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ABSTRACT
Campus wireless LANs (WLANs) are complex systems with
hundreds of access points (APs) and thousands of users.
Their performance analysis calls for realistic models of their
elements, which can be input to simulation and testbed ex-
periments but also taken into account for theoretical work.
However, only few modeling results in this area are derived
from real measurement data, and rarely do they provide a
complete and consistent view of entire WLANs. In this work,
we address this gap relying on extensive traces collected from
the large wireless infrastructure of the University of North
Carolina. We present a first system-wide, multi-level model-
ing approach for characterizing the traffic demand in a cam-
pus WLAN. Our approach focuses on two structures of wire-
less user activity, namely the wireless session and the network
flow. We propose statistical distributions for their attributes,
aiming at a parsimonious characterization that can be the
most flexible foundation for simulation studies. We simulate
our models and show that the synthesized traffic is in good
agreement with the original trace data. Finally, we investi-
gate to what extent these models can be valid at finer spatial
aggregation levels of traffic load, e.g., for modeling traffic
demand in hotspot APs.
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Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Validation and
Analysis; I.6.6 [Model Development]: Modeling method-
ologies

General Terms
Measurement, Experimentation

1. INTRODUCTION
Wireless local area networks (WLANs) are increasingly be-

ing deployed to address the growing demand for wireless ac-
cess. For the support of real-time multimedia services, ca-
pacity planning, link adaptation, load balancing are amongst
the mechanisms that have to be deployed to provide a bet-
ter than-best-effort service. For their performance analysis,
models of the network and user activity are critical.

One of the most intriguing aspects of the traffic demand
modeling task in WLANs is its multi-level spatio-temporal
nature, namely the different spatial scales (e.g., infrastructure-
wide, AP-level or client-level) and time granularities, such
as packet-level, flow-level and session-level, inherent in the
task. Key structures of this demand are the WLAN client
associations and the traffic flows. We study client association
dynamics using sessions, which group client associations into
episodes of continuous activity. The session-level captures
the interaction between clients and the network infrastruc-
ture and is fundamental for the study of mechanisms that
maintain state in APs. The flow-level is an important struc-
ture above the packet-level for network traffic analysis and
closed-loop traffic generation. How do clients arrive at an AP
or in the campus-wide infrastructure? How are flows gener-
ated at APs? What are their temporal dynamics? Sessions
and flows are interrelated: the load of an AP is given by the
set of network flows that traverse this AP, generated by the
clients associated to it. This paper models these structures in
both spatial and temporal dimensions and investigates their
dependencies and interrelation.

Whereas there is rich literature on traffic characterization
in wired networks (e.g., [25, 4, 7, 6, 18]), there is signifi-



cantly less work of the same detail for WLANs. Hierarchical
approaches to modeling the wireless demand and its spatial
and temporal phenomena have received little attention from
our community. In fact, the only relevant study we are aware
of is the flow-level modeling study by Meng et al. [17]

The first contribution of this paper is methodological in
that it models the demand in large wireless networks tak-
ing a system-wide, multi-level parametric approach. Our ap-
proach distinguishes two important dimensions in wireless
network modeling, namely the user demand (user-initiated
activity through flows and sessions) and the topology (net-
work, infrastructure, and radio propagation dependencies).
This enables us to “superimpose” models for the demand
on a given topology, and focus on the right level of detail
for the performance analysis or simulation study (e.g., AP-
level, system-wide, client-level). This methodology “masks”
network-related dependencies that may not be relevant to a
range of systems and makes the wireless networks amenable
to statistical analysis and modeling. To the best of our
knowledge, this is the first system-wide multi-level model-
ing study of traffic demand in WLANs.

Besides the methodological aspects of our work, our main
contribution consists of coherent parametric statistical mod-
els of the workload of the entire WLAN. Our parsimonious
description of the workload seems very appropriate for sim-
ulation and testbed experimentation studies, while it allows
better insight to the problem than empirical models. The
network load can be simulated at both the client association
and flow levels by using models of the compound process of
sessions and flows. As we show, sessions have a well-behaved
arrival process, which can be accurately described using a
time-varying Poisson process. In addition, an AP preference
distribution can be used as a first rough approximation for
distributing sessions throughout the wireless infrastructure in
a manner that is representative of real workloads. The ses-
sion arrival process provides the seeds for a cluster process, in
which the arrivals of sessions imply the arrivals of correlated
sets of flows. Simulations can first produce a time series for
the session arrival process, and then sample the distributions
of the number of flows and their inter-arrivals to generate the
within-session flow arrival time series. The simulation assigns
a flow size to each flow based on the proposed distribution.
Packet-level details are left to the underlying protocols and
are beyond the scope of our modeling work.

Our contributions are summarized as follows:

• A methodology for the statistical modeling of wireless
network traffic demand, relying on robust statistical
methods to study large-scale phenomena.

• System-wide and AP-level models of traffic demand.
They are more intuitive and parsimonious than the ones
in [17], and capture the network-independent character-
istics of the traffic workload.

• Validation of our modeling results showing their agree-
ment with the measurement data.

The next section briefly reviews the wireless infrastruc-
ture at the University of North Carolina (UNC) and data
acquisition process. Section 3 describes our overall model-
ing methodology. Our modeling results are presented and
evaluated in the next two sections. Section 4 considers the
spatio-temporal characteristics of the entire system, whereas
Section 5 compares our model-driven synthetic traffic with

the original traces. We test the applicability of the proposed
system-wide traffic models for modeling traffic demand in
hotspot APs in Section 6. Section 7 positions our study with
respect to related work in literature, and Section 8 summa-
rizes our main results and future work plan.

2. WIRELESS INFRASTRUCTURE AND
DATA ACQUISITION

Our data come from the large wireless network infrastruc-
ture of the UNC campus. By the time the measurements
were made, about 500 APs provided wireless access to 26,000
students, 3,000 faculty members and 9,000 staff members all
over the 729-acre campus and a couple of off-campus ad-
ministrative offices. The covered building types vary widely:
from academic buildings and libraries to student dormitories
and sport halls.

The majority of APs belong to the Cisco 1200 Aironet
series; the network also features a significant number of 350
series APs and fewer 340 series APs. Two are the main trends
with respect to the infrastructure evolution with time: it is
constantly growing, with APs exceeding 750 by June 2006
and, in parallel, older 340/350 series APs tend to be replaced
by 1230/1240 AG series APs [1].

Two types of measurement data have been used in this
study. SNMP data are collected from each AP every five
minutes. We use a custom data collection system, being
careful to avoid the pitfalls described in [10]. The system
relies on a non-blocking SNMP library for polling APs in an
independent manner and eliminating any extra delays due
to the slow processing of SNMP polls by some of the slower
APs. SNMP polling has been carried out continuously from
September 29th, 2004 until June 26th, 2005. The monitoring
system did not suffer any problems during this period.

However, our analysis concentrates on an 8-day period,
from 12:06 PM on Wednesday April 13rd, 2005 till 22:18 PM
on Wednesday April 20th, 2005, over which we also collected
wireless traffic flow data. Our 178.2 hour long data set con-
sists of a total of 175 GB of packet header traces captured
on the link between UNC and the rest of the Internet. The
packet headers were acquired using a high-precision monitor-
ing card (Endace DAG 4.3 GE) attached to the receiving end
of a fiber split. The card was installed in a high-end FreeBSD
server. Neither the server nor the card’s driver reported any
failures or packet drops during the monitoring process.

The SNMP data are cross-compared with the packet header
trace data and the timestamps in the two datasets are used
to extract the time bounds of the client sessions and identify
the traffic flows that were initiated in each one of them. The
focus in this study is on TCP connections, which constitute
the vast majority of the captured traffic.

Our initial intention was to also examine datasets from the
Dartmouth University campus, in continuation of the higher-
level comparative study of the two networks in [13]. Unfortu-
nately, the available data from the Dartmouth campus do not
allow a direct comparison; packet header traces are collected
by a subset of its wireless infrastructure (31 APs), while the
collected SNMP data do not include all information required
for our two-level modeling approach.

3. MODELING METHODOLOGY
Our modeling approach draws on two fundamental con-

cepts, the wireless session and network flow.



A wireless session can be viewed as an episode in the in-
teraction of a client and the wireless infrastructure: a wire-
less client arrives at the network, associates to one or more
APs for some period of time, and then leaves the infrastruc-
ture. As we will demonstrate, sessions are statistically well-
behaved, and, most significantly, robust to network depen-
dencies. There is consensus in the network community that
traffic modeling should not address elements that are dom-
inated by too specific network-side characteristics or condi-
tions. Otherwise, simulations and experiments using the re-
spective models can never study changes in those conditions
or new network mechanisms that shape those conditions. For
example, in the context of WLANs, modeling the precise se-
quence of associations and disassociations inside sessions is
too network-specific, since small changes in the network lay-
out, physical environment, or network/client equipment can
dramatically change association/disassociation dynamics. A
new proposed algorithm for AP selection may also change as-
sociation dynamics. Therefore, the simulation model should
not impose a priori a certain sequence of associations and
disassociations. This requirement is satisfied when sessions
are the subject of modeling. The simulated session may end
up having completely different association dynamics, but the
corresponding workload (i.e., generated traffic during a time
period) is preserved.

In our approach, sessions represent the high level unit of
wireless network traffic load, including all the packets sent
and received by the APs due to the client’s communication
with one or more Internet hosts. On the other hand, net-
work flows provide a finer level of modeling the packet-level
workload. Working with flows, such as TCP connections and
UDP conversations, is in line with the approach taken in [18,
17, 22] and the principles of network-independent modeling
from [23]. Network flows are well-separated collections of
packets between a pair of Internet hosts, i.e., packets that
share the same transport-layer “5-tuple”. In our model, a
session groups the set of flows started by a client. Therefore,
simulating the traffic workload consists of simulating sessions
and the flows started inside them, leaving packet-level and
association dynamics to underlying mechanisms that are in-
dependent of our model.

We have chosen to rely on parametric models for the traffic
demand variables. When compared with empirical models,
they provide better insight to the properties and the dynam-
ics of the modeled quantities. In parallel, they are more ad-
equate in summarizing datasets and make their comparison
straightforward. Therefore, we propose statistical distribu-
tions for both session- and flow-level traffic variables. Par-
ticularly relevant in this context is the biPareto distribution,
proposed in [18] to model the number of TCP connections
per HTTP user session and the average inter-connection time
within a session. In deriving distributions that best fit our
data, we repeatedly make use of formal and visual statistical
analysis methods and tools, such as the quantile plots with
simulation envelopes. The interested reader may find more
details regarding these plots in [11] and about the biPareto
distribution in [18] and the Appendix.

4. SYSTEM-WIDE MODELING OF TRAF-
FIC DEMAND

4.1 Session Arrivals

The starting point of our model is the process of session
arrivals. Figure 1 shows the point process of session arrivals
for the 8-day trace. Each dot in the scatterplot corresponds
to the arrival of a session, and each arrival is placed accord-
ing to its temporal (arrival time in x-axis) and its spatial
(AP of first association in the y-axis) coordinate. Although
session arrivals vary widely, some expected patterns are ap-
parent. Firstly, there is a clear diurnal periodicity, which is
related to the substantial decrease of the network activity
during the nights. Secondly, the activity of network clients
decreases during the weekend (days 3 and 4 in the plot).
These temporal patterns appear to be common throughout
the AP population, although some APs are more likely to be
used at night than others.

Figure 2 provides an even clearer picture of these tempo-
ral variations. It plots the time-series of session arrivals for
the entire network using 1-hour bins. The time-series plot
shows sharp increase in the number of session arrivals in the
morning, reaching a peak between 1,000 and 1,110 sessions
per hour during weekdays and 350 session arrivals per hour
during the weekend. This pattern generally holds throughout
the ten months covered by our SNMP dataset, except for spe-
cific time periods, such as the Christmas break, during which
the activity decreases considerably and the diurnal/weekly
variation is milder.

Figure 1 also lets some insight to the spatial dimension
of the session arrival process, i.e., the way sessions arrivals
are distributed amongst the network APs. Although the AP
ranking along the y-axis is random, it clearly hints at wide
spatial variability of the workload. To illustrate this clearly,
Figure 3 plots the probability that a session is initiated at a
given AP, hereafter called AP-preference distribution. APs
in this plot are numbered in order of their popularity as
session-starting points, lower indices indicating more popular
APs. The plot suggests that a few APs receive a substan-
tial fraction of all sessions, with most APs being the starting
points for only a few wireless sessions.

One remarkable aspect of Figures 2 and 3 is the smooth-
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Figure 1: Arrivals of sessions from wireless clients
over time and across the campus APs.
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Figure 2: Time-series of session arrivals in the entire
campus WLAN (1-hour bins).
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Figure 3: AP-preference distribution: APs are
sorted by decreasing popularity.

ness of the curves, suggesting phenomena that are amenable
to modeling. In fact, our analysis reveals that session ar-
rivals follow a time-varying Poisson process, and that the
AP-preference distribution is accurately described by a log-
normal distribution.

4.1.1 Session arrival process
We model the session arrival process as a time-varying

Poisson process and test the validity of our modeling assump-
tion with the statistical test described in the Appendix. For
the model to be valid, the variables Rijs, which are defined
in (1) as functions of the ordered session arrival times, must
be exponentially distributed with a mean equal to unity and
uncorrelated. The top part of Figure 4 shows an exponential
quantile plot of the Rijs during one randomly chosen hour.

We set the block length L = 0.1 hours in calculating the
Rijs. The red quantile plot follows closely the green diago-
nal line and remains well within the blue simulation envelope.
This suggests that the exponential fit is clearly appropriate.
The maximum likelihood estimate of the exponential para-
meter is 0.9372, which is very close to unity, and agrees with
the claim that the Rijs are standard exponential. The bot-
tom plot of the figure plots the autocorrelations of the Rijs
up to 20 lags. The sample autocorrelations are always within
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Figure 4: The Rijs are independent and exponen-
tially distributed. Only one hourly block is shown
here, but the results are consistent across the entire
dataset.

the confidence intervals, so the Rijs do not exhibit any sig-
nificant correlations. We got similar results when repeating
the same analysis for other one-hour intervals of the 8-day
dataset.

4.1.2 AP-preference distribution
Our analysis shows that a lognormal distribution with pa-

rameters µ = 4.0855 and σ = 1.4408 is a good model for the
AP preference distribution. As we can see in Figure 5, the
original data, shown in red, lie within the natural variability
of the lognormal model, since they remain within the blue
simulation envelope. The only departure from lognormality
is for the smallest values, i.e., for APs that more rarely serve
as session-starting APs, hence featuring very small number
of samples. Overall, the lognormal distribution is an excel-
lent description of the data. We have also considered other
models but they are clearly outperformed by the lognormal
fit. For example, Zipf’s law, a classic way of describing pop-
ularity, is very far from the AP-preference distribution in our
data.
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Figure 5: Lognormal model of AP-preference distri-
bution.



4.2 Flow Arrival Process
At the next modeling level, the arrival of a session triggers

the arrival of a group of flows, initiated between the client
and one or more Internet hosts. It is therefore natural to
describe flow arrivals as a cluster process [18] rather than a
point process in which flows arrivals are described in isola-
tion. Since session arrival counts are (time-varying) Poisson
distributed, flow arrivals form a cluster Poisson process. The
flow-level traffic variables that need to be modeled with this
approach are the number of flows associated to each session-
cluster, and the inter-arrivals of flows within sessions.

4.2.1 Number of flows within session
Our analysis showed that the biPareto distribution yields

the best fit for the number of flows per session. Figure 6 plots
the complementary cumulative distribution function of the
fitted distribution against the empirical data in a logarithmic
scale.

The red circles are an equidistant set of samples from a bi-
Pareto distribution with parameters α = 0.06, β = 1.72, c =
284.79 and k = 1. The empirical distribution of the number
of flows (in blue) matches well our model for probabilities
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Figure 6: Number of flows per session.
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Figure 7: Stationarity of the distribution of the num-
ber of flows per session (body).

between 0 and 0.995. The fit is worse at the tail due to sam-
pling artifacts. In any event, it is clear that the biPareto
model fits the empirical distribution very well.

We have also studied how the distribution of the in-session
number of flows varies per day. Figure 7 plots the distribution
of the variable for each one of the 8 days in the dataset (see
[11] for a plot of the ccdf). The eight distributions are very
similar, with the vast majority of the sessions having between
1 and 1000 flows. The distributions for the weekends are
slightly heavier. The number of flows per session goes as far
as 10,000 for 0.1% of the sessions. This striking consistency
of the eight curves strongly indicates that it is feasible to use
parametric models for the traffic variables.

4.2.2 Flow interarrivals within session
The second component of our cluster model is the distrib-

ution of the flow inter-arrivals within sessions. We show that
a lognormal model provides the best fit, although the distri-
bution is rather complex. The lognormal quantile plot for
the empirical data is shown in Figure 8; the parameters are
estimated to be µ = −1.3674 and σ = 2.785 using maximum
likelihood. The red quantile plot follows the green diagonal
line closely for all of the quantiles. The simulation envelope
is very narrow in this case, and shows that some deviations
from the lognormal model in the upper part are significant.
While more complex models, e.g., an ON/OFF model, may
provide a better approximation, our lognormal fit certainly
provides a reasonable description of the data using only two
parameters.

We have also studied the stationarity of the flow inter-
arrivals within sessions. Both their cdf (Figure 9) and ccdf
(see [11]) plots suggest that the flow inter-arrivals during each
day are very consistent with each other.

4.3 Flow Sizes and Packet-Level Load
To enable generation of the packet-level load in a manner

suitable for closed-loop simulation and testbed experimen-
tation, it is necessary to describe not only the flow arrival
process but also the flow sizes in terms of number of bytes
they transfer. Our statistical analysis reveals that flow sizes
can be accurately described using a biPareto distribution
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Figure 10: BiPareto model of flow sizes.

with parameters α = 0.00, β = 0.91, c = 5.20 and k = 179.
Figure 10 plots the biPareto fit (red circles) to the empirical
data (blue curve). The fit is excellent for most of the distri-
bution with biPareto clearly capturing the transition in the
slope between the body and the heavy tail of the empirical
distribution. The approximation appears heavier than the
empirical data at the end of the tail, which could motivate
further refinements of the fit.

We have also examined the stationarity of the flow size dis-
tributions over different days (the respective plots are pro-
vided in [11]). We found consistent tails for the eight days
suggesting that weekly periodicities are not critical for mod-
eling the flow sizes.

Table 1 summarizes our proposed statistical models for the
system-wide traffic workload.

5. MODEL VALIDATION

5.1 Methodology
We evaluate the efficiency of our proposed system-wide

models via simulation. The synthetic traffic generated ac-
cording to the models described in Section 4 is compared

against the original trace. Furthermore, we synthesize traf-
fic via simulation of two other modeling alternatives. The
first one is the compound model described in [18], which also
discriminates between sessions and flows but differentiates in
the way the within-session flow interarrivals are modeled. We
refer to this model as the compound model in the subsequent
discussion and plots. The second method is the flat flow-level
modeling approach, where there is no session concept. The
flow arrival process is assumed to be a renewal process; we es-
timate the empirical distribution of flow-interarrivals directly
from the trace and use it to generate the time series of flow
arrivals in the synthetic traffic generator. We simulate this
model only as a comparison reference, to better illustrate the
advantages of the two-level approach.

Given the heavy-tailed session duration, we impose simula-
tion times in the order of days. In particular, we let the sim-
ulator synthesize traffic over a three-day interval (simulation
time) and process the measured traffic variables obtained in
the third day. To simulate the time-varying Poisson process
for the per-hour session arrivals, which is required for our
two-level model and the compound model, we use the thin-
ning process described in [14].

In order to validate the model, we consider traffic vari-
ables not explicitly addressed by our models. Such variables
are the aggregate flow arrival count process and the aggre-
gate flow interarrival time-series. For the former, we plot the
nunber of aggregate flow arrivals with time and their Coeffi-
cient of Variation (CoV) when estimated over different time
scales. For the aggregate flow interarrivals, we examine the
first-order (quantile plot) and second-order (autocorrelation
function) statistics.

5.2 Aggregate flow interarrivals
We plot the quantiles of the simulated data from our model

against the original trace data in Figure 11. The match is
excellent and only for values exceeding the 99.9th percentile
of simulated data do we see some deviation between the two
datasets. The compound model of Nuzman et al. [18] per-
forms worse (see [11]). Note that we have found that the flow
interarrivals within a session follow a lognormal distribution;
the compound model with the transformed Weibull variables
cannot give an equally good fit for these interarrivals and
this is reflected in the aggregate flow interarrival data.

Figure 12 plots the autocorrelation function of the syn-
thetic aggregate flow interarrivals as estimated from our sim-
ulated model against the original trace. Though less precise
than with first-order statistics, the simulated curve implies
that the model can capture the second-order dynamics in the
trace.

5.3 Aggregate flow arrivals
Figure 13 depicts the number of aggregate flow arrivals

within intervals of one hour. The two-level model tracks
closely the original trace in this respect, and certainly bet-
ter than the other two approaches, although it overestimates
the arrivals during the busy hours. The compound model
yields less satisfactory matching, although it can respond to
the non-stationarity of flow arrivals thanks to its provision
for time-varying Poisson session arrivals. On the contrary,
the flat model cannot respond to the time variations of flow
arrivals, since the empirical distribution is estimated over the
full trace and averages the hourly fluctuations of the traffic
demand.



Table 1: Summary of models for system-wide traffic demand variables.

Modeled variable Model Probability Density Function (PDF) Parameters

Session arrival Time-varying Poisson N : # of sessions between t1 and t2 Hourly rate: 44 (min),

with rate λ(t) λ =
t2

t1

λ(t)dt, Pr(N = n) = e−λλn

n!
, n = 0, 1, . . . 1132 (max), 294 (median)

AP of first association/session Lognormal p(x) = 1√
2πxσ

exp − (ln x−µ)2
2σ2

µ = 4.0855, σ = 1.4408

Flow interarrival/session Lognormal Same as above µ = −1.3674, σ = 2.785

Flow number/session BiPareto p(x) = kβ(1 + c)β−αx−(α+1)(x + kc)α−β−1 α = 0.06, β = 1.72,
(βx + αkc) , x ≥ k c = 284.79, k = 1

Flow size BiPareto Same as above α = 0.00, β = 0.91,
c = 5.20, k = 179
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Figure 11: Quantile-quantile plot of the aggregate
flow interarrivals: simulated two-level model vs.
trace.
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Figure 12: Autocorrelation of aggregate flow inter-
arrivals: simulated two-level model vs. trace.

Finally, the CoV of the flow arrival count process over dif-
ferent time intervals is the subject of Figure 14. Our model
matches very well the original trace throughout the different
time scales outperforming the other two simulated models.
The compound model exhibits equally good behaviour for
small time intervals, but its deviation grows for higher time
scales. For these scales, the deviation of the i.i.d model from
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Figure 13: Number of aggregate flow arrivals over 24
hours: simulated models vs. trace.
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Figure 14: CoV of number of aggregate flow arrivals
over different time intervals: simulated models vs.
trace.

the trace is even larger, making clear its inefficiency to cap-
ture the statistical structure of the trace.

6. AP-LEVEL MODELING
In this section, we investigate whether the two-level mod-

eling approach for the traffic demand of the whole network
can also be applied to individual APs. Intuitively, modeling



Table 2: Summary of our ap-level model (AP 222).
Modeled variable Model Parameters

Session arrival Time-varying Poisson with rate λ(t) Hourly rate: 1 (min), 928 (max), 11 (median)
Flow inter-arrival/session Lognormal µ = −1.6355, σ = 2.6286
Flow number/session BiPareto α = 0.07, β = 1.75,

c = 295.38, k = 1
Flow Size BiPareto α = 0.00, β = 1.02,

c = 15.56, k = 111
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Figure 15: The Rijs in AP 222 are independent
and exponentially distributed. One randomly cho-
sen hour is shown.

1 10 100 1,000 10,000 100,000
0.001

0.01

0.1

1

# of flows per session (AP 222)

C
C

D
F

Empirical CCDF
BiPareto (0.07, 1.75, 295.38, 1)

Figure 16: BiPareto model of number of flows per
session in AP 222.

single APs is more difficult, since the reduction in the level of
aggregation makes the data less well-behaved. However, we
will demonstrate that the modeling insights from the system-
wide modeling in Section 4 are also useful here, at least for
selected hotspot APs of the wireless infrastructure. In the
remainder of this section we focus on AP 222, one of the
hotspots of the UNC wireless network. The statistical dis-
tributions derived for the traffic demand variables of AP 222
are summarized in Table 2.

Section 4.1 argues that the process of session arrivals at
the entire wireless network can be described using a time-
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Figure 17: Simulation envelope for biPareto fit of
flows per session in AP 222.

varying Poisson process. This is also the case for the process
of session arrivals at AP 222. As in Section 4.1, we randomly
select one hour during which there are more than ten session
arrivals at AP 222, divide it into ten six-minute blocks and
calculate the Rijs according to (1). The top part of Fig-
ure 15 shows an exponential quantile plot of the Rijs, which
suggests that the exponential fit is clearly appropriate. The
maximum likelihood estimate of the exponential parameter
is 0.9027, which is very close to unity. The bottom plot of
the figure illustrates the autocorrelations of the Rijs up to
20 lags, from which one can tell that there is no much corre-
lation among the Rijs. We obtain similar results for all the
hours during the 8-day trace, which have at least ten arrivals.
The threshold of ten arrivals is chosen rather subjectively to
ensure a large enough sample for the quantile plots.

The Poisson distributed session arrivals at AP 222 give rise
to an interesting interpretation of the AP-preference function
shown in Figure 3. It is well known that if a Poisson process is
randomly partitioned into several point processes according
to a set of fixed probabilities, the resulting point processes are
still Poisson processes with rates proportional to the respec-
tive partition probabilities. In our study, the AP-preference
probabilities may be viewed as the partition probabilities. As
a result, the session arrival processes at separate APs should
be approximately Poisson. This observation also supports
the use of a simple algorithm for simulating session arrivals
at specific APs. After simulating a certain number of ses-
sions for the entire network, one can assign them to different
APs using their corresponding AP-preference distribution.

When we consider a single AP, the number of flows per
session can also be described with great accuracy using a
biPareto distribution, as demonstrated in Figure 16. A bi-
Pareto simulation envelope is superimposed in Figure 17,
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Figure 19: Model of flow size for AP 222.

which shows that the fit is clearly excellent, even for the
values with the smallest probability located in the far part
of the tail.

Next, we study the flow inter-arrivals within the sessions
that started in AP 222, and the lognormal model proposed
for the entire system remains applicable here. Figure 18 de-
picts the corresponding lognormal quantile plot. The two pa-
rameters are estimated to be -1.6355 and 2.6286 using max-
imum likelihood. Although the fit is worse than the one for
the system-wide modeling, the quantile plot again follows the
diagonal line closely, and the fit could still be useful.

Finally, a biPareto distribution yields an excellent fit for
the size of flows that start from AP 222 in Figure 19.

7. RELATED WORK
Most traffic characterization studies focus on wired net-

works. Hierarchical approaches, looking at traffic variables
above the packet-level, emerged in mid 90s. Flow-level traffic
variables have been the subject of modeling in various stud-
ies, embracing almost all Internet protocols and applications,
mainly TCP traffic [7, 6, 22, 9] but also multimedia streaming
traffic [16]. The concept of session as a structure of the user

activity was used in [23] for FTP traffic, as a synonymous of
the FTP control connection. The term was used more ex-
plicitly later in Web traffic modeling. Both empirical [15, 24]
and statistical [4, 18] modeling approaches have been used
for the description of traffic at the two levels. A common
feature of these studies is that the flow/session borders are
heuristically defined by intervals of user inactivity. Our ap-
proach has been inspired by these studies, in particular from
the approach of Nuzman et al. [18]. However, there are two
main differences. Firstly, we relate the concept of session
to the MAC-layer interaction of the user with the wireless
network. Secondly, we do not adopt the scaling of in-session
flow interarrival times according to the mean flow interar-
rival time, which is explicitly modeled in [18]. We rather fit
in-session flow interarrival times directly to the trace data.

Fewer is the related work in wireless local area networks.
The majority of the measurement studies [10, 3, 2] make
high-level observations about traffic dynamics in both the
temporal and spatial domain. Papadopouli et al. analyze the
AP traffic patterns in various time scales and identify diurnal
and weekly periodicites [20, 19], non-uniform distribution of
workload across the wireless infrastructure [13], time-varying
Poisson process client arrivals at APs, and building type de-
pendencies [21]. To assess the impact of the wireless access
on traffic characteristics, Hernández and Papadopouli [12]
make a comparison of the wired and wireless traffic of the
UNC campus with respect to flow-level traffic variables, such
as connection duration, size and round-trip-time (RTT).

To the best of our knowledge, the only study that addresses
the WLAN traffic modeling at higher detail is the one by
Meng et al. [17]. It uses syslog and tcpdump traces from
31 APs in five buildings of the Dartmouth campus to model
flow arrivals at 15 APs in one-hour intervals. They propose
a Weibull distribution, and capture the non-stationarity of
traffic in the variation of its scale parameter, which is esti-
mated via Weibull regression. Furthermore, they model the
flow size with a lognormal distribution. The authors find
that a small percentage of the flows is roaming, i.e., access-
ing data from more than one AP, and model the number
of AP visits within an session with a geometrical distribu-
tion. They also observe strong similarity in the flow arrival
processes at neighboring APs.

Contrary to [17], our work captures the non-stationarity
of traffic workload at the session- rather than the flow-level
via a time-varying Poisson process for session arrivals. We
believe that this hierarchical approach provides better in-
sight to the underlying causes of the temporal variations of
the workload. Moreover, we use more data coming from a
significantly larger number of APs, which allows us to see a
significantly higher spatial variation of traffic load.

The modeling of traffic workload for each single AP over
one-hour intervals, as proposed in [17], does not scale well.
On the other hand, our AP-preference distribution approach
is too coarse to model reliably the traffic demand spatial dy-
namics. In fact, selecting the appropriate scale for modeling
the spatial characteristics of traffic workload is an open ques-
tion that largely depends on the particular mechanism that
needs to be analyzed. The AP-level can be problematic, since
minor changes in the AP infrastructure, e.g., addition of a
new AP, may change significantly the workload distribution
per AP. Higher levels of spatial aggregation, such as build-
ings or building types appear to be more appropriate in this
context.



8. CONCLUSIONS
We present a hierarchical methodology for modeling the

traffic demand in a campus wireless network. The two mod-
eling levels are the wireless sessions and network flows. We
investigate their statistical properties and inter-relations, de-
riving statistical distributions for a number of network-wide
traffic demand variables, such as the session arrival rate, the
flow number and their interarrivals within a session. The
shift to sessions features two important advantages. Unlike
visits to an AP, sessions can mask the network-related depen-
dencies that are not important for a range of applications and
system functions and exhibit nice statistical properties that
make them amenable to modeling.

A standard challenge with measurement-based modeling is
to find out how general is the validity of the derived models
and up to what extent they can be reused. The validation
of the models can be tried in different ways. In this paper,
we use our models to generate synthetic traffic and compare
it to the original trace with respect to traffic variables that
have not been taken explicitly into account in our modeling
approach. We find that the simulated traffic matches well
the original trace. Interestingly, our modeling results also
capture traffic demand characteristics in individual hotspot
APs, implying that they can be used for modeling traffic
workload over finer levels of spatial aggregation. As a further
validation step, we are currently applying our modeling ap-
proach to measurement data obtained from UNC infrastruc-
ture during the last week of April 2006, i.e., a year after the
tracing period of this paper. The first results suggest that
the parametric distributions proposed in this paper hold for
the new measurement data as well. A third, apparent, model
validation step is the application of our models to measure-
ment data collected from other infrastructures; however, as
explained in Section 2, this is not always straightforward.
We believe that better co-ordination of measurement efforts
within the wireless networking research community will al-
low better reusability of measurement data and enable the
coherent evaluation of models and tools.

Modeling the spatial dynamics of traffic load is challeng-
ing. In this paper, we look at this problem from two direc-
tions. We explore to what extent the findings of system-wide
modeling pertain to lower levels of spatial aggregation (i.e.,
hotspot AP). Furthermore, we derive the AP-preference dis-
tribution as a coarse abstraction of the spatial dynamics of
the traffic load. We currently explore the spatial distribu-
tion of the network flows and sessions at various scales of
spatial aggregation, such as the building, and building type.
This information could be very beneficial in simulating dif-
ferent sizes of wireless networks and studying their spatial
evolution.

A further refinement of our models will consider how the
population size of wireless users relates to the process of ses-
sion arrivals. Client dynamics are difficult to understand due
to the wide range of behavior and pervasive non-stationarities.
Some clients use the infrastructure only one or a few times
and then disappear from the system, whereas others repre-
sent a more constant load. Understanding this part of the
workload will make simulations more intuitive, since their
input could be the number of clients and a parametric de-
scription of their access patterns.
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APPENDIX
BiPareto distribution
The biPareto distribution is specified by four parameters (α,
β, c and k), whose complementary cumulative distribution
function (CCDF) is given by

x

k

−α x/k + c

1 + c

α−β

, x ≥ k.

k > 0 is the minimum value of a biPareto random variable,
which is a scale parameter. The CCDF initially decays as
a power law with exponent α > 0. Then, in the vicinity of

a breakpoint kc (with c > 0), the decay exponent gradually
changes to β > 0.

Essentially, the biPareto distribution has two Pareto tails
on both ends of the distribution. On a log-log plot, a CCDF
of the form x−α (a Pareto tail) would appear as a straight line
with slope −α. Thus, the log-log plot of a biPareto CCDF

has two nearly linear regimes, with slopes − c
1+c

α + 1
1+c

β

and −β, respectively. This property of the distribution makes
it a good choice for modeling the number of flows per session
and flow sizes in Section 4. Its parameters can be estimated
via maximum likelihood [18].

A Statistical Test for Time-varying Poisson
Processes
In this section, we describe a test [5] for the null hypothesis
that an arrival process is a time-varying Poisson process, with
a slowly varying arrival rate.

To begin with, we break up the interval of a day into rela-
tively short blocks of time. For convenience, blocks of equal
length, L, are used, resulting in a total of I blocks; though
this equality assumption can be relaxed. For the analysis in
Section 4.1, L is chosen to be 0.1 hour.

Let Tij denote the jth ordered arrival time in the ith block,
i = 1, . . . , I . Thus Ti1 ≤ . . . ≤ TiJ(i), where J(i) denotes the
total number of arrivals in the ith block. Define Ti0 = 0 and

Rij = (J(i) + 1 − j) ln
L − Ti,j−1

L − Tij
, j = 1, ..., J(i). (1)

Under the null hypothesis that the arrival rate is constant
within each time interval, the {Rij} will be independent stan-
dard exponential variables as we now discuss.

Let Uij denote the jth (unordered) arrival time in the ith
block. Then the assumed constant Poisson arrival rate within
this block implies that, conditioning on J(i), the unordered
arrival times are independent and uniformly distributed be-
tween 0 and L. Denote Vij = L

L−Uij
, and it follows that Vij

are independent standard exponential. Note that Tij = Ui(j),
thus

Vi(j) = ln
L

L − Ui(j)

= ln
L

L − Tij
.

As one can see, Rij = (J(i) + 1 − j) Vi(j) − Vi(j−1) . Then,
the exponentiality of Rij follows from the following well-
known lemma.

Lemma: Suppose X1, . . . , Xn are independent standard
exponential, then Yi = (n−i+1)[X(i)−X(i−1)], i = 2, . . . , n,
are independent standard exponential.

Any customary test for the exponential distribution can
then be applied to Rij for testing the null hypothesis. For
example, the familiar Kolmogorov-Smirnov test or Anderson-
Darling test [8] could be used. However, as noted in [4], sta-
tistical significance tests are not very useful with large data
sets, because they always tend to give insignificant results.
Thus, we prefer to test the exponentiality hypothesis using
a graphical tool, such as an exponential quantile plot with a
simulation envelope as described in [11].


