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Abstract: We report on a large-scale empirical study to 
create application-level models for TCP traffic generation 
in simulations and network test-beds. A novel aspect of the 
study is the development of a method to construct empirical 
application-level models for arbitrary client/server (re-
quest/response) application-level protocols based on an 
analysis of unidirectional traces of only the TCP/IP head-
ers in the traffic generated by the applications. By analyz-
ing large collections of application-specific traces from a 
number of sources, we are producing empirical distribu-
tions to populate stochastic models of HTTP, FTP, and 
SMTP. However, combined, these applications represent 
less than 50% of the observed TCP traffic on our campus. 
We are also investigating the use of cluster analysis to 
identify sets of statistically homogenous TCP connection 
traces. Once these clusters have been identified we can 
then model each cluster by fitting stochastic models to the 
set of TCP connections identified as belonging to that clus-
ter. 1 

1. Background and Motivation 
A critical component of Internet simulations and test-bed 
measurements is the generation of synthetic traffic. Floyd 
and Paxson [12] provide an excellent analysis of the issues 
and pitfalls, especially traffic-generating models that are 
based on empirical data that has already been “shaped” by 
network influences. They conclude, “… if we take care to 
use traffic traces to characterize source behavior, rather 
than packet-level behavior, we can use the source-level 
descriptions in simulations to synthesize plausible traffic.” 
In particular, for TCP-based applications, TCP’s end-to-end 
congestion control (perhaps influenced by router-based 
mechanisms such as RED packet drops or ECN markings) 
shapes the low-level packet-by-packet traffic processes. 
Thus the generation of TCP traffic must be accomplished 
by using application-dependent but network-independent 
traffic sources layered over (real or simulated) TCP imple-
mentations. Two important pre-Web measurement efforts 
that produced application-dependent traffic models (Telnet, 
FTP, NNTP, SMTP), were conducted by Danzig et al., [5, 
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10, 11], and by Paxson [15]. Web traffic generators in use 
today are usually based on data from two seminal meas-
urement projects that focused on capturing web-browsing 
source behaviors: the Mah [13], and Barford, Crovella, et 
al., [1, 3, 8, 9] studies. Traffic generators based on these 
sources have been built into the widely used ns network 
simulator [4] and have also been used to generate traffic in 
laboratory test-bed networks [2, 6].  

Constructing traffic generators for TCP applications de-
pends ultimately on the availability of high-quality Internet 
measurement data from a variety of sites that can be used to 
obtain characteristics of source (application-level) behav-
ior. Our research is concerned with capturing and analyzing 
large-scale collections of Internet traces of TCP/IP protocol 
headers to create contemporary source-level models for 
traffic generation. We are further concerned with doing this 
with low-cost, low-overhead methods that can be used at 
multiple sites as an ongoing effort to create up-to-date 
models because Internet applications (and their use) con-
tinue to evolve rapidly.  

We are currently working with traces of TCP/IP packet 
headers from two sources – (1) a collection we obtained by 
placing a network monitor on the Gigabit Ethernet link 
connecting the University of North Carolina at Chapel Hill 
(UNC) campus network to the Internet, and (2) a sample of 
traces taken from the collection maintained by 
NLANR/MOAT [18]. The UNC collection consists of 
traces taken in September 1999 (42 one-hour traces taken at 
six intervals on each of seven days), October 2000 (42 one-
hour traces taken at six intervals on each of seven days), 
and April 2001 (21 four-hour traces taken at three intervals 
on each of seven days). The aggregate size of these TCP/IP 
headers is about 500GB. The NLANR/MOAT traces are 
from a number of sites and have been collected regularly 
over several years. Most of these traces only cover 90-
second intervals and present problems in trying to capture 
very large data objects. We have, however, recently ob-
tained traces from the NLANR/MOAT Auckland-IV col-
lection [19] that are 24-hour traces taken at the University 
of Auckland by the WAND research group [20] during 
April 2001. 
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2. Application-Specific Models 
In [16] we described a method for analyzing unidirectional 
traces of only TCP/IP headers in order to infer application-
level characteristics of HTTP. We showed that detailed 
information about the sizes of HTTP requests and re-
sponses, user browsing behaviors, the structure of web 
pages, and the use of the HTTP protocol (e.g., the relative 
use of HTTP 1.0 v. HTTP 1.1), can all be determined with-
out ever examining HTTP headers. Moreover, tracing only 
TCP/IP headers has the distinct advantages of easily allow-
ing us to respect users’ privacy (by anonymizing source and 
destination addresses in our traces) and reducing the com-
plexity and storage overhead required for capturing applica-
tion-level protocol headers. In addition, unidirectional trac-
ing further reduces the acquisition overhead and eliminates 
problems with buffering and synchronization encountered 
when tracing simultaneously on two network interfaces (as 
is required when tracing on a fiber link).  

The details of the analysis are described in [16] so we do 
not repeat that description here or the accompanying dis-
cussion of the complications and limitations of the method. 
We have now generalized the analysis methods so that they 
can be applied to TCP connections used for arbitrary appli-
cation-level protocols and have used them to begin 
constructing models for FTP and SMTP.  

The terminology used in describing this generalization is 
based on arbitrarily calling the TCP end-point initiating the 
connection (sends SYN) a client and the end-point accept-
ing the connection (sends SYN+ACK) a server. The analy-
sis assumes the application using a TCP connection imple-
ments a protocol where the client and server take turns 
sending application-defined protocol data units (PDUs) to 
each other in one or more exchanges. An exchange is de-
fined as a pair of PDUs, one sent in each direction. Either 
the client or the server may send the initial PDU after the 
connection is established and an incomplete exchange (one 
endpoint does not send a PDU) is allowed. For example, in 
HTTP, an exchange consists of an HTTP-request PDU sent 
from the client to the server and an HTTP-response PDU 
sent from the server to the client (more exchanges may fol-
low if persistent connections are used). FTP-CONTROL 
connections follow a multi-exchange pattern of FTP com-
mand and response PDUs while an FTP-DATA connection 
is comprised of a single (incomplete) exchange where the 
client either sends or receives one PDU that is the file (or 
directory listing). SMTP connections typically have several 
exchanges of SMTP command and response PDUs, along 
with PDUs that are email messages. 

Since our analysis method sees only the TCP segments 
flowing in one direction on the connection, it uses changes 
in sequence numbers in those segments to compute PDU 
sizes flowing in the direction traced and changes in ACK 
values to infer PDU sizes flowing in the opposite direction 
(not traced). Fundamental to the analysis is the assumption 
of alternating PDU flows (one in each direction per ex-
change). There will be an alternating pattern of advances in 
the ACK values followed by advances in the data sequence 
values (or vice versa). This observation is used to construct 
a rule for inferring the beginning and ending TCP segments 

of a PDU and the boundary between exchanges. Put an-
other way, an advance in the data sequence numbers marks 
the end of a PDU flowing in the direction opposite the 
traced direction and an advance in the ACK sequence num-
ber marks the end of a PDU flowing in the direction of the 
trace. Of course, other events such as FIN or Reset can 
mark ends also. The (rare) application protocols that over-
lap rather than alternate exchanges between client and 
server are not handled correctly by this method. 

As an example of the analysis, suppose that after the SYN 
(or SYN+ACK), the ACK sequence numbers in subsequent 
TCP segments advance. We infer that data-carrying seg-
ments for a PDU flowed in the direction opposite the one 
captured in the unidirectional trace. As long as the ACK 
values advance but data sequence numbers do not, the 
amount the ACK values change is assumed to indicate the 
size of that PDU. When the data sequence numbers begin 
advancing, we infer that the end of the first PDU has been 
reached and a PDU flowing in the direction of the trace has 
begun. Its length is indicated by the amount the data se-
quence numbers advance before the next advances in the 
ACK values (marking the end of the exchange and the be-
ginning of a new PDU flowing in the other direction for the 
next exchange) or the connection ends. Similarly, suppose 
that after the SYN (or SYN+ACK), the data sequence num-
bers advance but the ACK values have not. This shows that 
data-carrying segments for a PDU are flowing in the direc-
tion captured in the trace. As long as the data sequence 
numbers advance but ACK sequence numbers do not, the 
amount the data sequence numbers change is assumed to 
indicate the size of that PDU. When the ACK sequence 
numbers begin advancing, we infer that the end of the first 
PDU has been reached and a PDU flowing in the opposite 
direction of the trace has begun. Its length is indicated by 
the amount the ACK sequence numbers advance before the 
next advances in the data sequence numbers (marking the 
end of the exchange and the beginning of a new PDU flow-
ing in the other direction for the next exchange) or the con-
nection ends. If both ACK and data sequence values ad-
vance in a single segment, their inferred meaning depends 
on the prior state of the connection. 

This use of alternating advances in ACK or data sequence 
values to mark PDU exchanges is disturbed by segment re-
orderings in the network. In some cases, such as reordering 
of segments that carry only data or only an ACK, there is 
usually no problem since only the highest value seen is 
used. Reordering of segments carrying both data and ACKs 
presents problems since boundaries between PDUs and 
exchanges may be missed which can result in overstating or 
understating PDU sizes. For this reason, cases of segment 
re-ordering that involve both data and ACK values require 
special case analysis. In addition, as described in [16] for 
HTTP, other application-level phenomena have the poten-
tial to limit our ability to precisely characterize an applica-
tion’s behavior. 

We have applied this analysis method to TCP connections 
for HTTP, FTP, and SMTP found in our 2000 and 2001 
traces from the UNC Internet link. For HTTP and FTP-
DATA connections, the sizes of transferred objects (files) 
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can be obtained directly from the PDU sizes computed by 
the analysis program. In the case of SMTP connections it is 
possible to apply a simple heuristic to the resulting PDU 
sizes to obtain a distribution of email message sizes. In the 
SMTP protocol, normally when the client sends a command 
PDU consisting of 6 bytes (“DATA\n\r”), the next PDU it 
sends is the email message itself. However, other com-
mands may also be 6 bytes long and the client may send 
another command PDU following “DATA\n\r” instead of 
an email message if the server does not accept the DATA 
command. We have determined empirically that a simple 
size test can be used to construct the following rule for 
identifying an email message: if the next client PDU fol-
lowing a client PDU of 6 bytes is larger than 200 bytes, it is 
(with very high probability) an email message.  

At a high level, these application protocols have similar 
functions in that they are designed to move application-
defined data elements (HTTP = web object, FTP-DATA = 
file, SMTP = email message) from one location to another. 
It is interesting to consider how the sizes of these data ele-
ments differ from one application to another. Figure 1 gives 
the cumulative distribution of data sizes for HTTP, FTP-
DATA, and SMTP from the UNC traces. Figure 1 clearly 
shows the differences among the size distributions for ap-
plication-defined data. For example, HTTP has a much 
higher proportion of small objects, especially those smaller 
than 2K bytes. As we might expect, SMTP message sizes 
tend to be concentrated in a much narrower range (1000 – 
10000 bytes) than HTTP or FTP-DATA. Figure 2 shows 
the same data plotted as a complementary CDF in order to 
emphasize the comparison among the distribution tails. 
Again we see clear distinctions among the three. Perhaps 
the most interesting observation is that SMPT email mes-
sage sizes have heavy-tail characteristics similar to HTTP 
and FTP-DATA. This probably reflects the common use of 
email attachments as an alternative to HTTP or FTP for 
moving large objects. 

By analyzing large collections of application-specific traces 
from a number of sources, we are producing empirical dis-
tributions to populate stochastic models of HTTP, FTP, and 

SMTP. For example, an application-level model of SMTP 
requires the following: a distribution of inter-arrival times 
for SMTP connections, a distribution of the number of 
command-response exchanges per connection, distributions 
of command and response sizes, a distribution of the num-
ber of email messages per connection, and a distribution of 
email message sizes. The next step in this process is to fit 
analytic models to the empirical distributions constructed 
for these three applications. 

3. Application Class Models 
While it is relatively straightforward to create models of 
specific applications based on widely-known protocols 
such as HTTP, FTP, SMTP, this approach does not scale 
when our goal is to have models for all the 90-95% of In-
ternet traffic that is TCP [7, 14, 17]. For example, consider 
the following results from our 2001 traces. These traces 
contain the TCP/IP headers from all packets flowing to 
UNC from the Internet during 84 hours of tracing spread 
over seven days. In this time, 5.35 billion packets entered 
the university network carrying 1,837 billion bytes of data. 
Of this, 90.4% of the bytes (91.4% of the packets) were 
TCP. The four largest TCP-based applications (as measured 
in bytes of inbound traffic) that could be easily identified 
by “well-known” port numbers (< 1024) were HTTP (port 
80), FTP-DATA (port 20), NNTP (port 119), and SMTP 
(port 25). These four accounted for less than half of the 
total TCP bytes (HTTP: 39.7%, FTP-DATA: 5.3%, NNTP: 
1.4%, and SMTP: 1.1%). The remainder of the TCP bytes 
(52.5%) were carried on TCP connections using a very 
large number of TCP port pairs most of which are listed in 
the IANA protocol port assignments as “unassigned” (con-
nections using pairs of unassigned ports carried 30% of the 
TCP bytes).  

Most of the TCP-based applications that don’t use well-
known ports individually carry far less than 1% of the TCP 
bytes (there are some quite notable exceptions such as Nap-
ster and Gnutella). There are, however, so many different 
port pairings that, in aggregate, they account for approxi-
mately as much inbound traffic as HTTP, FTP-DATA, 
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Figure 1: Cumulative distribution of HTTP response sizes, 

FTP-DATA file sizes, and SMTP email message sizes. 
 Figure 2: Complementary cumulative distribution of 

HTTP response sizes, FTP-DATA file sizes and SMTP 
email message sizes. 
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NNTP and SMTP combined. Clearly, trying to model the 
traffic characteristics of each application individually is a 
nearly impossible task.  

We are addressing this problem by creating a framework of 
application class models where each class is distinguished 
by a common paradigm of how it is a source of network 
traffic. For each such class, we will create a single stochas-
tic model that reflects the aggregated characteristics of all 
TCP-based applications that are members of that class. We 
are using statistical cluster analysis techniques to identify a 
set of such classes based on traces from several Internet 
links. If successful, we should be able to represent a very 
large number of applications with a relatively small number 
of models (perhaps 10-20). Given this set of class-based 
models and a desired proportion of each class, one can gen-
erate the application-level data characteristics correspond-
ing to an arbitrary mix of applications. 

Our cluster analysis approach is based on computing for 
each individual TCP connection seen in a trace a “feature 
vector” of values that characterizes it. This approach de-
pends on using the analysis methods described above for 
processing the TCP/IP headers from a unidirectional trace 
of the connection to identify exchanges of application-level 
protocol data units in the same way we did for HTTP, FTP 
and SMTP. Once the sizes and boundaries of the exchanges 
in a connection are identified we can compute uni- and 
multivariate statistics about the exchanged application-
defined PDUs to form a feature vector for that TCP connec-
tion. For example, our initial feature vector includes:  

• Total bytes and number of exchanges along with the 
maximum, minimum, median, variance, total variation, 
maximum first difference, auto-correlation, and homo-
geneity index of the sizes of PDUs in each direction, 

• Covariance, cross-correlation, and directionality index 
among the data-unit sizes in all exchanges considered as 
a sample path combining both directions, and 

• Relative traffic intensity in each direction of the ex-
change. 

A number of statistical tools are available that automati-
cally divide sets of feature vectors into clusters based on 
minimizing measures of “distances” between vectors within 
a cluster while maximizing distances between clusters. 
Once the clusters have been identified, we can then model 
each cluster by fitting stochastic models to the set of TCP 
connections identified as belonging to that cluster. The 
critical research issue in completing this analysis will be 
determining those features that yield a useful set of statisti-
cally homogenous clusters of TCP traces. 
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