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Abstract

We describe a new methodology for understanding how
applications use TCP to exchange data. Our approach is
based on an abstract model of application-level commu-
nication that is suitable for statistical cluster analysis.
We describe how to transform TCP connections into vec-
tors of statistical features and how to cluster these vec-
tor using existing hierarchical clustering methods. We
also adapt a visualization technique developed in the
context of gene expression arrays to the analysis of net-
work traffic, and demonstrate that this approach makes
it possible to understand the results of the clustering in
a way that is meaningful for networking research. Our
methodology also provides the foundation for more flex-
ible synthetic traffic generators and could be adapted to
the analysis of workloads in other contexts.

1 Introduction
The Transport Control Protocol (TCP) provides the
most common foundation for Internet applications. File-
sharing, the web, email, instant messaging, and many
other applications make use of the reliable transport ser-
vice offered by TCP to communicate their data across
the Internet. This wealth of applications represents an
important challenge for the researchers, who generally
need to have a good understanding of the structure of
network traffic. Furthermore, it makes it very challeng-
ing to construct source-level traffic models that are suit-
able for theoretical analysis and for generating synthetic
traffic in simulations and testbed environments.

Current TCP traffic is driven by a large, heterogenous
collection of applications, and its is not generally dom-
inated by web traffic. For example, traffic in Sprint’s
backbone as reported in [12] shows that only 20-40% of
the traffic is due to the Web. Similarly, the weekly net-
flow report from Internet2 [4] reports an even smaller
percentage of web traffic. Both backbones carry subtan-
tial traffic driven by an ever-changing set of file-sharing
applications, such as BitTorrent and Shoutcast, by gam-
ing networks, such as Battlenet, and by traditional file
transfers, emails, newgroups, etc. Internet applications
make use of TCP in different ways, which range from
opening a connection and sending a single file, to com-
plicated exchanges of control messages and data objects.

The exact number of applications that contribute to
these traffic mixes is not known, and even the actual im-
pact of well-known protocols is unclear. This is due to
the shortcomings of the state-of-the-art in traffic mon-
itoring, which makes use of registered and well-known

port numbers to classify packets and computer statis-
tics. The problem is that new applications often do not
use a registered port, do not have a fixed port number,
or simply disguise themselves using the port number of
another application (for example, the web’s port 80) to
avoid detection (so they can pass through firewalls, and
avoid rate limits). As an example of the shortcomings
of port numbers, both the Sprint and the Abilene re-
ports leave a large percentage of the traffic unidentified
(20-35%).

The behavior of some applications, such the web and
some file-sharing application, is well-understood and has
been the focus of significant modeling effort. Other ap-
plications that are newer or less common have not re-
ceived much attention. Furthermore, applications evolve
quickly, often making existing models obsolete. For ex-
ample, the extension of HyperText Transfer Protocol
(HTTP) to support persistent connections had a ma-
jor impact in web traffic and its use of TCP. In addition,
constructing models of application traffic is a difficult
and time-consuming task, so most models are never up-
dated after publication. For example, popular Simple
Mail Transfer Protocol (STMP) models (e.g., [6]) are
quite old and predate the wide-spread use of broadband
that has made large attachments far more common. The
goal of our work is to develop more powerful and gen-
eral techniques for understanding and modeling traffic
that will enable us to update our models much more fre-
quently, with less effort, and to use more representative
workloads in simulation experiments.

The two key challenges are to find a representation
of traffic that supports the comparison of very differ-
ent applications, and to understand the range of appli-
cation behavior that exist in today’s Internet. We ad-
dress these challenges by representating traffic with an
abstract model of network communication, and by ex-
ploring the structure of traffic using statistical cluster
analysis. Our abstract model, described in Section 2,
provides a very general representation of traffic that is
application-independent but captures the nature of traf-
fic at the source-level (rather than at the packet level) as
a sequence of data exchanges between the two end points
of a connection. The generality of this model makes it
possible to compute a set of meaningful statistics (fea-
tures) for each connection and to apply statistical clus-
tering to group connections into a small number of traffic
clusters. These traffic clusters group together connec-
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Figure 1: Examples of application-level data exchanges.

From top to bottom, non-persistent HTTP connection,

persistent HTTP connection and SMTP connection.

tions with similar source-level behavior, and their study
helps to understand the most important communication
strategies that are used by Internet applications. Our
approach is described in Section 3. We also explore the
structure of the traffic at the University of North Car-
olina and at Internet2 in two case studies that are pre-
sented in Section 4. Our efforts demonstrate that an im-
portant shortcoming of traditional clustering approaches
is the difficulty of interpreting the results in a way that
is meaningful for a network researcher. We overcame
this problem by adapting to traffic analysis visualization
techniques developed for the study of genetic data (in
particular, gene expression arrays, a.k.a. microarrays).
The idea is to combine the traditional hierarchical visu-
alization (known as a dendrogram) and a heat map of
connection features, making it possible to easily inter-
pret the clustering result in terms of traffic types. This
technique is demonstrated in our second case study. The
later two sections of this paper present a (necessarily)
brief overview of the related work and some conclusions.

2 Abstract Communication Model

We begin with the observation that, from the perspec-
tive of the network, the vast majority of application-level
protocols are based on a small number of data exchange
patterns that occur within a logical connection between
the endpoint processes. In our model, two endpoint pro-
cesses exchange data in a sequential fashion as they exe-
cute a particular application. The transferred data is
summarized by application-data units (ADU’s) whose
size depends on the application protocol and the data
objects used in the application. For example, a common
type of interaction between a web browser and a web
server using the HyperText Transfer Protocol (HTTP)
consists of a single exchange of data, as shown in the up-
per diagram in Figure 1. The browser first opens a con-
nection to the server and sends a request for a specific
object (e.g., an HTML page or an image). This request
is the first ADU in the data exchange. After the server
receives the entire request, it replies with the requested
object and closes the connection. This object (the re-
sponse) is the second ADU in this connection. The sizes
of the request and the response do not depend on net-
work characteristics, such as the time required to send a
packet from the browser to the server or the bandwidth

available between these two hosts. As a consequence, we
simply model the data exchange in this example as a pair
of data unit sizes (341 bytes, 2555 bytes). This represen-
tation is suitable for traffic generation at the source-level,
in a close-loop fashion. The traffic generator would es-
tablishing a connection between two end-points and then
exchanging the data units in the specified order1.

In the general form of our abstract communication
model, which we call the a-b-t model, each point-to-point
communication can be represented as a connection vec-
tor (c1, . . . , cn) with n epochs. An epoch is a triplet of
the form cj = (aj , bj , tj) that describe the data (aj , bj)
and quiet time (tj) parameters of the j’th exchange in
a connection. Each ai captures the amount of data sent
from the initiator of the communication (e.g., a web
browser) to the other end-point, while each bi represents
data flowing in the reverse direction. In the previous ex-
ample, the data exchange between the web browser and
the web server would be summarized as a vector with
a single epoch (n = 1), in which a1 equals 341 and b1

equals 2,555. The time parameters tj are used to model
quiet times between data exchanges, that, if sufficiently
long, represent application-level behavior, such as hu-
man think times and long processing delays.

Figure 1 shows, in a compact graphical representation,
three examples of connections that were captured on the
main Internet link at the University of North Carolina
at Chapel Hill. The first one, as mentioned above, cor-
responds to a single data exchange between a web server
and a web browser. The second example illustrates a per-
sistent HTTP connection, in which browser and server
exchange three pairs of data units. The representation
of this connection in the a-b-t model is

((329, 403, 0), (403, 25821, 3.12), (356, 1198, φ))

We generally ignore values of tj below an idle time
threshold of τ = 1 second, since we are only interested
in capturing inter-epoch times that are clearly network-
independent (i.e., caused by application and user behav-
ior and not by network dynamics). Notice that in the
example above, the third and last quiet time is not an
inter-epoch time, so we mark it as φ.

The third example shows a Simple Mail Transfer Pro-
tocol (SMTP) connection established between two email
servers, that may be represented in the a-b-t model as
((0, 93, 0), (32, 191, 0), (77, 59, 0), (75, 38, 0), (6, 50, 0),
(22568, 44, φ)) In this protocol, the two servers engage
in a conversation that includes a number of small data
units, such as b4, which carries the email address of the
intended recipient, and a single large data unit, a6, with
the text of the email. Notice that the first data unit
in this example is not sent by the connection initiator,
making a1 equal to 0.

The patterns of data exchange in Figure 1 correspond
to applications that use TCP as their underlying process-
to-process communication protocol. TCP’s control data

1Note that this model assumes causality in the exchange
of data, in the sense that the first data unit, the request,
must be received in its entirety before the second data unit,
the response, is sent in the opposite direction.
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includes sequence numbers and other bookkeeping in-
formation in each packet. Some packets, such as those
used to establish a TCP connection, do not carry any
application data. Application behavior is independent
of control data, which is transparently handled by the
operating system. Consequently, the a-b-t model does
not capture control data, since we are only concerned
with modeling the way applications exchange data. As
a consequence, we can use the same workload, modeled
as a set of connection vectors, for comparing the perfor-
mance of two network mechanisms. For example, we can
compare two flavors of TCP that employ different con-
trol strategies, or study the effect of the wireless medium
of common traffic patterns.

A further refinement of the model is that time inter-
vals longer than τ in which there is no activity within a
connection also define exchange boundaries. This helps
capture unidirectional communications patterns. For ex-
ample, some applications refresh the state of the clients
periodically. Without an idle time threshold, this unidi-
rectional sequence of updates would be combined into a
single epoch, with a large ai or bi, rather than a sequence
of epochs. In addition, the inactivity threshold over-
comes a potential limitation of the model, which does
not capture times between successive a- and b-type data
units; if the time between two such data units is larger
than τ , then they are placed in separate epochs, resulting
in a subconnection of the form ((ai, 0, ti), (0, bi+1, ti+1)).
This properly reflects a prolonged time between a request
and its response, and similar application level character-
istics of other communication patterns.

The simplicity of the a-b-t model makes it possible
to convert any connection2 into a connection vector by

2This version of the model only deals with sequencial con-
nections. Concurrent ones, in which at least two data units
are sent in opposite directions at the same time, are not dis-
cussed here for brevity. Also, our current results show that
concurrent communication is far less common than sequential
one.
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Figure 3: Overview of our approach for clustering Inter-

net communication patterns.

looking only at transport-level headers of packets. We
have developed a tool to convert any TCP/IP protocol
header trace into a set of connection vectors. The basic
idea is shown in Figure 2 where a possible packet dia-
gram for the first sample connection in Figure 1 is shown.
ADU sizes can be measured using TCP sequence and ac-
knowledgement numbers. The fundamental idea of our
measurement algorithm is to reconstruct the logical or-
der of segments in each TCP connection. This sorting
makes it possible to accurately and efficiently measure
ADU sizes in the presence of arbitrary packet reordering
and retransmissions. In the example the first data unit
is between sequence numbers 0 and 341 and the second
one between 0 and 2555. The loss of the data segment
with sequence number 1461 would imply the observa-
tion of a retransmission, if the segment is loss after the
monitor, or reordering, if the segment is loss before the
monitor. In either case, reordering the segments accord-
ing to their logical order (e.g., seqno 1461 goes before
seqno 2555 and after seqno 341) makes it easy to mea-
sure ADU sizes by walking through ordered list of data
segments and using changes in directionality of the data
flow to detect ADU boundaries (e.g., sequence numbers
start increasing in a different direction for seqno 1461).

3 Clustering Communication Patterns

The a-b-t model provides a framework for the system-
atic identification and study of application-level commu-
nication patterns in Internet traffic. Traffic modeling,
sampling techniques, and other research areas within
networking can certainly benefit from the analysis and
classification of such patterns. For example, the per-
formance of transport protocols depends heavily on the
patterns of data exchange within transport connections,
so a good understanding of these patterns and their im-
pact is needed for balancing among the tradeoffs that
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Figure 4: Result of clustering a training set of 20 connec-

tions using agglomerative hierarchical clustering. Leaves

labeled from 1 to 10 correspond to Telnet connections,

while those labeled from 11 to 20 correspond to HTTP

connections.

exist in the design of these protocols. For instance, TCP
can be tuned to provide better performance for trans-
ferring small data units at the price of higher instability
and less fair allocation of bandwidth. We can analyze
the real benefits of this tuning using simulations, help-
ing to decide whether this change of TCP’s parameters is
beneficial or not for the Internet as a whole. Only those
simulations that make use of a broad and representa-
tive set of data exchange patterns in their workloads can
help to draw general conclusions about the effectiveness
of new network mechanisms.

Statistical clustering techniques, see e.g., [14, 17, 10],
provide a useful and flexible tool for grouping connec-
tions into traffic classes that represent similar commu-
nication patterns. Formally, a clustering scheme is a
procedure that divides a given set of feature vectors
x1,x2, . . . ,xm ∈ R

d into k disjoint groups S1, S2, . . . , Sk,
which are known as clusters. The goal of clustering is to
find a small number k of clusters such that feature vec-
tors within the same clusters are close together, while
vectors in different clusters are far apart. In our ap-
proach, each application-level connection vector derived
from a transport connection is first summarized using a
vector of statistical features. Each feature captures some
relevant characteristic of the sequence, such as the num-
ber of exchanges, the total number of bytes sent by the
initiator, the homogeneity in the sizes of the data units,
and so on. Each feature is appropriately normalized so
that its values lie between 0 and 1. We then measure the
similarity between two connection vectors by the simi-
larity between their associated feature vectors. We con-
sider two alternative distance measures (see [10]), the
standard Euclidean distance, i.e.,

d(x,y) =

√

√

√

√

d
∑

i=1

(xi − yi)2,

and Pearson correlation coefficient, i.e.,

rp(x,y) =
Sxy

√

S2
xS2

y

where Sxy =
∑d

i=1
(xi − x)(yi − y), S2

x =
∑d

i=1
(xi − x)2,

S2
y =

∑d
i=1

(yi − y)2, and x and x are the mean values
of x and y respectively. Once the distance between each
pair of connection vectors has been defined, these vectors
can be grouped using any number of standard clustering
algorithms. We have applied a number of different clus-
tering schemes to our data, but have focused on agglom-
erative and divisive hierarchical methods. These meth-
ods have proven to be effective in gene expression and
other applications, and their graphical representation as
trees (dendrograms) provides a useful way of identifying
and analyzing groups of related communication patterns.
Figure 3 provides an overview of the basic steps in our
methodology, which are described in greater detail in the
rest of this section.

As a first step in clustering source level communica-
tion patterns, we extract from each connection vector a
number of numerical features that are designed to cap-
ture important aspects of the two-way data transfer de-
scribed by this vector. Let v = (c1, . . . , cn) be a given
connection vector whose j’th epoch is given by the triple
cj = (aj , bj , tj), as described above. The most critical
features of v are the number of epochs, denoted by e,
and the total number of bytes sent by each of the con-
nection hosts, atot =

∑n

j=1
aj and btot =

∑n

j=1
bj . Let

A = {a1, . . . , an} be the collection of a-type data units
measured during the connection. Other useful features
include amax = max{aj ∈ A} and amin = min{aj ∈ A},
the mean aµ and standard deviation aσ of A; and the
first, second and third quartiles of A, denoted by a1q ,
a2q and a3q respectively. In order to better capture the
sequential structure of the a-type data units, we measure
the total variation avs =

∑n

j=2
|aj − aj−1|, maximum

first difference afd = maxj |aj − aj−1|, lag-1 autocorre-
lation aρ, and homogeneity ah = (amax + 1)/(amin + 1)
of a1, . . . , an in cases where n ≥ 2. Analogous features
can be extracted from the collection B = {b1, . . . , bn}
of b-type data units. Given that inter-epoch times are
more likely to reflect network properties, rather than
only application-level behavior, we restrict our attention
to a few time features: tmax, t2q , and ttot.

To assess the relationship between the a- and b-
type data units, we also measure directionality dir =
log(atot/btot) and the lag 0 and 1 cross-correlations be-
tween B and A, denoted ρ1 and ρ2 respectively. In our
preliminary analysis we found that rank correlations ex-
hibited a more diverse and meaningful spectrum of val-
ues across different connections. Thus all correlation
measurements are based on Spearman’s rank correlation
coefficient,

rs =

d
∑

i=1

(RiSi − ud)v
−1

d ,

where ud = d(d + 1)2/4 and vd = d(d2 − 1)/12, and Ri,
Si are the rank of xi, yi among x1, . . . , xd and y1, . . . , yd



respectively. This is the non-parametric equivalent of
Pearson’s correlation coefficient.

The features defined above provide us with a reason-
able starting point for our cluster analysis of connections,
but they are not the final word. The selection of new
features, and the refinement (or possibly elimination) of
existing ones, is a subject of current research.

Whichever features one ultimately chooses, there are a
number of practical issues that need to be addressed be-
fore they can profitably be used to cluster connections.
The first issue involves scale. While correlations will
range between −1 and +1, features such as e and atot can
range anywhere from one to several million. To address
this disparity, we first take logarithms of those features
that vary over several orders of magnitude. Each feature
is then translated and scaled so that, for the vast major-
ity (more than 96%) of measured connections, its value
is between 0 and 1. In exceptional cases, e.g., a connec-
tion with 107 epochs, we allow features greater than 1
or less than 0. Allowing features to take values outside
the unit interval avoids the possible compression of their
true dynamic range by a small fraction of outliers.

Once normalized, each feature plays a role in deter-
mining the Euclidean distance between two feature vec-
tors. One may weight the contributions of different fea-
tures differently, but we have not done this in our ex-
periments. A second practical issue is that some fea-
tures (e.g., correlations and total variation) are not well-
defined or not meaningful for connection vectors with
fewer than three epochs. When comparing a connection
with ten epochs to one with two epochs, we look only
at the Euclidean distance (or correlation) between those
features that are defined in both associated vectors, and
then normalize by the number of such “active” features,
so that the resulting distance can be compared to dis-
tances between longer connections.

We initially tested our approach by clustering training
data sets with a small number of connections. Figure 4
shows the result of clustering 20 connections collected at
the University of North Carolina at Chapel Hill. We an-
alyzed this data set using divisive hierarchical clustering
as implemented in R [16], after converting each connec-
tion vector into a feature vector that included all of the
statistical features described above. Ten of the connec-
tions in the data set carried Telnet traffic (i.e., interac-
tive remote shell), while the other ten carried persistent
(HTTP 1.1) web traffic. The communication patterns
used by these two protocols are quite different, so ap-
propriate clustering should be able to split the data set
into two subpopulations. As shown in the figure, two
distinct clusters, emanating from the root of the den-
drogram, are readily apparent. This visualization is a
binary tree in which internal nodes represents split of
the set of connections (with a y-axis height that corre-
spond to the dissimilarity between its children). Leaves
represent individual connections. The first split in the
example cleanly separates Telnet connection from Web
ones.

Feature Description

n Number of epochs
atot btot Total bytes
amax bmax tmax Maximum bytes or seconds
amin bmin Minimum bytes
aµ bµ Mean bytes
aσ bσ Standard deviation
a1q b1q First quartile
a2q b2q Second quartile
a3q b3q Third quartile
avs bvs Total variation

ah bh Homogeneity (a+
max)/(a+

min))
aρ bρ Lag-1 autocorrelation

ρ1(a1..n, b1..n) Spearman’s Rank Correlation
ρ2(b1..n−1, a2..n) Spearman’s R. C. with Lag 1

Table 1: The 26 statistical features used in the divisive

hierarchical clustering example shown in Figure 5.

4 Clustering Examples

4.1 Divisive Hierarchical Clustering

Example

In our first example of clustering traffic, we study a
packet header trace collected during April 2002 at the
main network link that connects the University of North
Carolina at Chapel Hill and the Internet. We first con-
verted this trace into a set of several million connection
vectors, from which we drew a random sample of 5,000
connection3 vectors with 2 epochs or more. We then
computed the feature vectors of the connections in this
sample, using the features reported in Table 1. After
normalizing the feature vectors, we analyzed them using
the diana procedure with Euclidean distance as imple-
mented R [16]. This algorithm is described in [19], and
its basic idea is to sequentially split the cluster with the
largest diameter by finding its most dissimilar observa-
tion. This observation is used as the seed of a new clus-
ter, which will be populated with some number of similar
observations from the original cluster.

The result of clustering the set of 5,000 are shown in
Figure 5, using a new visualization function that we im-
plemented in the R language. The dendrogram shown
is the result of pruning the full dendrogram at depth 4.
The plot depicts pruned internal nodes as green triangles
with a cluster number, and leaves as red squares with a
connection vector number below them. Each internal
node is annotated with the number of connection vec-
tors grouped under its branches. For example, the root
of the tree is annotated with 5,000, since all of the con-
nection vectors fall under this internal node. The first
triangle on the left, marked as cluster number 1, groups
954 connection vectors.

The dendrogram reveals some useful structure in the
set of connection. Connections in cluster 1 mostly cor-

3This number is relatively small due to computational dif-
ficulties, but it should be sufficient to identify the most im-
portant clusters in the full data set.
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Figure 5: Dendrogram obtained from the divisive hierar-

chical clustering of data set of 5,000 connections, pruned

at depth 4.

respond to HTTP, HTTPS (encrypted web traffic) and
AOL traffic, while those in cluster 3 correspond to mail
transfer protocols, such as SMTP and the Post Office
Protocol (POP). The composition of clusters 2 and 4
was not so clear. The clustering algorithm accurately
separated two clearly different communication patterns.
Clusters 5 and 6 include connections in which all the
b-type data units are zero, and whose port numbers
did not map to known applications. Finally, cluster 7
grouped together HTTP, HTTPS, Microsoft Directory
Service and RTSP connections. The only leaf shown in
the dendrogram (connection vector 864) was an FTP-
DATA connection with n = 2, atot = 50K and btot = 0.

While the revealed structure is suggestive, it is difficult
to explain the observed hierarchy, and this motivated
us to use a different tool in our more recent work (see
the next subsection). Furthermore, computation of the
full dendrogram was slow; this 5,000-connection example
required many hours of processing time. Another diffi-
culty we experienced is the O(n2) memory requirement,
present in most statistical clustering algorithms, which
comes from the need to compute the distance between
each pair of connection vectors as the first step.

4.2 Agglomerative Hierarchical Clustering

Example

We applied our methodology to the clustering of a sam-
ple of connections from the Abilene-I data set [21]. The
sample consisted of 717 TCP connections4. Each connec-
tion was first transformed into a connection vector, and
then summarized into a feature vector. Half of these con-

4While this number is relatively small, we believe it is
representative of the coarse-grained structure in the data set,
and it makes it possible to include graphical output in this
paper. We have applied our method to larger sets with up to
25,000 connections.

Feature Description

n Number of epochs
atot btot ttot Total bytes or seconds
a2q b2q t2q Second quartile (Median)
afd bfd Maximum first difference

ah bh Homogeneity (a+
max)/(a+

min))
dir Directionality (log(atot/btot))

ρ1(a1..n, b1..n) Spearman’s Rank Correlation
ρ2(b1..n−1, a2..n) Spearman’s R. C. with Lag 1

Table 2: The 14 statistical features used in the agglom-

erative hierarchical clustering in Figure 6.

nections were a random sample of port 80 connections,
while the other half were a random sample of connection
in other ports. The result was a matrix of 717 rows and
14 columns. Table 2 describes the 14 statistical features
that were part of each vector.

Feature vectors were clustered using the average-
linkage agglomerative method proposed by Sokal and
Michener [24], with Pearson correlation coefficient as the
similarity measure5. For this clustering, we employed
the implementation of the algorithm and the visualiza-
tion tool developed by Eisen et al. in the context of
gene expression arrays (microarrays) [7]. The result of
the clustering is shown in Figure 6. The colored array in
the center of the figure is a heat map that represents the
matrix of feature vectors. Each row in the array corre-
sponds to one connection, and each column corresponds
to one statistical feature. Therefore, the fourteen colored
cells within a row represent the values of the statistical
features of a single connection. Values are displayed us-
ing a scale of increasingly lighter shades of blue (in other
words, the larger the value, the lighter the color). On the
left side of the array, a rotated dendrogram displays the
hierarchical clustering of connections. On the right side
of the array, seven rectangles (labeled from A to G) are
used to highlight seven clusters that exhibit a high de-
gree of internal cohesion (correlation is 0.6 or more) and
substantial separation from other clusters (dissimilarity
sharply increases when any of these clusters is joined to
another cluster).

The interpretation of the resulting clusters confirms
the effectiveness of our approach for grouping connec-
tions into homogeneous communication patterns. Note
that this interpretation is based on port numbers (that
we know are not very accurate), and it is only meant
to illustrate the power of the method. Clusters A and
B group together connections with small a-type data
units. By looking at the destination port numbers of
these connections, we found that most correspond to file
sharing applications, mainly Kazaa (port number 1214),
eDonkey (4662), and Gnutella (6346). Connections in
cluster A show substantially smaller b-type data units
than those in cluster B, and they also exhibit much
longer inter-exchange times. We believe that connections
in the former cluster mainly correspond to file-sharing

5We recently obtained similar results with a newer version
of the software that supports Euclidean distance
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Figure 6: Result of clustering a sample of con-

nections from the Abilene-I data set. From left

to right, the columns of the heat map correspond to

n, atot, a2q, afd, ah, btot, b2q, bfd, bh, ttot, t2q , dir, ρ1 and ρ2.

sessions in which only searches and no file downloads
took place, while file downloads did occur in the con-
nections grouped in the latter cluster. Some number of
connections in these two clusters used other destination
ports, such as 80, but their intra-connection dynamics
did match those of file-sharing applications. These con-
nections provide a good example of port number hijack-
ing, a technique frequently employed to overcome fire-
walls and bandwidth caps.

Cluster C includes connections that have small a-type
data units, and a number of exchanges that is signifi-
cantly larger than that in the connections contained in
clusters A and B. The destination port numbers corre-
spond to a variety of applications, including Gnutella,
HTTPS and Telnet.

Connections in cluster D are almost exclusively des-
tined to port 119 (NNTP), and they show a clearly dif-
ferent pattern of data exchanges (large a-type data units
and moderate b-type data units). Cluster E groups to-
gether connections destined to ports 80 (HTTP), 443
(HTTPS) and other ports that are also used for the web
traffic, such as 8080 and 8443. Cluster F is mostly com-
posed of SMTP connections (port 25) and some num-
ber of POP (110) and Oracle (1521). Finally, cluster G
contains FTP-Data connections. Some of these connec-
tions used source port 20, but the vast majority used
other dynamically-negotiated port numbers. We have
confirmed that these connections carried FTP-Data traf-
fic by verifying that parallel FTP-Control connections
existed.

The seven clusters described above can be further ex-
plored and decomposed into subclusters, an operation
naturally supported by the hierarchical structure of the
binary tree. For instance, we found other smaller clus-
ters that group together other types of communication
dynamics, such as those exhibited by streaming media
and FTP-Control connections.

5 Related Work

Measuring and modeling traffic at the source-level has
been an active area of research over the last ten years.
Two important measurement efforts that focused on
application-specific traffic models, but which preceded
the growth of the web, were conducted by Danzig et al.
[6, 2] and by Paxson [22]. Web traffic has been studied
in numerous papers (e.g., [20, 5, 15]), and file-sharing
applications are the focus of much current work (e.g.,
[13, 23]).

Traffic classification is known to be a difficult problem
that has not received much attention in the past. There
are a number of papers (e.g., [18, 9]) that study how to
identify groups of traffic that are remarkable, e.g., con-
sume a large fraction of the traffic, but their focus is
not on understanding the source-level structure of traf-
fic. Other relevant papers evaluate existing monitoring
techniques and propose more powerful alternatives (e.g.,
[8]).

A compelling case for identifying traffic generation as
one of the key challenges in Internet modeling and sim-
ulation is made by Floyd and Paxson in [11]. Prominent



examples of research in traffic generation are Danzing et
al. tcplib [6], the work by Barford and Crovella on web
workload generation [1], and the SAMAN project by Lan
and Heidemann [3].

6 Conclusion

We presented an abstract model of Internet communica-
tion and developed a methodology for clustering connec-
tions into a set of small groups. The use of recently de-
veloped visualization techniques makes it possible to eas-
ily interpret clustering results. We believe this provides
a good starting points for understanding the types of
source-level behaviors, and study how they change over
time and across different vantage points. We are cur-
rently working on refining our measurement techniques
and systematically examining the clustering structure of
the traffic mixes at a large number of sites. We are also
developing a new traffic generation tool that makes use
of this structure to enable flexible traffic generation that
is more representative of the wide variety of traffic found
on the Internet today.
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