
CHAPTER 5

Generating Traffic

Today’s scientists have substituted mathematics for experiments, and they wander off

through equation after equation, and eventually build a structure which has no relation

to reality.

— Nikola Tesla (1857–1943)

Reality is merely an illusion, albeit a very persistent one.

— Albert Einstein (1879–1955)

This chapter discusses the use of the data acquisition and modeling methods presented in the two

previous chapters to generate traffic in network experiments. In addition, it discusses the overall method-

ology we have developed for validating our traffic generation approach. We will distinguish between

validating the method itself, and studying how closely the generated traffic approximates real traffic for

properties not directly incorporated in the method. In this chapter, we consider the validation of the

method itself, which means to verify that the source-level properties and network-level parameters of

the traffic are preserved by the traffic generation method. The study of other properties is left for the

next chapter.

5.1 Replaying Traces at the Source-Level

Our approach to traffic generation is illustrated in Figure 5.1. Given a packet header trace Th

collected from some Internet link, we first use the methods described and evaluated in Chapters 3 and

4 to analyze this trace and describe its content. This description is a collection of connection vectors

Tc. Each vector describes the source-level behavior of one of the TCP connections in Th using either

the sequential or the concurrent a-b-t model. In addition, each vector includes the relative start time of

each connection, and its measured round-trip time, TCP receiver window sizes and loss rate. The basic

Tmix Tra f f ic
G enera tors

Tmix Tra f f ic
G enera tors

Tra ce P a rtitioning

TE S TB E D

O rig ina l P a ck et
H ea d er Tra ce

Th

O rig ina l P a ck et
H ea d er Tra ce

Th

O rig ina l
Connection Vectors

Tc

O rig ina l
Connection Vectors

Tc

Trace Analysis

G enera ted P a ck et
H ea d er Tra ce

Th′

G enera ted P a ck et
H ea d er Tra ce

Th′

R ep l a y ed
Connection Vectors

Tc′

R ep l a y ed
Connection Vectors

Tc′
Trace Analysis

Figure 5.1: Overview of Source-level Trace Replay.

approach for generating traffic according to Tc is to replay each connection vector. For each connection

vector, the replay consists of starting a TCP connection, carefully preserving its relative start time, and

reproducing ADUs and inter-ADU quiet times. We call this traffic generation method source-level trace

replay, and we have implemented it in a network testbed. Source-level trace replay in our environment

implies the need to first partition Tc into disjoint subsets and then assign each subset to a pair of traffic

generators. Partitioning is important in our environment, since the high throughput and large number

of simultaneously alive connections in our real traces prevents us from using a single pair of traffic

generators. We provide further details on our partitioning method in 5.1.1.

The goal of the direct source-level trace replay of Tc is to reproduce the source-level characteristics

of the traffic in the original link, generating the traffic in a closed-loop fashion. Closed-loop traffic

generation requires to simulate the behavior of applications, using regular network stacks to actually

translate source-level behavior (the input of the generation) into network traffic (the output of the

generation). In our implementation, described in Section 5.1.2, this is accomplished by relying on the

standard socket interface to reproduce the communication in each connection vector. This is a closed-

loop manner of generating traffic in the sense that it preserves the feedback mechanisms in the TCP

layer, which adapt their behavior to changes in network conditions, such as in congestion. In contrast,

packet-level trace replay, which means to directly reproduce Th, is an open-loop traffic generation method

where TCP and lower layers are not used, and the traffic does not adapt to network conditions.

A new packet header trace T ′

h
can be obtained from the source-level trace replay of Tc. Our validation

of the traffic generation method is then based on analyzing this trace using the same methods used to

140

FreeBSD
Router

FreeBSD
Router

tmix +
dummynet

end-systems

1 Gbps

1
Gbps

1
Gbps

100
Mbps

tmix +
dummynet

end-systems

Ethernet
Switch

tcpdump monitor

Ethernet
Switch

100
Mbps

… …

Figure 5.2: Diagram of the network testbed where the experiments of this dissertation were
conducted.

transform Th into Tc. We then compare the resulting set of connection vectors T
′

c
with the original Tc.

In principle, they should be identical, since Tc represents the invariant source-level characteristics of Th.

Section 5.2 studies the results from the source-level trace replay of three traces, assessing how closely T
′

c

approximates Tc. T
′

h
is necessarily different from Th. Besides the stochastic nature of network traffic, this

is because T
′

h
is generated according to Tc, which is a simplified description of the source-level behavior

and network parameters in the original trace Th. It is however important to understand the difference

between Th and T
′

h
in order to understand to what extent Tc describes the original traffic. Chapter 6 is

an in-depth study of this question.

5.1.1 Trace Partitioning

The focus of our traffic generation work is the generation of wide-area traffic in a closed-loop manner.

This type of generation process requires to drive a large number of connections by simulating the behavior

of the applications on the endpoints. For example, the experiments presented in the latter part of this

chapter involve several millions of TCP connections, behaving in the manner specified by as many

connection vectors. At any given point in time during the generation, tens of thousands of connections

are active. Given CPU, memory and bus speed limitations, a single pair of traffic generators cannot

handle such loads, so we generate traffic in our experiment in a distributed fashion. Experiments are

conducted in the environment illustrated in Figure 5.2. The goal of the experiment is to generate traffic

on the link between the two routers. Traffic is generated by 42 traffic generators, 21 on each side of the

network. This type of topology is usually known as the “dumbbell” topology.

Each pair of traffic generators (one on each side) is responsible for replaying the source-level behavior

of a (disjoint) subset of the connection vectors in Tc. In our experience, assigning connection vectors to

141

subsets in a round-robin fashion works well. While the resulting subsets are far from being completely

balanced, this simple partitioning technique results in subsets that can be easily handled by a pair of

traffic generators. We carefully collected statistics on CPU and memory utilization from our source-level

trace replay experiments, and found that no pair of traffic generators was ever overloaded. For the

results in this dissertation, CPU utilizations were never above 60%, and usually well below that. The

use of network connections involves allocating and deallocating pieces of memory known as “mbufs” for

buffering purposes. No request for this type of memory was ever denied for the experiments reported in

this dissertation. While larger traces than the ones we use in this dissertation could certainly overload

our specific environment, our approach is fully scalable, in the sense that Tc can be partition into an

arbitrary number of subsets. This means that the number of traffic generators can increase as much as

necessary to handle the replay of any trace without running into resource constraints. This is obviously

true as long as no individual connection requires more resources than those provided by an entire traffic

generator end host.

5.1.2 Conducting Experiments

We have developed a traffic generation tool, tmix , which accurately replays the source-level behavior

of an input set of connection vectors using real TCP sockets in a FreeBSD environment. In addition, we

make use of a modified version of dummynet [Riz97] to apply arbitrary packet delays and packet drop

rates to the segments in each connection1 Our version of dummynet , that we will call usernet in the rest

of this text, implements a user-level interface that can be used by tmix instances to assign per-connection

delays and loss rates read from the input set of connection vectors. Finally, a single program, treplay , is

used to control the setup of the experimental environment, configure and start tmix instances (assigning

them a subset of Tc and a traffic generation peer), and collect the results.

Tmix is a user-level program that receives a collection of connection vectors as input, and generates

traffic according to their source-level behavior. Figure 5.3 illustrates the relationship between tmix and

the network layers in the traffic generation end host in which a tmix instance runs. Tmix instances

rely on the standard socket interface to create a connection, send and receive ADUs, and to close the

connection. The socket interface is an Application Programming Interface (API) that enables user-level

programs, such as tmix , to communicate with other end host using a programming abstraction similar

to a file. Calls to the socket interface are translated by the kernel into requests to use the process-to-

1We thank the members of the FreeBSD project in general, and in particular the creator of dummynet , Luigi Rizzo,

for their outstanding work. Our empirical work would not have been possible without their generous efforts.

142

User-L ev el

Socket LayerK ern el -L ev el

T C P Layer
I P Layer

N et w o rk

U s ern et

op en () cl os e()
s en d () recv ()

i octl (src_port,
rtt, l oss)

op en (src_port) cl os e()
s en d () recv ()

Set of C on n ecti on V ectors

tm i x

Figure 5.3: End-host architecture of the traffic generation system.

process communication service provided by the transport layer (TCP). The transport layer itself uses

the host-to-host communication service provided by the network layer (IP), and the network layer uses

the link layer (Ethernet in our case) to handle the network interface and create physical packets.

Usernet

Our experiments also require a special simulation service, usernet , which is a modified version of

dummynet , that provides a highly scalable way of imposing per-connection round-trip times and loss

rates. These per-connection round-trip times and loss rates are directly controlled from the user level by

tmix instances. This requires a direct communication between the tmix instance and the usernet layer

that is not directly supported by the network stack. In order to overcome this difficulty, we use a covert

communication channel: the source port number of each replayed connection. By having tmix assigning

specific source port numbers to each connection, we can then use ioctl calls to modify a table at the

usernet layer that maps source port numbers to round-trip times and loss rates. When a segment is

received by usernet (from the higher layer), usernet can appropriately use the source port number to

decide which network parameters should be applied. Source port numbers are unique for each active

connection in the same end host, and they are always present in TCP segments2. The user-level program,

i.e., the tmix instance, has therefore to keep track of the (dynamic) source port number that is used for

each new TCP connection it opens. Using this technique, usernet can determine the delay and loss rate

that should be applied to each segment simply by reading an entry in a table indexed by source port

2Fragmentation takes place below the usernet layer. Figure 5.3 can be confusing in this regard, since fragmentation

does take place at the IP layer. Usernet is actually embedded in the IP layer.

143

number, so the lookup time is O(1). The number of source port numbers is small (216), so this table

does not require too much kernel memory (524 KB). No special infrastructure was required to accurately

replay the receiver window sizes measured for each connection. This is because these parameters can be

directly modified by tmix instances using a FreeBSD system call. This approach has worked very well

in our experiments.

An alternative solution using traditional dummynet would be to use the programmable API of ipfw,

which makes it possible to add new dummynet rules from a user-level program. The idea would be to

add a new rule for each connection, again using the source port number to map delay/loss to individual

connections. However, this will mean an O(n) lookup cost for each segment, where n is the number of

rules, since the current implementation of ipfw searches through the rules in a sequential fashion. Given

the large number of connections that each end host handles during the experiments, this per-segment

lookup is unacceptable.

Another way of introducing per-connection round-trip times was used by Le et al. [LAJS03]. This

study used random sampling from a uniform distribution whose parameters were be set at the start

of the experiment. As seen in Section 4.1.1, the uniform distribution is not a good approximation of

real round-trip times. A later refinement enabling sampling from an empirical distribution was rather

inflexible, since it required to modify the dummynet source code and recompile it for each experiment.

The use of usernet , which is fully controllable from the user level, is far more convenient.

Replaying an a-b-t Connection Vector

Two instances of tmix can replay an arbitrary subset of Tc by establishing one TCP connection for

each connection vector in the trace, with one instance of the program playing the role of the connection

initiator and the other instance playing the role of the connection acceptor. To begin, the connection

initiator opens the connection and performs one or more socket writes in order to send exactly the

number of bytes specified in the first ADU a1. The other endpoint accepts the connection and reads

as many bytes as specified in the ADU a1. For efficiency, the size of these read and write operations

was chosen to be a multiple of the MSS in our Ethernet testbed (1,460 bytes). We made no attempt to

actually measure and reproduce the size of the I/O operations in the original connections. The impact

of this simplification is likely to be small, given the results in Section 3.4.

One important issue is how to synchronize the two endpoints (i.e., instances of tmix) of the con-

nection to replay exactly the same connector vector. This is accomplished by having the first ADU

144

unit in each generated connection include a 32-bit connection vector id in the ADU’s first four bytes.

Connection vector ids are assigned to each connection vector prior to the traffic generation, and they

are unique. Since this id is part of the content of the first data unit, the acceptor can unambiguously

identify the connection vector that is to be replayed in this new connection. If a1 is less than 4 bytes

in length, the connection initiator will open the connection using a special port number designated for

connections for which the id is provided by the connection acceptor. This approach guarantees that the

two tmix instances always remain properly synchronized (i.e., they agree on the Ci they replay within

each TCP connection) even if connection establishment segments are lost or reordered. It also makes

it possible to generate traffic without introducing any control traffic into the experiment, i.e., traffic

comes only from the replay of connection vectors, and from any need to manage the behavior of the tmix

instances.

One important design consideration in the implementation of our traffic generation approach is the

assumption of independence among flows. While this is not completely realistic, the level of aggregation

at which we generate traffic makes it a reasonable approach (see Hohn et al. [HVA02] for a related

discussion). This assumption makes traffic generation fully scalable, since Tc can be partitioned into an

arbitrary number of subsets. As long as there are enough traffic generation hosts, we can replay traffic

from arbitrarily large traces.

5.1.3 Data Collection

We obtain two types of data from each experiment. First, we collect a new packet header trace T
′

h
,

which can be directly compared with the original packet header trace Th and analyzed with our methods

to extract a new set of connection vectors T ′

c
. This new set can be directly compared to Tc. Second, tmix

instances create a number of logs. Some tmix logs can be used to verify that the traffic generation host

did not run out of resources during traffic generation, and they successfully replayed their subset of Tc.

Other tmix logs report on the performance of the TCP connections in the experiments. This includes

connection and epoch response times and the list of uncompleted connections with a description of their

progress by the end of the experiment.

145

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Leipzig-II Seq A
Lossless Replay Leipzig-II Seq A

Lossy Replay Leipzig-II Seq A
Original Leipzig-II Conc A

Lossless Replay Leipzig-II Conc A
Lossy Replay Leipzig-II Conc A

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Leipzig-II Seq A
Lossless Replay Leipzig-II Seq A

Lossy Replay Leipzig-II Seq A
Original Leipzig-II Conc A

Lossless Replay Leipzig-II Conc A
Lossy Replay Leipzig-II Conc A

Figure 5.4: Bodies and tails of the A distributions for Leipzig-II and its source-level trace replays.

5.2 Validation of Source-level Trace Replay

In this section, we consider the source-level trace replay of the three packet header traces: Leipzig-

II, UNC 1 PM, and Abilene-I. The first goal is to study how well the replay experiments preserve the

source-level input, which is the collection of connection vectors Tc extracted from the original trace Th.

In principle, the characterization of source-level behavior using the a-b-t model represents characteristics

of each connection that are invariant to network conditions, so the analysis of the generated trace Th

should result in a collection of connections vectors T ′

c
that is identical to Tc. In practice, there are some

practical limitations that make the two sets of connection vectors different. We will discuss the possible

causes in this section, and present a statistical comparison of Tc and T
′

c
.

The second goal of this section is to study the impact of introducing packet losses in the generated

process. For this purpose, we conducted two source-level trace replays of each original trace. The lossless

replay reproduced the a-b-t connection vector of each original connection, and gave each connection its

measured round-trip time and TCP receiver window sizes. The lossy replay additionally applied its

measured loss rate to each replayed connection. Differences between the lossless and lossy replays tell us

about the robustness of both our source-level characterization and traffic generation tools in the presence

of losses. These losses are completely absent from our experiments unless they are artificially introduced

using usernet , as in the lossy replay.

5.2.1 Leipzig-II

The plots in Figure 5.4 compare the distributions of a-type ADU sizes, A, for the original set of

connection vectors in Leipzig-II, and for the sets of connection vectors extracted from its lossless and

146

lossy replays. In each plot, the three distributions marked with white symbols correspond to sequential

connection vectors, and the ones marked with black symbols to concurrent connection vectors. The left

plot shows the bodies of the distributions, using CDFs in log-linear axes. The right plot shows the tails

of the distributions, using CCDFs in log-log axes. In general, there is an excellent agreement between

the original distributions and those from the source-level replays.

The bodies of the distributions from sequential connections lie on top of each other, even if per-

connection loss rates are used during the experiments. As discussed in 3.4, our ADU measurement

algorithm can sometimes be inaccurate when one of the last segments of a TCP window is lost before

the monitor. In this case, the loss is recovered after a timeout, which can create a quiet time between

the consecutive segment that is long enough to unnecessarily split an ADU. This means that a sample ai

from one of the a-type data units in Tc becomes two samples a′

i
and a′

i+1 in T
′

c
, such that a′

i
+a′

i+1 = ai.

The validation of the data acquisition methods in Section 3.4 demonstrated that ADU splitting due to

TCP timeouts is possible, although its impact was small even when large data units and aggressive loss

rates were used. The comparison of the Leipzig-II lossless and lossy replays, which represent much more

realistic traffic, shows that ADU splitting due to TCP timeouts has very little impact in practice, at

least for the relatively light distribution of loss rates in Leipzig-II. We can hardly observe any difference

between the bodies of the A distributions when losses are added to the replay. The two bodies from the

replay are also very similar to the body of the original distribution. The same is true for the tails, which

do not show any significant difference. This analysis demonstrates that tmix can accurately reproduce

the sizes of a-type data units in sequential connections, even when ADUs are large and when experiments

are lossy.

There is also a very good match between the A distributions for concurrent connection vectors. In

some regions, we notice somewhat thicker lines that come from small offsets of the curves. The tails

of the A distribution for concurrent connections are also very similar, although the one from the lossy

replay is slightly heavier for values below 5 MB, and slightly lighter for values above that. This could

be explained by the inaccuracy discussed above, or by trace boundaries. In the latter case, losses reduce

throughput, making the replay of lossy connections are slower than the replay of lossless ones. This

means that some a-type ADUs may not have time to complete their transmission before the end of the

experiment.

Figure 5.5 compares the distribution of b-type ADU sizes, B, for the connections vectors extracted

from the original Leipzig-II trace and their lossless and lossy source-level replays. For sequential con-

147

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Leipzig-II Seq B
Lossless Replay Leipzig-II Seq B

Lossy Replay Leipzig-II Seq B
Original Leipzig-II Conc B

Lossless Replay Leipzig-II Conc B
Lossy Replay Leipzig-II Conc B

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07 1e+08

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Leipzig-II Seq B
Lossless Replay Leipzig-II Seq B

Lossy Replay Leipzig-II Seq B
Original Leipzig-II Conc B

Lossless Replay Leipzig-II Conc B
Lossy Replay Leipzig-II Conc B

Figure 5.5: Bodies and tails of the B distributions for Leipzig-II and its source-level trace replays.

nection vectors, both the bodies and the tails are identical. For concurrent connection vectors, the

distributions show slightly different bodies, but identical tails. The differences cannot be explained by

the ADU splitting due to TCP timeouts. If so, we would see a difference between the distributions

from the lossless replay and the ones from the lossy replay, but this is not the case. The source of the

difference is an inherent problem with the replay of concurrent connections, the misclassification of the

replayed concurrent connections. While tmix always replays a concurrent connection vector in the right

way (i.e., decoupling the two directions), the actual set of segments observed at the monitor may simply

not have any pair of data segments that satisfy the concurrency test given in Section 3.3.3. In other

words, the segments of a replayed concurrent connection may exhibit a fortuitous sequential ordering. As

a consequence, the data analysis algorithm classifies as sequential some connections from the replay that

were concurrent in the original trace. The sizes of the b-type ADUs in these misclassified connections

are then absent from the B distribution for replayed concurrent connections. The small difference in the

plot between the original and replayed distributions demonstrates that the number of misclassifications

is relatively small, so the majority of the concurrent connections still exhibit concurrent behavior in the

replays.

It is important to note that the probability of a misclassification decreases as the sizes of the ADUs

increase, since the larger number of data segments makes finding a concurrent pair more likely. There-

fore, misclassifications become less significant for the tails of the distributions, since the connections

whose samples are in the tail have necessarily at least one large ADU (the one we see in the tail), and

are less likely to be misclassified. There is no appreciable difference between the tails of the B distri-

butions from concurrent connections, in agreement with our observation regarding the lower likelihood

of misclassification for connections with large ADUs. Misclassified connections are described using the

sequential a-b-t model, so they result in additional samples for the distributions that characterize se-

148

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original Leipzig-II Seq E
Lossless Replay Leipzig-II Seq E

Lossy Replay Leipzig-II Seq E
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original Leipzig-II Seq E
Lossless Replay Leipzig-II Seq E

Lossy Replay Leipzig-II Seq E

Figure 5.6: Bodies and tails of the E distributions for Leipzig-II and its source-level trace replays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original Leipzig-II Seq TA
Lossless Replay Leipzig-II Seq TA

Lossy Replay Leipzig-II Seq TA
Original Leipzig-II Conc TA

Lossless Replay Leipzig-II Conc TA
Lossy Replay Leipzig-II Conc TA

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original Leipzig-II Seq TA
Lossless Replay Leipzig-II Seq TA

Lossy Replay Leipzig-II Seq TA
Original Leipzig-II Conc TA

Lossless Replay Leipzig-II Conc TA
Lossy Replay Leipzig-II Conc TA

Figure 5.7: Bodies and tails of the TA distributions for Leipzig-II and its source-level trace replays.

quential connection vectors. These extra samples have a much smaller effect on the CDFs, since the

number of samples from sequential connections is far larger anyway.

Figure 5.6 considers the distribution of the number of epochs E extracted from the original and from

the generated packet header traces. The distributions from the replays are very similar to the original

one. The small difference comes again from the small number of misclassified concurrent connections

that were considered sequential. Misclassified connections add extra samples to E which slightly distort

the distributions from the replays. There is a somewhat bigger difference in the far tail, for connection

vectors between 1250 and 1500 epochs. This difference could be explained by misclassification and by

trace boundaries (connections replayed more slowly than in the original that do not replay all of their

epochs). We observe no difference between lossless and lossy replays in this part of the tail.

The next pair of plots, shown in Figure 5.7, examines the distribution TA of the quiet times on

the acceptor side of TCP connections, i.e., between ai and bi. The plot of the bodies shows a very

good match between the original distribution and the ones measured from the replays of sequential

149

connections. The slightly heavier distributions from the replays is due to a small simplification we made

regarding the replay of quiet times. Tmix will replay the exact quiet times specified in each connection

vector. However, as discussed in Section 3.3.1, when these quiet times are extracted from a packet header

trace, the measured quiet time is the sum of two components. The first component comes from the quiet

time q at the end host, and the second component comes from the delay d between the monitor and

the endpoint. When tmix replays a quiet time, it remains quiet for the exact duration of the sum of

these components, q + d. Given that the replay in the testbed uses usernet to reproduce the measured

round-trip time of each connection, there is also a delay between tmix end hosts and monitor, so the

analysis of the generated packet header trace results in quiet times of the form q + 2d. It would have

been possible to eliminate this inaccuracy by subtracting d from the originally measured quiet times.

The value of d is equal to half of the one-side transit time, although delayed acknowledgments and

queuing can affect individual samples. We did not try to incorporate a correction for this quiet time

overestimation problem in our experiments. Besides measurement difficulties, the extra delay becomes

less significant in larger quiet times, for which d is far smaller than q. Larger quiet times are far more

significant, since they are the ones that can increase the duration of TCP connections substantially.

There is also a good agreement in the tails of the TA distributions, although the distributions from

the replays are slightly heavier than the original distributions. This is not explained by the previous

overestimation of quiet times due the location of the monitor, because the magnitude of the quiet times

in the tail is far larger than the magnitude of d. The source of this small mismatch is the misclassification

of some concurrent connections. This is true for both the differences between the tails from sequential

connection vectors and between the tails from concurrent connection vectors. It may seem counter-

intuitive that the misclassifications makes both types of tails heavier, instead of making one type of

tail heavier and the other one lighter. The explanation is that misclassifications move samples from

concurrent connections to sequential connections. These moved samples satisfy at the same time the

following two properties:

• They have a lighter tail than the tail of the samples left in connections correctly classified as

concurrent in the analysis of the generated traffic. The removal of these samples therefore makes

the shown distributions from concurrent connections in the replays heavier than the one in the

original trace.

• They have a heavier tail than the tail of the samples that they joined in connections correctly

classified as sequential in the analysis of the generated traffic. The addition of these samples

150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original Leipzig-II Seq TB
Lossless Replay Leipzig-II Seq TB

Lossy Replay Leipzig-II Seq TB
Original Leipzig-II Conc TB

Lossless Replay Leipzig-II Conc TB
Lossy Replay Leipzig-II Conc TB

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original Leipzig-II Seq TB
Lossless Replay Leipzig-II Seq TB

Lossy Replay Leipzig-II Seq TB
Original Leipzig-II Conc TB

Lossless Replay Leipzig-II Conc TB
Lossy Replay Leipzig-II Conc TB

Figure 5.8: Bodies and tails of the TB distributions for Leipzig-II and its source-level trace replays.

therefore makes the shown distributions from the sequential connections in the replays heavier

than the one in the original trace.

The distribution TB of quiet times on the initiator side of TCP connections, i.e., between bi and

ai+1, is compared for original and replayed traces in Figure 5.8. The bodies of the distributions show the

same kind of mismatch that we discussed for the TA distributions. For values below a few seconds the

TB distribution from the replay of sequential connections appears heavier that the original distribution.

This is due to the overestimation of quiet times, which becomes less significant as the quiet time becomes

larger. We can also observe that the difference in the shortest quiet time is larger for TB than for TA.

The reason is not completely clear, but it is probably related to the absence of samples in TB from

the large subset of connection vectors with only one epoch. The TB distribution from the replay of

concurrent connections appears lighter than the original for values above one second. This is due to

concurrent connection misclassification. The much larger number of samples in the distributions for

sequential connections makes the impact of the misclassification very small.

Besides the replay of the source-level characteristics of the connections in Leipzig-II, our experiments

also involved replaying the network-level parameters measured for each connection in Tc. The left plot in

Figure 5.9 compares the distributions of round-trip times extracted from the original and the generated

packet header traces. The reproduction was very accurate for sequential connection vectors, and the

three distributions exactly lie on top of each other. On the contrary, the distributions for the replayed

concurrent connections show a strange jump in probability at 100 milliseconds. The reason for this

anomaly, which changed the shape of the rest of the distribution, is unclear.

The right plot of Figure 5.9 compares the distributions of receiver window sizes. Note that the

151

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Original Leipzig-II Seq
Lossless Replay Leipzig-II Seq

Lossy Replay Leipzig-II Seq
Original Leipzig-II Conc

Lossless Replay Leipzig-II Conc
Lossy Replay Leipzig-II Conc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
sf

er
re

d

Receiver Window Size in Bytes

Original Leipzig-II Seq
Lossless Replay Leipzig-II Seq

Lossy Replay Leipzig-II Seq
Original Leipzig-II Conc

Lossless Replay Leipzig-II Conc
Lossy Replay Leipzig-II Conc

Figure 5.9: Bodies of the round-trip time and receiver window size distributions for Leipzig-II
and its source-level trace replays.

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Loss Rate in Percentage

Original Leipzig-II Seq
Lossless Replay Leipzig-II Seq

Lossy Replay Leipzig-II Seq
Original Leipzig-II Conc

Lossless Replay Leipzig-II Conc
Lossy Replay Leipzig-II Conc

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
fe

rr
ed

Loss Rate in Percentage

Original Leipzig-II Seq
Lossless Replay Leipzig-II Seq

Lossy Replay Leipzig-II Seq
Original Leipzig-II Conc

Lossless Replay Leipzig-II Conc
Lossy Replay Leipzig-II Conc

Figure 5.10: Bodies the loss rate distributions for Leipzig-II and its source-level trace replays,
with probabilities computed per connection (left) and per byte (right).

probability was computed over the total number of data bytes transferred, to give a better sense of the

amount of data associated with each receiver window size. There is an excellent match between the

distribution obtained from the Leipzig-II trace and those from its two source-level replays.

The final comparison examines the distributions of loss rates. The left plot of Figure 5.10 shows

the distribution of the measured loss rates for the original Leipzig-II trace and its replays. There is a

reasonable match between the original and the lossy replays, especially for sequential connections. This

is a good result given that usernet creates losses by generating random numbers in an independent

manner. The small difference is probably explained by a sample size problem in short connections with

non-zero loss rates, as discussed in Section 4.1.3, and by concurrent connection misclassification.

Note that we measured some non-zero loss rates in the lossless experiment, in which no artificial

losses were introduced. This suggests some problem with the experimental environment, perhaps some

network interfaces that were duplicating segments. Such duplicates confuse the loss rate measurement

152

algorithm, which considers each retransmission a loss event3. If duplication is behind our observations,

the impact on the experiments would be minimal. True loss slows down TCP, but duplication does not.

The right plot of Figure 5.10 shows the distributions of loss rates per byte, rather than per connection

as in the left plot. The CDFs show the probability that each byte had of being carried in a connection

with at most the given loss rate. For example, the CDFs for the original sequential connections shows

that 80% of the bytes were carried in connections with a loss rate of 1% or less. The CDFs in the

right plots are easier to read than those in the left plot, since they are far smoother. They are also more

significant, since they pay more attention to the connections that carry more bytes, which are those than

have a larger impact on the load of the network. There is a good match between loss rate distributions

for the original and the lossy replay. Both the distribution from the replayed sequential connections and

the one from replayed concurrent connections are slightly heavier than those from the original traces.

In general, we always observe heavier loss rates in the replays than in the original data. The ex-

planation is the dropping of pure acknowledgment packets, which was discussed in Section 4.1.3. The

analysis of the original trace considers only the loss rate of data segments, and not the combined loss

rate of data and acknowledgment segments. However, the artificial dropping mechanisms in usernet that

is used to create per-flow losses is applied to all of the packets in the connections. This means that both

data segments and acknowledgment segments are dropped according to the original loss rates of data

segments. The dropping of acknowledgment segments can increase the loss rate of data segments in the

replay, because missing acknowledgments can trigger unnecessary retransmissions. Every retransmission

is considered a loss event, and therefore we have an increase of loss rate in the replays, which makes

the measured distributions of (data segment) loss rates heavier for the replays than for the original.

It is certainly possible to modify usernet to apply the dropping rate to data segments only, but our

experiments did not incorporate this refinement. It is somewhat unrealistic to use a biased dropping

mechanism, so it would be better to refine the data acquisition algorithm to consider both data and pure

acknowledgment losses. Measuring pure acknowledgment loss rates is far more difficult that measuring

data segment loss rates. Endpoints may acknowledge every data segment, or every other data segment,

and they do so using cumulative acknowledgment numbers, rather than individual sequence numbers as

it is done for data segments. It is therefore more difficult to determine when an acknowledgment does

not arrive as expected.

3This approach could certainly be refined using the IP ID field to distinguish duplications from retransmissions.

153

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original UNC Seq A
Lossless Replay UNC Seq A

Lossy Replay UNC Seq A
Original UNC Conc A

Lossless Replay UNC Conc A
Lossy Replay UNC Conc A

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07 1e+08

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original UNC Seq A
Lossless Replay UNC Seq A

Lossy Replay UNC Seq A
Original UNC Conc A

Lossless Replay UNC Conc A
Lossy Replay UNC Conc A

Figure 5.11: Bodies and tails of the A distributions for UNC 1 PM and its source-level trace
replays.

5.2.2 UNC 1 PM

The second trace considered in our validation of the source-level trace replay approach is the UNC

1 PM trace. This trace is shorter than Leipzig-II (1 hour vs. 2 hours and 45 minutes) but it has much

higher throughput, which results in a substantially larger number of samples in the distributions that

we will examine in this section. Figure 5.11 compares the A distributions extracted from the UNC 1 PM

and its lossless and lossy replays. The bodies of the A distributions from sequential connections reveal no

difference between original and generated traces. The tail of the A distribution from the lossy replay is

slightly lighter than the one from the original trace and the one from the lossless replay. This difference

can be attributed to trace boundaries. Losses make the replay of some connections slower, which can

easily result in some connections that do not have time to finish during the replay experiment. This

effect is more important for the largest data units, those in the tail of the distribution, since they are

the ones that require a substantial amount of time to complete their transmission even without losses.

Concurrent connections show a slightly worse match. This is due to the misclassification problem

described in the previous section. As pointed out before, misclassifications are more likely to occur in

concurrent connections with small ADUs. These connections have a small number of packets, making the

observation of concurrent pairs less likely. As a result, the bodies of the distributions from the replays

are slightly heavier, since some fraction of the small ADUs disappeared from the A distribution for

concurrent connections. On the contrary, misclassifications had no visible impact on the A distribution

for sequential connections. This is because the number of a-type ADUs in sequential connection vectors is

much larger than the number of samples from misclassified connections. The tails of the A distributions

for concurrent connections show a good agreement.

154

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original UNC Seq B
Lossless Replay UNC Seq B

Lossy Replay UNC Seq B
Original UNC Conc B

Lossless Replay UNC Conc B
Lossy Replay UNC Conc B

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original UNC Seq B
Lossless Replay UNC Seq B

Lossy Replay UNC Seq B
Original UNC Conc B

Lossless Replay UNC Conc B
Lossy Replay UNC Conc B

Figure 5.12: Bodies and tails of the B distributions for UNC 1 PM and its source-level trace
replays.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original UNC Seq E
Lossless Replay UNC Seq E

Lossy Replay UNC Seq E
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original UNC Seq E
Lossless Replay UNC Seq E

Lossy Replay UNC Seq E

Figure 5.13: Bodies and tails of the E distributions for UNC 1 PM and its source-level trace
replays.

The B distributions from the original UNC 1 PM traces and its replays are even closer, as Figure

5.12 shows. We can barely see any differences in bodies of the distributions from concurrent connections

and no difference for those from sequential connections. The tails are also very similar, and the slight

differences can be explained using the same arguments put forward in the discussion of the A distributions

(i.e., trace boundaries and misclassifications).

Figure 5.13 shows an excellent match between the number of epochs in sequential connection vectors

measured from the UNC 1 PM traces, and those measured from the replays. The bodies of the distri-

butions are identical, and the tails show only a very minor difference. We therefore observe a better

agreement between original and replay for UNC 1 PM than for Leipzig-II (see Figure 5.6).

The plots in Figure 5.14 study the TA distributions. The bodies for sequential connections show an

excellent match between the inter-ADU quiet time measured from the original UNC 1 PM trace, and

those measured from the generated traces. The bodies for concurrent connections are also very similar.

155

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original UNC Seq TA
Lossless Replay UNC Seq TA

Lossy Replay UNC Seq TA
Original UNC Conc TA

Lossless Replay UNC Conc TA
Lossy Replay UNC Conc TA

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original UNC Seq TA
Lossless Replay UNC Seq TA

Lossy Replay UNC Seq TA
Original UNC Conc TA

Lossless Replay UNC Conc TA
Lossy Replay UNC Conc TA

Figure 5.14: Bodies and tails of the TA distributions for UNC 1 PM and its source-level trace
replays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original UNC Seq TB
Lossless Replay UNC Seq TB

Lossy Replay UNC Seq TB
Original UNC Conc TB

Lossless Replay UNC Conc TB
Lossy Replay UNC Conc TB

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original UNC Seq TB
Lossless Replay UNC Seq TB

Lossy Replay UNC Seq TB
Original UNC Conc TB

Lossless Replay UNC Conc TB
Lossy Replay UNC Conc TB

Figure 5.15: Bodies and tails of the TB distributions for UNC 1 PM and its source-level trace
replays.

The small difference for the smallest values requires further investigation. We should not see these

samples here because our only method for detecting inter-ADU quiet times in concurrent connections is

to identify periods of inactivity above 500 milliseconds. We do not observe such a difference for Leipzig-II

and Abilene-I. The tails of the distributions are very similar for sequential and concurrent connections.

As it was also the case in the data from Leipzig-II shown in Figure 5.7, we observe slightly heavier tails

from the replays, which can be explained by misclassifications.

Figure 5.15 shows the bodies and the tails of the TB distributions. Data from sequential connections

shows an excellent match for values above 1 second, and even the far tail is very closely approximated.

For values below 1 second, we observe that the replays have heavier distributions. This is explained by

the quiet time overestimation problem discussed in the analysis of the Leipzig-II results. Concurrent

connections also show an excellent match between original and generated traces. The artifact in the

smallest inter-ADU quiet times that was observed for the TA distributions from concurrent connections

156

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Original UNC Seq
Lossless Replay UNC Seq

Lossy Replay UNC Seq
Original UNC Conc

Lossless Replay UNC Conc
Lossy Replay UNC Conc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
sf

er
re

d

Receiver Window Size in Bytes

Original UNC Seq
Lossless Replay UNC Seq

Lossy Replay UNC Seq
Original UNC Conc

Lossless Replay UNC Conc
Lossy Replay UNC Conc

Figure 5.16: Bodies of the round-trip time and receiver window size distributions for UNC 1 PM
and its source-level trace replays.

is also present in the TB distributions from concurrent connections.

The next four plots study how closely the replays of UNC 1 PM approximated the network-level

parameters observed in the original plot. The left plot of Figure 5.16 shows the distributions of round-

trip times. For sequential connections, there was no difference between the round-trip times obtained

from the original trace and those obtained from its replays. For concurrent connections, there is only

a very small difference, which we can attribute to concurrent connection misclassifications. The large

masses of probability for 100 milliseconds observed in the Leipzig-II replays are not present in the UNC

1 PM replays.

Regarding the distribution of TCP receiver window sizes, the plot on the right in Figure 5.16 shows

a good match between the original data and the one obtained from the analysis of the generated packet

header traces. The tiny difference can again be explained by concurrent connection misclassifications,

but it is clear that the replayed traffic accurately captured the use of TCP receiver window sizes.

Figure 5.17 studies the distributions of loss rates rates obtained from original and replayed traffic.

As indicated in the analysis of the replays of Leipzig-II, matching loss rate is difficult given the use of

independent packet dropping in usernet . Consequently, we can consider the approximation of the loss

rates shown in the left plot of the figure reasonable, especially in the case of sequential connections, for

which many more samples were available. In contrast to these per-connection loss rates, the right plot

of the figure shows a substantially closer approximation when loss rate per bytes are considered. Note

also that difference between distributions of loss rates for sequential and concurrent connections is far

smaller in the case of probabilities per byte.

157

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Loss Rate in Percentage

Original UNC Seq
Lossless Replay UNC Seq

Lossy Replay UNC Seq
Original UNC Conc

Lossless Replay UNC Conc
Lossy Replay UNC Conc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
fe

rr
ed

Loss Rate in Percentage

Original UNC Seq
Lossless Replay UNC Seq

Lossy Replay UNC Seq
Original UNC Conc

Lossless Replay UNC Conc
Lossy Replay UNC Conc

Figure 5.17: Bodies of the loss rate distributions for UNC 1 PM and its source-level trace replays,
with probabilities computed per connection (left) and per byte (right).

5.2.3 Abilene-I

We conclude the validation of our source-level trace replay method by comparing the original Abilene-I

trace and its lossless and lossy replays. This is the trace with the highest average throughput. Figure 5.18

shows that the A distributions measured from the replayed traces are very similar to those measured

from the original trace. Given the completely different A distributions for sequential and concurrent

connections, we would expect that any substantial number of misclassified concurrent connections would

result in distributions from the replays that significantly diverge from the original distributions. The

excellent approximation in this figure, and for the B distributions shown in Figure 5.18, suggest that the

number of misclassifications was very small. We also observe a very good match for the tails where the

only difference is found for the largest values. In some cases, the replay is slower than the original trace,

so some of the largest ADUs may not have had enough time to complete. Adding losses to the replay

experiment did not introduce any noticeable difference in the measured distributions, which confirms

the robustness of the data acquisition and generation methods to the challenge of lossy environments.

The two plots in Figure 5.19 show that the original distribution of b-type ADU sizes is almost identical

to the ones obtained from the lossless and lossy replays. This is true both for the bodies studied in the

plot on the left, and for the tails studied in the plot on the right. It is quite difficult to find any region

where the distributions differ. It is also clear that the addition of losses to the replay did not modify the

sizes of the ADUs in the experiment.

Figure 5.20 shows that the bodies and the tails of the distributions of the numbers of epochs are

closely approximated in the source-level replays. There is only a very slight difference in the far tail of

the distributions. This could be attributed to a few connections that were replayed more slowly than

158

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Abilene-I Seq A
Lossless Replay Abilene-I Seq A

Lossy Replay Abilene-I Seq A
Original Abilene-I Conc A

Lossless Replay Abilene-I Conc A
Lossy Replay Abilene-I Conc A

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Abilene-I Seq A
Lossless Replay Abilene-I Seq A

Lossy Replay Abilene-I Seq A
Original Abilene-I Conc A

Lossless Replay Abilene-I Conc A
Lossy Replay Abilene-I Conc A

Figure 5.18: Bodies and tails of the A distributions for Abilene-I and its source-level trace replays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Abilene-I Seq B
Lossless Replay Abilene-I Seq B

Lossy Replay Abilene-I Seq B
Original Abilene-I Conc B

Lossless Replay Abilene-I Conc B
Lossy Replay Abilene-I Conc B

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Abilene-I Seq B
Lossless Replay Abilene-I Seq B

Lossy Replay Abilene-I Seq B
Original Abilene-I Conc B

Lossless Replay Abilene-I Conc B
Lossy Replay Abilene-I Conc B

Figure 5.19: Bodies and tails of the B distributions for Abilene-I and its source-level trace replays.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original Abilene-I Seq E
Lossless Replay Abilene-I Seq E

Lossy Replay Abilene-I Seq E
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original Abilene-I Seq E
Lossless Replay Abilene-I Seq E

Lossy Replay Abilene-I Seq E

Figure 5.20: Bodies and tails of the E distributions for Abilene-I and its source-level trace replays.

159

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original Abilene-I Seq TA
Lossless Replay Abilene-I Seq TA

Lossy Replay Abilene-I Seq TA
Original Abilene-I Conc TA

Lossless Replay Abilene-I Conc TA
Lossy Replay Abilene-I Conc TA

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original Abilene-I Seq TA
Lossless Replay Abilene-I Seq TA

Lossy Replay Abilene-I Seq TA
Original Abilene-I Conc TA

Lossless Replay Abilene-I Conc TA
Lossy Replay Abilene-I Conc TA

Figure 5.21: Bodies and tails of the TA distributions for Abilene-I and its source-level trace
replays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original Abilene-I Seq TB
Lossless Replay Abilene-I Seq TB

Lossy Replay Abilene-I Seq TB
Original Abilene-I Conc TB

Lossless Replay Abilene-I Conc TB
Lossy Replay Abilene-I Conc TB

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original Abilene-I Seq TB
Lossless Replay Abilene-I Seq TB

Lossy Replay Abilene-I Seq TB
Original Abilene-I Conc TB

Lossless Replay Abilene-I Conc TB
Lossy Replay Abilene-I Conc TB

Figure 5.22: Bodies and tails of the TB distributions for Abilene-I and its source-level trace
replays.

in the original trace, so they did not have time to complete all of their epochs. Another possibility is

that a small number of concurrent connections with a large number of epochs were misclassified. The

probabilities in the tail are so small, that even a few samples can create a visible difference.

The quality of the replay of quiet times between ADUs is studied in the next two figures. Figure

5.21 shows that the TA distributions are accurately approximated in the replays. This is true both

for sequential and concurrent connections. We only observed a small difference in the far tail, where

the replays show slightly heavier values for quiet times above 1000 seconds. As in the case of the E

distributions, both experiment boundaries and concurrent connection misclassification can explain the

difference.

Figure 5.22 examines the distribution TB of quiet times on the initiator side. As shown on the left,

there is an excellent match between the bodies of the distributions from the original trace and those from

the replays. The only difference is found in the distributions from sequential connections for quiet times

160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Original Abilene-I Seq
Lossless Replay Abilene-I Seq

Lossy Replay Abilene-I Seq
Original Abilene-I Conc

Lossless Replay Abilene-I Conc
Lossy Replay Abilene-I Conc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
sf

er
re

d

Receiver Window Size in Bytes

Original Abilene-I Seq
Lossless Replay Abilene-I Seq

Lossy Replay Abilene-I Seq
Original Abilene-I Conc

Lossless Replay Abilene-I Conc
Lossy Replay Abilene-I Conc

Figure 5.23: Bodies of the round-trip time and receiver window size distributions for Abilene-I
and its source-level trace replays.

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Loss Rate in Percentage

Original Abilene-I Seq
Lossless Replay Abilene-I Seq

Lossy Replay Abilene-I Seq
Original Abilene-I Conc

Lossless Replay Abilene-I Conc
Lossy Replay Abilene-I Conc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
fe

rr
ed

Loss Rate in Percentage

Original Abilene-I Seq
Lossless Replay Abilene-I Seq

Lossy Replay Abilene-I Seq
Original Abilene-I Conc

Lossless Replay Abilene-I Conc
Lossy Replay Abilene-I Conc

Figure 5.24: Bodies of the loss rate distributions for Abilene-I and its source-level trace replays,
with probabilities computed per connection (left) and per byte (right).

below 1 second. The quiet times measured from the replays became increasingly heavier than those from

the original trace as their magnitude decreased. This finding is consistent with inaccuracies due to the

overestimation of quiet times, since end-host location has a larger impact on the measured quiet time

as the magnitude of the application-level quiet time decreases. The tails of the distributions reveal an

excellent approximation. It is also important to note that the distributions for concurrent connections

do not show the unexpected values below 500 milliseconds that were observed for UNC 1 PM.

The analysis of the round-trip times in Figure 5.23 reveals an excellent match between the original

and the replay distributions of round-trip times. The replay of concurrent connections exhibits the

same artifact at 100 milliseconds encountered in the replays of the Leipzig-II trace, but the magnitude

is far smaller. The distributions of receiver window sizes show very close approximations, with only

a small divergence for concurrent connections, which can be easily explained by a small number of

misclassifications.

161

The distribution of loss rates in the lossy replay is very close to the original distribution, as shown

in Figure 5.24. The CDFs on the left plot show cumulative probabilities computed per connection, and

they reveal a remarkably good match between the original and the lossy replay, both for concurrent and

sequential connections. This is significantly better than in the cases of Leipzig-II and UNC 1 PM, which

were studied in Figures 5.10 and 5.17. The better match is mostly explained by two characteristics of

the original data. First, Abilene-I has the largest fraction of lossy connections, which more than doubles

the one in Leipzig-II. This means a wider y-axis that reduces the distance between the distributions

in the plot. Second, the heavier distribution of connection sizes in the Abilene-I trace means a larger

number of packets, which makes the use of independent drops approximate the intended loss rates more

accurately. The right plot shows a good match when the distributions of the per-byte loss rates are

considered.

5.3 Summary

This chapter presented our traffic generation method, source-level trace replay. The first step in

source-level trace replay is to transform a packet header trace into a set of connection vectors, which

describe its source-level behavior using the sequential or the concurrent version of the a-b-t model.

Connection vectors also include three network-level parameters, round-trip time, TCP receiver window

size and loss rate. The actual traffic generation consists of replaying the characteristics of each connection

vector in an accurate manner. We demonstrated the possibility of this approach using an implementation

in a network testbed, which includes a distributed traffic generator, tmix , that can replay source-level

behavior, and coordinate with a packet manipulation layer, usernet , to impose specific round-trip

times and loss rates to each connection. The approach, and its implementation, was then validated

by comparing the statistical characteristics of three traces and those of their replays. This comparison

focused on how well the replay preserved the original parameters, i.e., the source-level description and

the network-level characteristics.

The validation results showed a good match between original traces and their replays, which confirms

the highly accurate reproduction of source-level properties that can be achieved with our approach. The

differences, which are shown to be small or nonexistent in every case, are due to the following causes:

• There is no guarantee that the replay of a concurrent connection exhibits measurable concurrency,

i.e., that a pair of concurrent data segments can be observed in the generated trace. This results

162

in connections that are replayed as concurrent but classified as sequential in T
′

c
, therefore adding

spurious samples to the characterization of sequential connections, and removing samples from the

characterization of concurrent connections. In general, this affects the comparison of concurrent

connections more substantially, since the number of samples from concurrent connections is usually

far smaller. This problem is inherent to the form of the concurrent a-b-t model used in this

dissertation.

• Our measurement of quiet times tended to overestimate their durations, since it did not compensate

for the delay between the end host and the monitor. This difference is only significant for the

smallest quiet times, whose magnitude is similar to that of network delays. A possible refinement

of our measurement method that would eliminate the overestimation of quiet times and make the

replay of quiet times even more accurate, is to subtract the corresponding one-side transit time

from each measured quiet time.

• Usernet uses independent dropping to simulate losses, and this is not completely accurate. Con-

nections often have too few packets to converge to the intended loss rate per connection. If loss

rates per byte are considered, the replay is shown to be very close to the original distribution.

Achieving a close approximation of the original loss rate would involve some form of dependent

dropping.

• Measured drop rates consider only data segments, but the loss rate simulation also drops pure

acknowledgments with the same probability. This makes the distributions of loss rates in the

lossy replays slightly above the intended values. Addressing this inaccuracy requires developing a

measurement algorithm that can determine the loss rate of pure acknowledgments, which seems

rather difficult, or modifying usernet to drop only data segments, which is a somewhat artificial

solution.

The analysis of the validation results also served us to verify the robustness of our data acquisition

and generation method to the introduction of losses with regard to the source-level characteristics. We

found very little difference, if any, between the results from the lossless and lossy replays, which confirms

the accuracy of the analysis even in the face of packet losses and reordering. TCP timeouts, which can

sometimes confuse the heuristic used to split ADUs in the same direction, do not appear to have any

significant effect.

163

