-
change). There will be an alternating pattern of advances in
the ACK values followed by advances in the data sequence
values (or vice versa). This observation is used to construct
a rule for inferring the beginning and ending TCP segments

of a PDU and the boundary between exchanges. Put an-
other way, an advance in the data sequence numbers marks
the end of a PDU flowing in the direction opposite the
traced direction and an advance in the ACK sequence num-
ber marks the end of a PDU flowing in the direction of the
trace. Of course, other events such as FIN or Reset can
mark ends also. The (rare) application protocols that over-
lap rather than alternate exchanges between client and
server are not handled correctly by this method.

As an example of the analysis, suppose that after the SYN
(or SYN+ACK), the ACK sequence numbers in subsequent
TCP segments advance. We infer that data-carrying seg-
ments for a PDU flowed in the direction opposite the one
captured in the unidirectional trace. As long as the ACK
values advance but data sequence numbers do not, the
amount the ACK values change is assumed to indicate the
size of that PDU. When the data sequence numbers begin
advancing, we infer that the end of the first PDU has been
reached and a PDU flowing in the direction of the trace has
begun. Its length is indicated by the amount the data se-
quence numbers advance before the next advances in the
ACK values (marking the end of the exchange and the be-
ginning of a new PDU flowing in the other direction for the
next exchange) or the connection ends. Similarly, suppose
that after the SYN (or SYN+ACK), the data sequence num-
bers advance but the ACK values have not. This shows that
data-carrying segments for a PDU are flowing in the direc-
tion captured in the trace. As long as the data sequence
numbers advance but ACK sequence numbers do not, the
amount the data sequence numbers change is assumed to
indicate the size of that PDU. When the ACK sequence
numbers begin advancing, we infer that the end of the first
PDU has been reached and a PDU flowing in the opposite
direction of the trace has begun. Its length is indicated by
the amount the ACK sequence numbers advance before the
next advances in the data sequence numbers (marking the
end of the exchange and the beginning of a new PDU flow-
ing in the other direction for the next exchange) or the con-
nection ends. If both ACK and data sequence values ad-
vance in a single segment, their inferred meaning depends
on the prior state of the connection.

This use of alternating advances in ACK or data sequence
values to mark PDU exchanges is disturbed by segment re-
orderings in the network. In some cases, such as reordering
of segments that carry only data or only an ACK, there is
usually no problem since only the highest value seen is
used. Reordering of segments carrying both data and ACKs
presents problems since boundaries between PDUs and
exchanges may be missed which can result in overstating or
understating PDU sizes. For this reason, cases of segment
re-ordering that involve both data and ACK values require
special case analysis. In addition, as described in [16] for
HTTP, other application-level phenomena have the poten-
tial to limit our ability to precisely characterize an applica-
tion’s behavior.

We have applied this analysis method to TCP connections
for HTTP, FTP, and SMTP found in our 2000 and 2001
traces from the UNC Internet link. For HTTP and FTP-
DATA connections, the sizes of transferred objects (files)

3

can be obtained directly from the PDU sizes computed by
the analysis program. In the case of SMTP connections it is
possible to apply a simple heuristic to the resulting PDU
sizes to obtain a distribution of email message sizes. In the
SMTP protocol, normally when the client sends a command
PDU consisting of 6 bytes (“DATA\n\r”), the next PDU it
sends is the email message itself. However, other com-
mands may also be 6 bytes long and the client may send
another command PDU following “DATA\n\r” instead of
an email message if the server does not accept the DATA
command. We have determined empirically that a simple
size test can be used to construct the following rule for
identifying an email message: if the next client PDU fol-
lowing a client PDU of 6 bytes is larger than 200 bytes, it is
(with very high probability) an email message.

At a high level, these application protocols have similar
functions in that they are designed to move application-
defined data elements (HTTP = web object, FTP-DATA =
file, SMTP = email message) from one location to another.
It is interesting to consider how the sizes of these data ele-
ments differ from one application to another. Figure 1 gives
the cumulative distribution of data sizes for HTTP, FTP-
DATA, and SMTP from the UNC traces. Figure 1 clearly
shows the differences among the size distributions for ap-
plication-defined data. For example, HTTP has a much
higher proportion of small objects, especially those smaller
than 2K bytes. As we might expect, SMTP message sizes
tend to be concentrated in a much narrower range (1000 –
10000 bytes) than HTTP or FTP-DATA. Figure 2 shows
the same data plotted as a complementary CDF in order to
emphasize the comparison among the distribution tails.
Again we see clear distinctions among the three. Perhaps
the most interesting observation is that SMPT email mes-
sage sizes have heavy-tail characteristics similar to HTTP
and FTP-DATA. This probably reflects the common use of
email attachments as an alternative to HTTP or FTP for
moving large objects.

By analyzing large collections of application-specific traces
from a number of sources, we are producing empirical dis-
tributions to populate stochastic models of HTTP, FTP, and

SMTP. For example, an application-level model of SMTP
requires the following: a distribution of inter-arrival times
for SMTP connections, a distribution of the number of
command-response exchanges per connection, distributions
of command and response sizes, a distribution of the num-
ber of email messages per connection, and a distribution of
email message sizes. The next step in this process is to fit
analytic models to the empirical distributions constructed
for these three applications.

3. Application Class Models
While it is relatively straightforward to create models of
specific applications based on widely-known protocols
such as HTTP, FTP, SMTP, this approach does not scale
when our goal is to have models for all the 90-95% of In-
ternet traffic that is TCP [7, 14, 17]. For example, consider
the following results from our 2001 traces. These traces
contain the TCP/IP headers from all packets flowing to
UNC from the Internet during 84 hours of tracing spread
over seven days. In this time, 5.35 billion packets entered
the university network carrying 1,837 billion bytes of data.
Of this, 90.4% of the bytes (91.4% of the packets) were
TCP. The four largest TCP-based applications (as measured
in bytes of inbound traffic) that could be easily identified
by “well-known” port numbers (< 1024) were HTTP (port
80), FTP-DATA (port 20), NNTP (port 119), and SMTP
(port 25). These four accounted for less than half of the
total TCP bytes (HTTP: 39.7%, FTP-DATA: 5.3%, NNTP:
1.4%, and SMTP: 1.1%). The remainder of the TCP bytes
(52.5%) were carried on TCP connections using a very
large number of TCP port pairs most of which are listed in
the IANA protocol port assignments as “unassigned” (con-
nections using pairs of unassigned ports carried 30% of the
TCP bytes).

Most of the TCP-based applications that don’t use well-
known ports individually carry far less than 1% of the TCP
bytes (there are some quite notable exceptions such as Nap-
ster and Gnutella). There are, however, so many different
port pairings that, in aggregate, they account for approxi-
mately as much inbound traffic as HTTP, FTP-DATA,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Transfer Size (in bytes)

FTP
SMTP
HTTP

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Transfer Size (in bytes)

FTP
SMTP
HTTP

Figure 1: Cumulative distribution of HTTP response sizes,

FTP-DATA file sizes, and SMTP email message sizes.
 Figure 2: Complementary cumulative distribution of

HTTP response sizes, FTP-DATA file sizes and SMTP
email message sizes.

4

NNTP and SMTP combined. Clearly, trying to model the
traffic characteristics of each application individually is a
nearly impossible task.

We are addressing this problem by creating a framework of
application class models where each class is distinguished
by a common paradigm of how it is a source of network
traffic. For each such class, we will create a single stochas-
tic model that reflects the aggregated characteristics of all
TCP-based applications that are members of that class. We
are using statistical cluster analysis techniques to identify a
set of such classes based on traces from several Internet
links. If successful, we should be able to represent a very
large number of applications with a relatively small number
of models (perhaps 10-20). Given this set of class-based
models and a desired proportion of each class, one can gen-
erate the application-level data characteristics correspond-
ing to an arbitrary mix of applications.

Our cluster analysis approach is based on computing for
each individual TCP connection seen in a trace a “feature
vector” of values that characterizes it. This approach de-
pends on using the analysis methods described above for
processing the TCP/IP headers from a unidirectional trace
of the connection to identify exchanges of application-level
protocol data units in the same way we did for HTTP, FTP
and SMTP. Once the sizes and boundaries of the exchanges
in a connection are identified we can compute uni- and
multivariate statistics about the exchanged application-
defined PDUs to form a feature vector for that TCP connec-
tion. For example, our initial feature vector includes:

• Total bytes and number of exchanges along with the
maximum, minimum, median, variance, total variation,
maximum first difference, auto-correlation, and homo-
geneity index of the sizes of PDUs in each direction,

• Covariance, cross-correlation, and directionality index
among the data-unit sizes in all exchanges considered as
a sample path combining both directions, and

• Relative traffic intensity in each direction of the ex-
change.

A number of statistical tools are available that automati-
cally divide sets of feature vectors into clusters based on
minimizing measures of “distances” between vectors within
a cluster while maximizing distances between clusters.
Once the clusters have been identified, we can then model
each cluster by fitting stochastic models to the set of TCP
connections identified as belonging to that cluster. The
critical research issue in completing this analysis will be
determining those features that yield a useful set of statisti-
cally homogenous clusters of TCP traces.

4. References
[1] P. Barford, M. Crovella, Generating Representative Web

Workloads for Network and Server Performance Evalua-
tion, Proc. ACM SIGMETRICS ‘98, 1998, pp. 151-160.

[2] P. Barford and M. E. Crovella, A Performance Evaluation

of HyperText Transfer Protocols, Proceedings of ACM
SIGMETRICS ‘99, May 1999, pp. 188-197.

[3] P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella,
Changes in Web Client Access Patterns: Characteristics
and Caching Implications, World Wide Web, Special Issue
on Characterization and Performance Evaluation, Vol. 2,
1999, pp. 15-28.

[4] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, H. Yu,
Advances in Network Simulation, IEEE Computer, vol. 33
no. 5, May 2000, pp. 59-67.

[5] R. Caceres, P. Danzig, S. Jamin, D. Mitzel, Characteristics
of Wide-Area TCP/IP Conversations, Proceedings of ACM
SIGCOMM ‘91, pp. 101-112.

[6] M. Christiansen, K. Jeffay, D. Ott, F. D. Smith, Tuning
RED for Web Traffic, Proceedings of ACM SIGCOMM
2000, September 2000, pp. 139-150.

[7] K Claffy, G. Miller, K. Thompson. The nature of the beast:
recent traffic measurements from an Internet backbone,
Proccedings of INET ’98, (http://www.isoc.org/
inet98/proceedings/6g/6g_3.htm).

[8] M. Crovella,, A. Bestavros, Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes, IEEE/ACM
Transactions on Networking, vol. 5, no. 6, December 1997,
pp. 835-846.

[9] C. R. Cunha, A. Bestavros, M. Crovella, Characteristics of
WWW Client-based Traces, Tech. Report TR-95-010, Bos-
ton University Computer Science Dept, June 1995.

[10] P. Danzig, S. Jamin, tcplib: A Library of TCP Internetwork
Traffic Characteristics, USC Technical Report USC-CS-91-
495, 1991.

[11] P. Danzig, S. Jamin, R. Caceres, D. Mitzel, D. Estrin, An
Empirical Workload Model for Driving Wide-Area TCP/IP
Network Simulations, Internetworking: Research and Expe-
rience, vol. 3, no. 1, 1992, pp. 1-26.

[12] S. Floyd, V. Paxson, Difficulties in Simulating the Internet,
IEEE/ACM Transactions on Networking (to appear). Avail-
able at http://www.aciri.org/vern/papers/ sim-
difficulty.TON.2001.pdf.

[13] B. Mah. An Empirical Model of HTTP Network Traffic,
Proceedings of IEEE INFOCOM ‘97, April 1997. (An ex-
tended version is at http://www.ca.sandia.gov/~bmah/ Soft-
ware/HttpModel/)

[14] S. McCreary, K. Claffy, Trends in Wide Area IP Traffic
Patterns: A View from Ames Internet Exchange, CAIDA
Tech. (http://www.caida.org/outreach/papers/AIX0005/).

[15] V. Paxson, Empirically Derived Analytic Models of Wide-
Area TCP Connections, IEEE/ACM Transactions on Net-
working, vol. 2, no. 4, August 1994, pp. 316-336.

[16] F.D. Smith, F. Hernandez Campos, K. Jeffay, What TCP/IP
Protocol Headers Can Tell Us About the Web, Proc. ACM
SIGMETRICS ‘01, June 2001, pp. 245-256.

[17] K. Thompson, G. Miller, R. Wilder, Wide-Area Internet
Traffic Patterns and Characteristics, IEEE Network, vol. 11
no. 6, November/December 1997.

[18] http://moat.nlanr/net/Traces/

[19] http://moat.nlanr.net/Traces/Kiwitraces/auck4.html.

[20] http://wand.cs.waikato.ac.nz/

