
Capturing the Elusive Poissonity in Web Traffic

C. Park
Dept. of Statistics
Univ. of Georgia

Athens, GA 30602-1952, USA
cpark@stat.uga.edu

H. Shen J. S. Marron
Dept. of Statistics and Op. Research

Univ. of North Carolina
Chapel Hill, NC 27599-3260, USA
{haipeng,marron}@email.unc.edu

F. Hernández-Campos∗

Dept. of Computer Science
Univ. of North Carolina

Chapel Hill, NC 27599-3175, USA
fhernand@cs.unc.edu

D. Veitch
CUBIN†

Dept. of Electrical and Electronic Eng.
Univ. of Melbourne, Australia
d.veitch@ee.unimelb.edu.au

Abstract

Numerous studies have shown that the process of packet
arrivals from Web traffic exhibits strong long-range depen-
dence, which makes it not amenable to be described us-
ing the convenient but necessarily short-range dependent
framework of Poisson modeling. However, Web traffic is ul-
timately driven by independent human behavior, so it seems
natural to search for an underlying “seed process”, consis-
tent with Poissonity, indirectly driving the packet arrivals of
Web traffic. Our study examines Web traffic at different lev-
els of packet aggregation, using powerful statistical anal-
ysis tools for identifying the finest level that can be effec-
tively modeled using a homogeneous Poisson process. We
show that the arrivals of HTTP responses, TCP connections
and Web pages do not provide a satisfactory seed process.
However, we find Poissonity in the arrivals of “navigation
bursts”. A navigation burst is a tightly-spaced sequence of
Web pages downloaded by the same Web client, which can
be explained by fast navigation through several pages be-
fore reaching relevant content. Our analysis suggests that
the start times of such navigation bursts, which we identify
by detecting user think times between 12 and 30 seconds,
can be effectively modeled as a homogeneous Poisson pro-
cess. We believe that our methodology can be extended to
other complex modeling problems where finding Poissonity
can greatly simplify parsimonious modeling.

∗Currently at Google Inc., Mountain View, California.
†ARC Special Research Centre on Ultra-Broadband Information Net-

works (CUBIN). CUBIN is an affiliated program of National ICTAustralia
(NICTA).

1. Introduction

Internet traffic has been the focus of numerous studies
in recent years. One of most influential results in this area
was the finding of pervasive long-range dependence (LRD)
in the process of IP (Internet Protocol) packet arrivals on
Internet links by Lelandet al. [10, 22]. This characteristic
of Internet traffic is in sharp contrast with earlier “teletraf-
fic” modeling work in the context of telephone networks
[21], where short-range dependent processes, including the
memoryless Poisson process, were widely applicable. Inter-
net traffic shows high variability across a wide range of time
scales, while a Poisson process necessarily exhibits a rapid
decrease in its variability as the scale of temporal aggrega-
tion is increased. This “failure of Poisson modeling”, in the
words of Paxson and Floyd [15], has lead to a rich literature
on the modeling of Internet traffic using the mathematics of
fractal and multi-fractal stochastic processes.

Interestingly, and despite more than a decade of intense
work, no single traffic model (or even set of models) has
emerged as the agreed reference in the field. Proposed mod-
els are often too narrowly applicable or too complicated to
be used by networking practitioners, despite the ongoing
need for a more formal understanding of traffic for tasks
such as capacity planning and anomaly detection. Perhaps
more seriously, there is typically a disconnection between
the component elements of these models and the network
mechanisms that lie behind them. Without physical mean-
ing as a guide, and a related “physics” linking mechanisms
with observed arrival processes, it is problematic to demon-
strate why a given model is better than any other.

While the evidence against modeling the process of In-



ternet packet arrivals directly using a Poisson process is
clear and overwhelming, we argue that it is nonetheless of
great interest to search forPoissonityin the higher-level
mechanisms and behaviors generating packet arrivals. In
the end, Internet traffic arises from the superposition of the
communications between a large numbers of hosts, which
are generally independent of each other, particularly be-
cause independent human behavior is the ultimate driver of
(most) applications. Although dependencies between user,
application, host and network are complex, the paradigm of
“many independent events, each with a small probability of
occurring” should hold sway at a high enough level. This is
the classical mechanism generating Poisson events. We be-
lieve that identifying which events form this “seed” Poisson
behavior can lead to a physically meaningful skeleton upon
which a traffic model which is both intuitive and tractable
can be based. For completeness, recall that a Poisson pro-
cess can be defined as the point process where inter-arrival
times are both mutually independent, and exponentially dis-
tributed with the same parameter.

Our work aligns with recent efforts by Hohnet al. [9]
to explain packet arrivals using a compound point process
whose seed process is Poisson. We also consider the ques-
tion of finding Poissonity in Internet traffic, but focus on
Web traffic. Web traffic provides a particularly good case
study. First, packet arrivals from Web traffic are known to
exhibit long-range dependence, as Crovella and Bestavros
demonstrated [5]. Second, even after the emergence of file-
sharing applications, Web traffic represents a large fraction
of the traffic on the Internet. Finally, Web traffic is a well-
understood traffic type, so we can explain our findings in
terms of the characteristics of Web browsing and the Hyper-
Text Transfer Protocol (HTTP) [3]. We can also re-use ac-
cepted measurement techniques to construct large and rich
datasets for analysis. Although, as in [9], our ultimate goal
is a physically meaningful model of the packet arrival pro-
cess itself, here the lowest level object we study directly is
HTTP responses, which has structure, notably long-range-
dependence, which was ignored in [9] and merits further
study. For completeness, recall that long-range dependence
is defined as a slow, power-law divergence in the Fourier
spectrumΓ(ν) at low frequencies (or equivalently large lag
in the time domain):Γ(ν) ∼ c|ν|−α, asν → 0, where
α ∈ (0, 1) is the LRD exponent, andc > 0. In contrast,
short-range dependent processes have a finite spectrum at
the origin:Γ(0) = Γ0, 0 < Γ0 < ∞.

Our study examines different levels at which packets
from Web traffic can be combined or aggregated, such as in-
dividual HTTP responses or entire Web pages, in the search
for the finest level at which a homogeneous Poisson process
emerges as a viable model. Such a model will then work as
a natural “seed process” for the parsimonious modeling of
packet arrival times. Our analysis relies on two statistical

tools, plots of wavelet spectra [1] and SiZer maps [4], which
are far more robust to non-stationarities that the variance-
time plot frequently employed in the past (see [14]).

We now briefly describe wavelet spectra (see [1] and [18]
for more details, the Matlab code we use is available at
[19]). The (log) wavelet spectrum plots the (log

2
) estimated

variance of the wavelet coefficients of the analyzed process
as a function of the (log

2
) time scalej. We use Daubechies

wavelets [6] with three vanishing moments. The impor-
tant points to note are the following. A Poisson process
has a flat spectrum (just as in the Fourier spectrum case),
whereas long-range dependence manifests as a straight line
behavior at large scales. All the processes studied here are
arrival times, and are therefore point processes. The es-
timated spectrum is strongly influenced by the amount of
data. Roughly speaking, doubling the length of a data set
doubles the total amount of variance or energy present, re-
sulting in a shift upward of one in the (log) spectrum. Fi-
nally, as the amount of data effectively halves with each unit
increase inj, confidence intervals grow rapidly with scale.

Figure 1 provides a concise overview of our findings,
using plots of the wavelet spectra from two datasets de-
rived from packet header traces, collected over two four
hour periods at the University of North Carolina at Chapel
Hill (UNC) in 2001. By studying sequence and acknowl-
edgment numbers in observed Transport Control Protocol
(TCP) packets, we were able to reconstruct the arrival pro-
cess of Web traffic at multiple levels of aggregation: indi-
vidual responses (e.g., an HTML file, an image), TCP con-
nections, entire Web documents (i.e., Web pages), naviga-
tion bursts (i.e., “dense” sets of documents), and distinct
clients. It is essential to note that by “aggregation”, we do
not mean simple block time averages, but rather grouping
of packets into larger sets or objects. By analyzing the data
at a given “aggregation level”, we mean the analysis of the
arrival processonly of the objects at that level.

The spectra corresponding to 5 different objects in Fig-
ure 1 show roughly similar features: a flatness at small
scales indicative of a Poisson-like lack of structure, devi-
ation from the flatness beginning at some scale reflecting
energy due to clustering, leading at large scale to a straight
line behavior indicative of LRD (note that, to within con-
fidence intervals, the deviations from a straight line at the
very largest scales are not significant). However, depend-
ing on the aggregation level, the strength of deviations from
Poisson behavior, and the range of “non-Poisson” scales,
varies greatly.

At one extreme, the arrival process of clients is indis-
tinguishable from Poisson over all scales. Intuitively this
makes sense, as the client definition captures a great deal of
structure, including the dependencies induced by multiple
browsing sessions, TCP dynamics, as well as source char-
acteristics, notably the heavy tailed nature of files which is
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Figure 1. Wavelet spectra of response, connection, documen t, client, and navigation burst arrivals
for (a) 2001THU (b) 2001SUN: LRD clearly dominates at the res ponse and connection levels, and still
appears at the document level for coarse time-scales. Poiss onity dominates at the client level and it
is also valid at the navigation burst level (defined using a 12 -second threshold).

the commonly accepted underlying cause of LRD in packet
data. Thus, the client object is so large that the LRD is car-
ried within it, leaving the arrival process free of it. On the
other hand there is no reason in a stationary regime, and cer-
tainly no network protocol reason, why the arrival of clients
should have any clustering, and so the arrivals are Poisson.
However, our aim is not to find just “any” Poisson process
in traffic, but to find the finest level object which is Pois-
son: clients are too coarse to be the parsimonious choice
for modeling. Returning to Figure 1, the spectra for re-
sponses and connections are clearly non-Poisson: although
responses and connections each capture a certain amount
of packet structure, it is not sufficient, these objects are too
“small”.

Web documentsare objects whose size is intermediate
between that of responses and clients. Documents capture
dependencies including how pages are constructed and re-
trieved, and are an obvious candidate for a “session level”
aggregation [17]. From Figure 1, we see that, although the
deviation from Poisson is much reduced both in amplitude
and in terms of the time scales affected, they are still sig-
nificant relative to confidence intervals. It seems that there
are dependencies between different documents, so that they
cannot play the independent seed role we seek.

One way in which Web documents could be connected
is through user behavior. Users tend to click on a sequence
of links before detailed reading of content. Suchnaviga-
tion bursts, essentially a tightly clustered sequence of Web
document downloads from a single client, can be naturally
separated from each other bythink times. As shown in Fig-
ure 1, navigation bursts capture sufficient structure to allow

their arrival process to be Poisson, yet are much smaller
than clients. This aggregation level makes physical sense,
since independent exponential waiting times, which charac-
terize a homogeneous Poisson process, are a good model for
human reading time, but not for structures inside the navi-
gation bursts.

In this paper we propose navigation bursts as the natu-
ral seed process on which to base packet and response level
modeling for HTTP data. As navigation bursts cannot be
directly observed but only inferred from our data, timeouts
are used as part of the navigation burst definition. We use a
simple timeout, with value around 12 seconds. This value
is not arbitrary, but is based on observations demonstrat-
ing that it is in some sense the natural scale at which Pois-
sonity emerges. We emphasize that the significance of our
work is not that we simply offer, yet another, definition of a
“session” level for traffic modeling or generation. Indeed
this could have been done, and even justified intuitively,
without even looking at data! Instead, our contribution is
that we have identified a good candidate process which, for
solid empirical reasons, localizes the interface where clus-
tering begins in the space of protocol/human interactions.
Our contribution is also the unambiguousrejectionof sev-
eral alternative processes for this role, again based on a large
amount of empirical evidence. We leave to future work the
actual construction of a full model based on the navigation
burst skeleton.

The current paper is organized as follows. Section 2 de-
scribes the data used in the current study, and defines in
detail four different aggregation levels of Web traffic. Then
their properties are summarized using the wavelet spectrum
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Level Specification Data Acquisition

Response HTTP entity, RFC 1945 [3] Uninterrupted increase of data sequence numbers from server
Connection TCP connection, RFC 793 [16] TCP packets with the same IP addresses and port numbers
Document Responses forming a Web page Set of responses separated by 1 second of idle time
Navigation Burst Dense sequence of documents Set of documents separated by 12 to 30 seconds of idle time
Client Documents browsed by one userSet of documents downloaded from the same client IP

Table 1. Summary of the levels of aggregation at which we exam ine Web traffic in this paper.

and SiZer analysis. Section 3 discusses navigation bursts.
We study various threshold values for the think time and
determine which values capture the Poisson properties, and
explain why. We conclude in Section 4.

2. Analysis of Responses, Connections, Docu-
ments and Clients

2.1. Data Description

The starting point of our study is a collection of TCP/IP
header traces collected in 2001 and 2002 from the Gigabit
link connecting the University of North Carolina at Chapel
Hill (UNC) to the Internet. Our analysis focuses on the
activity of UNC clients, which we extract from the traces
by filtering for TCP connections started from the university
and with port 80 as their destination. These connections
represent the browsing activity of UNC’s population, which
includes roughly 26,000 students, (all of whom have net-
worked computers), 3,000 faculty members and 9,000 staff
members. For illustration purposes, this paper primarily ex-
amines a trace collected between 1 PM and 5 PM on Thurs-
day, April 26, 2001 (2001THU). This trace has a high level
of Web traffic activity, and it appears particularly stationary.
In addition, we also report selected results from a trace col-
lected between 8 AM and noon on Sunday, April 29, 2001
(2001SUN). We also studied another two similar datasets
derived from packet header traces collected in April 2002.
Our full set of results is available online [13].

Our work considers the statistical properties of Web traf-
fic at several levels. At the lowest level, we consider Web
responses, which are the individual HTTP entities (roughly
“files”) downloaded from Web servers by Web browsers [3].
Web responses have been naturally grouped in two ways,
by TCP connection and by Web page [17]. Finally, we
also consider a client level, which we define as the entire
set of responses, connections and documents with the same
client IP address. These four levels of responses, connec-
tions, documents and clients create a rich data set and a
challenging modeling problem. Our multi-level datasets are
available online [8]. In total, we studied 19 millions HTTP
responses carried in 10.5 million TCP connection, originat-

ing from 49,049 distinct clients1. Our multi-level analysis
is more focused on the impact of human browsing on the
properties of Web traffic than earlier studies. For example,
Nuzmanet al. [12] concentrated only on TCP connection
arrivals in Web traffic.

For illustration purposes, Figure 2 shows the SiZer plots
of the intensity estimates of the arrivals of responses, doc-
uments, and clients for the 2001THU trace, respectively.
Since homogeneous Poisson processes have constant inten-
sity functions, the idea is to check whether the estimated
intensity is close to a constant function for each aggrega-
tion level.

SiZer is based on kernel density estimation (for example,
see [20]) of the data, some of which are displayed as dots
in the top panel of Figure 2. These estimated intensities
are shown as thin curves corresponding to different window
widths. This is called a family of smooths which is indexed
by the window widths, and each of the thin curves repre-
sents a different row of the SiZer map in the low panel,i.e.,
level of resolution of the data. Essentially, the top panel of
Figure 2 shows the kernel intensity estimates of the arrivals
of the corresponding levels. Thex axis represents time in
seconds (over four hours) and they axis is the intensity. For
a Poisson process, its family of smooths should be close to
a constant function. Note that the present paper examines
traffic at time-scales of a few hours, were diurnal effects can
generally be ignored. Otherwise, the analysis must consider
non-homogeneity in the Poisson process.

The lower panel of Figure 2 is called the SiZer map,
which is doing a graphical statistical inference. In partic-
ular, it uses different shades of gray to flag trends in the in-
tensity estimates that are statistically significant compared
to natural variation. The horizontal axis represents time,
and thus is the same as the horizontal axis in the top panel.
The vertical locations correspond to the same logarithmi-
cally spaced window widths that are used for the family
of intensity estimates (thin curves) in the top panel. At
each scale-time location (i.e., pixel in the map) statistical
inference is done on the slope of the corresponding curve
and the test results are reported using a color scheme. Re-
gions shaded in dark gray in the SiZer map indicate sta-

1Note that anonymization prevented us from recognizing the same
client across more than one trace.
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Figure 2. SiZer plots (2001THU) of (a) response arrivals, (b ) document arrivals, and (c) client arrivals.

tistically significant increases (of the thin curves in the top
panel), while light gray regions indicate statistically signif-
icant decreases. Region showing an intermediate shade of
gray indicate lack of statistical significance, suggestingthat
the data are consistent with natural variation. For a Poisson
process, its SiZer map is expected to show only intermedi-
ate gray regions.

2.2. Responses

Web responses are composed of an HTTP header and a
payload. The payload can be a file, such as HTML source
file or an image file, or some dynamically generated con-
tent. Since our data is extracted purely from packet header
traces, we cannot learn anything about the semantics of
Web response. Therefore we focus on Web responses in
the abstract, which can be accurately extracted from packet
header traces using the techniques described in [11, 17].
Briefly, our analysis method consists of analyzing unidirec-
tional traces of TCP/IP headers sent from Web servers to
clients (browsers) in order to infer application-level charac-
teristics of Web traffic. In particular, we exploit properties
of TCP’s sequence numbers and increases in acknowledg-
ment number to determine request and response sizes. The
basic idea is to observe that Web responses are composed
of one or more TCP segments with consecutive sequence
numbers. If a connection has a single response, every data
segment sent from the Web server to the Web browser is
part of the same response. The size of the response is then

given by the difference between the highest and the lowest
sequence number of these segments. Similarly, the duration
of the response is given by the difference between the first
and the last timestamps of the segments. Every packet trace
we examined in this paper included a timestamp, accurate
within a few hundred microseconds, of the time at which
the packet reached the monitoring point. We can therefore
measure response duration, and times between responses,
accurately.

Sequence number analysis is a well-known, straight-
forward measurement technique, and it doesnot require
timeouts or heuristics of any kind. However, its imple-
mentation requires careful handling of packet reordering,
retransmission and sequence number wraparound. None of
these difficulties should have introduced any inaccuracies
in our data. Note also that this basic technique can be ex-
tended to study TCP connections with more than one HTTP
response (i.e., persistent connections). The key observation
is that a request must necessarily be present between two
consecutive responses, so an increase in client-to-serverse-
quence number defines a boundary between two responses.

As long as no HTTP pipelining [7] is used, this method
can always identify the set of packets that form each Web
response. HTTP pipelining was very uncommon in 2001
and 2002 [17], so we are highly confident on the accuracy
of our method for extracting Web response data from our
traces.

As mentioned above, the SiZer plot of the response ar-
rivals for the 2001THU trace is shown in Figure 2(a). The

5



family of smooths in the top panel shows that the estimated
intensity has many big and small oscillations, which indi-
cates that the process is far from Poisson processes. The
SiZer map in the lower panel of Figure 2(a) shows that the
oscillations apparent in the top panel are statistically signif-
icant because there appear to be many dark gray (increas-
ing) and light gray (decreasing) regions at both high (near
the bottom of the SiZer map) and low (near the top) lev-
els of resolution. The major lesson from Figure 2(a) is that
the arrival process of responses does not have homogeneous
Poisson properties as concluded from the wavelet spectra in
Figure 1.

The exponential quantile plot of the response inter-
arrival times suggests that they are also far from being ex-
ponential, which is not shown here to save space. We intend
to construct a Poisson cluster model for the Web response
arrivals in a future manuscript.

2.3. Connections

TCP connections carrying Web traffic contain one or
more HTTP request/response pairs. In the first specifica-
tion of HTTP (1.0) [3], a new TCP connection was required
for each pair. After the connection was established, a sin-
gle request was sent from the client to the server, followed
by a single response sent from the server to the client, and
the connection was closed. Later versions of the protocol
[7] introduced the concept of persistent connections, which
could remain open after the first response was transferred,
and carry new request/response pairs. This eliminates the
extra delay that each connection establishment involves,
and also avoids the slower sending rates at the beginning
of TCP connections. Our method for processing TCP/IP
header traces to extract HTTP responses can easily be ex-
tended to study other TCP connection characteristics, such
as their start times and the number of responses they carried.
Note that our concept of connection is not the same as the
connection used in [12], whose definition is more like our
concept of responses. Also, our analysis not only identified
individual connections using IP addresses and port number,
but also detected the reuse of port numbers by examining
SYN packets and their sequence numbers.

In search for the Poissonity, we also examined the arrival
process of connections. We do not report its SiZer plot, and
the result [13] suggests that it is very similar to that of the
response arrivals, which does not imply a Poisson process
as concluded from the wavelet spectra in Figure 1.

2.4. Documents

Web content is generally organized using Web docu-
ments (i.e., Web pages), which consist of a base HTML
source and embedded objects. Embedded objects include

images, audio files, style files,etc. When a Web browser
downloads a Web document from a Web server, it uses
the first request/response pair to download the base HTML
source. After receiving and parsing this source, the browser
uses one request/response pair for downloading each of the
embedded objects in the document. As a consequence,
Web documents create significant dependencies in the ar-
rival process of Web responses. The arrivals of documents
provide a more aggregated arrival process where Poissonity
could arise.

Extracting information about documents from TCP/IP
header traces is more difficult than extracting informa-
tion about responses. In this paper, we rely on the well-
known think timeheuristic to group responses into docu-
ments [2, 11, 17]. The starting point of this heuristic is the
observation that users navigate the Web by downloading a
sequence of documents. The user has to spend some time
reading the content of each Web document before clicking
on a link or typing a new URL in the browser. Therefore, no
network activity occurs during these user think times, and
this fact can be used to group responses into documents.
Unfortunately, inactivity can also be due to other causes,
such as network losses, processing times,etc.. We distin-
guish user think times from the other kinds of inactivity pe-
riods using a fixed threshold of 1 second. Two responses
separated by more than 1 second of network inactivity are
not considered to be part of the same document.

While there is some degree of uncertainty in the think
time heuristic, it should provide a reasonably accurate
dataset for characterizing the arrival process of Web doc-
uments. We will also use the termthink time to refer to
those inactivity periods in which no network traffic is ob-
served for a given Web client. The duration of a think time
is given by the difference between the timestamp of the last
segment of the last response before the think time and the
timestamp of the first segment of the first response after the
think time.

This definition of documents was carefully examined in
[11] and [5], who demonstrated that a think time thresh-
old around 1 second are reasonable and provide consistent
results. Unfortunately, we know of no validation of these
results using actual HTTP payloads.

It is important to clarify the relationship between Web
documents and TCP connections. When only non-persistent
connections are used, downloading an entire Web document
requires as many TCP connections as embedded objects in
the document. In this case, documents provide a level of
aggregation higher than that of connections. However, the
use of persistent connections complicates this picture. Mod-
ern browsers use two to four persistent connections (to each
Web server) to download a Web document, and each con-
nection carries one or more request/response pairs. If a sec-
ond document is downloaded from the same Web server,

6



Time

Navigation Burst 1 Navigation Burst 2

Think Time Above 
Document Threshold

Think Time Above
Navigation Burst Threshold

Document 1 Document 2 Document 3

Response 1Response 1Request 1Request 1

Rsp 2Rsp 2Req 2Req 2

Response 6Response 6Req 6Req 6

Response 5Response 5Req 5Req 5

Rsp 3Rsp 3Req 3Req 3

Rsp 4Rsp 4Req 4Req 4

TCP Connection 1

TCP Connection 3

TCP Connection 2

Figure 3. Navigation bursts group Web request/response pai r separated by inactivity periods with a
duration below some threshold value.

some or all of these persistent connections may be used to
carry additional request/response pairs for the second docu-
ment. In this case, documents do not provide a higher level
aggregation of connections, but rather a different way of
grouping responses.

By definition, Web documents could be closely related
to user behavior. While the responses in a Web document
start regardless of human choices, Web users select docu-
ments which they want to browse. However, as seen in the
wavelet spectra in Figure 1, this is only partly true and the
SiZer plot of document arrivals in Figure 2(b) supports this
conclusion. The plot has less features compared to the re-
sponse arrivals in (a). At the coarsest scale (the top row
of the SiZer map), the estimated intensity increases on the
left and decreases on the right. This is an artifact of the
SiZer boundary adjustment caused by the “mirror image”
approach (see Section 2 of [20]). However, aside from the
boundary effect, the estimated intensity still has many os-
cillations, and the SiZer map confirms that they are statisti-
cally significant across all resolutions. Thus, the intensity is
not anywhere near a constant. Combining the result of the
wavelet spectra in Figure 1, we conclude that document ar-
rivals have more Poisson properties than response arrivals,
but still exhibits substantial LRD.

2.5. Clients

The final level of aggregation is a Web client, which cor-
responds to the activity of a single user during an entire
trace. In our analysis, we group all of the documents down-
loaded by the same UNC IP address into a Web client. This
makes it possible to extract the arrival process of clients
from our traces, using the arrival time of the first document
as the start time of the client. Intuitively, the client arrival

process should exhibit clear Poissonity, since it is directly
caused by human behavior.

Figure 2(c) depicts a SiZer plot of the client arrivals.
The family of smooths shows a big decreasing trend at
the beginning, which is artificially created by the defini-
tion of clients. Since our traces were collected during a
four-hour time block, there are many clients who already
started Web browsing before the trace collection. Beyond
this starting region, the estimated intensity is mostly flat,
which is consistent with a constant Poisson intensity. This
can be confirmed by its SiZer map, which is located in the
lower panel. It shows no features other than the big de-
creasing trend. Based on this SiZer plot and the wavelet
spectra in Figure 1, the arrival process of clients is consis-
tent with a homogeneous Poisson process. However, the
client level has two undesirable characteristics, which mo-
tivated us to look for a finer level of aggregation consistent
with Poissonity. Firstly, a strong boundary effect exists at
the beginning of the collection period. Secondly, the sam-
ple size of the client level data is rather small. In the case
of the 2001THU trace, only 17,295 clients were originally
collected while 1,049,509 documents were collected during
the same time block. If we remove clients which started be-
fore 1 PM, the dramatic decrease in sample size at the client
level becomes even more substantial.

2.6. Filtering Problematic Clients

Having observed that document start times showed LRD
scaling behavior against our initial intuition, we reexamined
our data to verify that unusual clients (not associated with
single-user Web browsing) are not behind our findings. This
was a possibility, since our measurement heuristics can be
confused by Web traffic that does not originate from a sin-
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Figure 4. Wavelet spectra of navigation burst arrivals of (a ) 2001THU and (b) 2001SUN at the thresh-
olds of 2, 6, 12, 30, 60, 120 and 300 seconds. The plots suggest that a threshold between 12 and 30
seconds is the smallest which still gives a Poisson process.

gle human user browsing the Web. Problematic cases in-
clude traffic from time-shared machines, HTTP proxies, au-
tomated downloaders (i.e., personal crawlers), SOAP (RPC
over HTTP) and non-HTTP traffic in port 80. Given our
knowledge of the UNC network, we did not believe that
such phenomena was common enough to be significant in
our datasets, but it was important to confirm this assump-
tion.

Our analysis of “unusual clients” employed the follow-
ing 8 criteria, wherer is number of responses,τ is response
inter-arrival, andd is duration:

(C1) Clients withr > 3, 000.

(C2) Clients with a connection whered > 2 hours.

(C3) Clients withr > 5 responses, regularity index of re-
sponses above 0.8, and the medianτ above 1 second.

(C4) Clients withd > 3.5 hours.

(C5) Clients with a maximumτ above 10,000 second.

(C6) Clients with a document whered > 250 seconds.

(C7) Clients with a number of connections above 3,000.

(C8) Clients withd > 2 hours, and very low think times.

Here regularity index is defined as follows. First, take
the inter-arrival times within each document and calcu-
late the median. Second, define the interval (0.5×median,
1.5×median). Third, calculate the regularity index as the
proportions of the response inter-arrival times that are cov-
ered by those intervals.

We systematically explored the impact of unusual clients
by filtering out from our datasets any client satisfying some
subset of the criteria. This filtering left 93.38%, 88.95%,
and 82.31% of the clients for 2001THU, 2001SUN, and
2002SUN data, respectively. For the remaining clients, we
reanalyzed document and client start times using plots of
wavelet spectra and SiZer maps, and found little variation
in the results. Our complete analysis is available online
[13]. Therefore, it is unlikely that our conclusions are af-
fected by unusual clients, or by inaccuracies of the mea-
surement heuristics. One intuitive explanation is that our
use of robust methods of statistical analysis, combined with
a massive number of regular clients in our traces, makes our
results very difficult to skew by unusual clients.

3. Analysis of Navigation Bursts

As discussed in Section 2, the arrival process of Web
documents deviates significantly from a Poisson process,
which suggests that it cannot be directly mapped to indepen-
dent human behavior. The client arrival process is Poisson-
like, but client level objects are too large. We are therefore
led to consider a level of aggregation between document
and client. Our choice is motivated by the observation that
human browsing behavior usually alternates between two
types of periods:

• A navigation burstperiod, in which a sequence of Web
documents is downloaded with little inactivity (i.e.,
short time intervals) between them. Users are often
looking for some specific content, and in order to reach
it, they have to navigate through several Web docu-
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ments. This navigation burst creates a dependence be-
tween the arrivals of these documents that is inconsis-
tent with Poisson arrivals.

• A think timeperiod, in which the user reads or watches
the content obtained at the end of the previous naviga-
tion burst period.

Navigation burst periods define a level of aggregation
above documents but below clients, which we call the nav-
igation burst level. Extracting the process of burst arrivals
from our data sets requires the same technique used to ex-
tract the process of document arrivals. Think time analysis
for extracting navigation burst information is illustrated in
Figure 3. This definition is identical to our definition of
document, but the inter-burst think time threshold is larger
than the inter-document think time threshold. This implies
that a navigation burst can be equivalently defined as a set
of one or more documents separated by think times below
the inter-burst think time. Obviously, it is crucial to find a
think time threshold that can accurately extract navigation
bursts from our data. The concept of navigation burst has
not been studied in the past (at least in a similar context), so
we have to carefully examine the question of an appropriate
threshold.

3.1. Choosing a Think Time Threshold For
Navigation Bursts

The threshold values on the think times we considered
were 2, 6, 12, 30, 60, 100, 120, 300, 600, 1200, and 3600
seconds. For smaller threshold values, the process of navi-
gation burst arrivals becomes closer to the arrival of docu-
ments. For larger threshold values, the process of navigation
burst arrivals becomes closer to arrival of clients. The ques-
tion is therefore to find the threshold at which a Poisson
process becomes a reasonable model for navigation burst
arrivals. We searched the range of threshold values on the
gaps between two documents, which start to capture Pois-
son properties. When these values are too small, naviga-
tion burst arrivals will still have LRD just like document
arrivals. If they are too large, navigation burst arrivals will
suffer from severe boundary effects at the beginning and
make the sample size small like client arrivals. We claim
that the threshold values between 12 and 30 seconds seem
to be where the Poissonity reveals itself, as shown below by
several statistical analyses.

Since we analyzed four-hour traces, some navigation
bursts start before the trace collection while some do not
completely end when our collection is terminated. There-
fore, in this section, we only use those “fully-captured”
navigation bursts, which are defined as navigation bursts
which only have fully-captured responses during the four-
hour collection period.

Figure 4 depicts the wavelet spectra of the navigation
burst arrivals for the 2001THU and 2001SUN traces with
threshold values of 2, 6, 12, 30, 60, 120, and 300 seconds.
(These thresholds are chosen to save space and still show
the story clearly.) As one can see from the plots, the navi-
gation bursts arrivals for small thresholds (2 and 6 seconds)
have increasing trends at large scales, which suggest LRD.
For the thresholds of 12 and 30 seconds, the spectra start
to look like a Poisson spectrum although they are not quite
flat at large scales. Therefore, we favor navigation bursts
separated by 12- to 30-second think times.

As in earlier section, we used SiZer maps to further study
the Poissonity of navigation burst arrivals. We first examine
2001THU in Figure 5. The SiZer map corresponding to
the 6-second threshold is depicted in Figure 5(a), and it still
shows complex trends like document arrivals in Figure 2(b).
This suggests that Poisson processes are not suitable for the
navigation burst arrivals under this small threshold.

Figure 5(b) shows much less significant features com-
pared to Figure 5(a). The top panel shows the kernel in-
tensity estimates of the navigation burst arrivals with the
threshold of 30 seconds. This plot shows that the esti-
mated intensity looks like a constant function. The cor-
responding SiZer map shows significant increasing trends
from x = 2000 to x = 6000 seconds. Except this trend,
and the decreasing trend due to the boundary estimation
problem of SiZer, the other features can be explained by
natural variations and the intermediate gray colors on the
SiZer map confirm this. Thus, one can conclude that the
estimated intensity is close to a constant Poisson intensity.

Figure 5(c) shows the SiZer plot of the navigation burst
arrivals with the threshold of 120 seconds. The SiZer plot
looks similar to (b) except the decreasing trend at the begin-
ning. This decreasing trend actually appears starting from
the threshold of 100 seconds and becomes more serious
as the threshold value increases. The reason is that as the
threshold value increases, more and more navigation bursts
start before the collection period. This is exactly the same
boundary effect phenomenon which happens at the client
level. These SiZer plots appear at [13].

Based on both the wavelet spectra and the SiZer plots,
we claim that navigation bursts with the threshold values
between 12 and 30 seconds are the regions where Poisson
properties appear in the arrival processes.

3.2. Studying the Density of Navigation
Bursts

In addition to these analyses, we develop an alternative
way for validating our definition of navigation bursts using
a think time threshold between 12 and 30 seconds. For this
purpose, we studied the effect of different threshold on the
set of navigation bursts. Our study relies on several con-
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Figure 5. SiZer plots of navigation burst arrivals of 2001TH U at the thresholds of (a) 6, (b) 30 and (c)
120 Seconds.

cepts:Unchanged navigation burstsare defined as naviga-
tion bursts whose start times and end times remain the same
irrespective of the threshold. In contrast,changed navi-
gation burstsare defined as navigation bursts whose start
times and/or end times change (at least once) as the thresh-
old value changes. Finally, thedensity of a navigation burst
is defined as

Burst Density= 1 −
Total think time

Duration
,

wheretotal think timeis the sum of the think times between
the documents in the navigation burst, andduration is the
total duration of the navigation burst, from the first data
packet of the first response to the last data packet of the
last response. By definition, navigation bursts with small
threshold values are expected to have higher burst density,
while navigation bursts with large thresholds are expected
to have lower burst density. This is because navigation
bursts get combined as the threshold value increases, which
creates more think times within a navigation burst.

Figures 6(a)-(d) show the scatter plots of navigation burst
durations versus burst densities of the 2001THU trace for
the thresholds of 2, 12, 30, and 120 seconds, respectively.
Unchanged bursts are marked as crosses and changed burst
are marked as circles. As the threshold changes, only those
changed bursts move. Note that, as the threshold increases,
the circles (changed bursts) move from the bottom up be-
cause the durations of the changed bursts increase as well.

These four plots show the way the intensity of the naviga-
tion bursts evolves as the burst threshold is modified. As
one can see, for a small threshold (2 seconds), the changed
bursts stack up around intensity 1, which correspond to the
big cluster around intensity 1 in Figure 6(a). The fraction
of high intensities decreases to wards zero (i.e., moves to
the left) as the threshold increases. As for the thresholds of
12 and 30 seconds, Figure 6(b)-(c) show a rough balance of
the changed bursts between intensity 0 and 1, uncovering a
clearphase shiftfor these threshold values. For the thresh-
old of 120 seconds (Figure 6(d)), many changed bursts are
from intensity 1, clustering around intensity 0. The plot
for 300 seconds is shown at [13], and it has a big cluster
around the intensity 0. The thresholds of 12 and 30 seconds
seem to correspond to an intensity balance between 0 and
1. Thus, these two values can be understood as the points
where the phase shifts from LRD (small thresholds, inten-
sity 1) to Poisson (large thresholds, intensity 0).

Figure 7 shows this phase shift more clearly. We plot
the fraction of changed bursts whose burst densities are
greater than .95 (solid) and less than .4 (dashed) respec-
tively against the threshold values for the 2001THU and the
2001SUN traces. The idea of this plot is to find the place
where these lines experience sudden changes,i.e., where a
big shift happens. The plots reveal knees at both 12 and 30
seconds for both lines. This finding confirms that a phase
shift happens around 12–30 seconds and this is another clear
explanation of the starting point of the Poisson properties.
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The physical explanation is that Web users tend to search
the Web by clicking several Web pages for a while, and then
start to read articles of interest. Thus, after some amount of
clicking time, burst arrivals are driven by independent user
behavior which can be modeled as a Poisson process.

To complete the analysis, we also tried different versions
of bursts by changing the definition of think time,e.g., be-
tween request/response pairs rather than between responses.
The results were similar for all definitions that we consid-
ered. The same analysis is applied to 2001 and 2002 Sun-
day mornings (between 8 AM and noon), and the results are
consistent. A complete analysis with other statistical tools
and different datasets is accessible at [13].

4. Conclusion

We studied various aggregation levels of Web traffic us-
ing several statistical tools and found the finest level of
packet aggregation that exhibits Poisson properties. We
show that the arrivals of Web responses, TCP connections
and Web pages do not provide a satisfactory seed process.
However, we found Poissonity in the arrivals of navigation
bursts, which we defined as groups of Web documents sep-
arated by 12 to 30 seconds of idle time. This is consistent
with common browsing behavior, which can be roughly di-
vided into an active phase, where the user quickly follows
links in the search for the desired content, and an inactive
phase, where the user reads content more carefully.

We believe that our use of wavelet analysis and SiZer
maps, together with the concept of burst density, provides
a useful and robust methodology for uncovering Poissonity
in the context of traffic modeling and other related prob-
lems. In a future project, we intend to develop a full model
of browsing behavior whose foundation is the use of navi-
gation bursts as the seed Poisson process. The model will
capture the characteristics of packet, responses and docu-
ment arrivals in a consistent and parsimonious manner.
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