
GENERATION AND VALIDATION OF EMPIRICALLY-DERIVED TCP
APPLICATION WORKLOADS

Félix Hernández-Campos

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer
Science.

Chapel Hill
2006

Approved by:
Advisor: Kevin Jeffay

Reader: F. Donelson Smith
Reader: Ketan Mayer-Patel
Reader: J. Steve Marron
Reader: Andrew Nobel

Reader: Jan Prins

c© 2006

Félix Hernández-Campos

ALL RIGHTS RESERVED

ii

ABSTRACT

FÉLIX HERNÁNDEZ-CAMPOS: Generation and Validation of
Empirically-Derived TCP Application Workloads.

(Under the direction of Kevin Jeffay)

This dissertation proposes and evaluates a new approach for generating realistic traffic in networking

experiments. The main problem solved by our approach is generating closed-loop traffic consistent with

the behavior of the entire set of applications in modern traffic mixes. Unlike earlier approaches, which

described individual applications in terms of the specific semantics of each application, we describe

the source behavior driving each connection in a generic manner using the a-b-t model. This model

provides an intuitive but detailed way of describing source behavior in terms of connection vectors that

capture the sizes and ordering of application data units, the quiet times between them, and whether

data exchange is sequential or concurrent. This is consistent with the view of traffic from TCP, which

does not concern itself with application semantics.

The a-b-t model also satisfies a crucial property: given a packet header trace collected from an

arbitrary Internet link, we can algorithmically infer the source-level behavior driving each connection,

and cast it into the notation of the model. The result of packet header processing is a collection of

a-b-t connection vectors, which can then be replayed in software simulators and testbed experiments to

drive network stacks. Such a replay generates synthetic traffic that fully preserves the feedback loop

between the TCP endpoints and the state of the network, which is essential in experiments where network

congestion can occur. By construction, this type of traffic generation is fully reproducible, providing a

solid foundation for comparative empirical studies.

Our experimental work demonstrates the high quality of the generated traffic, by directly comparing

traces from real Internet links and their source-level trace replays for a rich set of metrics. Such compari-

son requires the careful measurement of network parameters for each connection, and their reproduction

together with the corresponding source behavior. Our final contribution consists of two resampling

methods for introducing controlled variability in network experiments and for generating closed-loop

traffic that accurately matches a target offered load.

iii

ACKNOWLEDGMENTS

First of all, I must thank Kevin Jeffay and Don Smith for their guidance and encouragement through-

out my doctoral program. Their patience and friendship have been invaluable all these years. I also

thank them, together with other faculty and student members of the Distributed and Real-Time Systems

group (DiRT), for building a phenomenal infrastructure for Internet measurement and experimental net-

working research. DiRT students have greatly contributed to my doctoral experience, most especially

Jay Aikat and David Ott.

My committee members and other collaborators have contributed tremendously to my efforts. I am

specially in debt with Steve Marron and Andrew Nobel, who have greatly enriched the statistical side of

my work. In this regard, being part of SAMSI’s “Network Modeling for the Internet” program and of the

inter-disciplinary Internet study group at UNC gave me superb opportunities to widen my understanding

of Internet research. I must also thank UNC’s Department of Computer Science as whole, including

faculty, students and staff, for creating an outstanding research and teaching environment. Overall, my

years at UNC were an incredibly positive experience.

I thank the National Science Foundation, IBM, Cisco, Intel, Sun Microsystems and others for sup-

porting this work. I am specially grateful to the Computer Measurement Group (CMG) for their doctoral

fellowship.

Finally, I thank my family for their support. Their constant example of hard-work, and their respect

for intellectual endeavors has motivated me during my entire life. My wife’s help with the editing of

this manuscript was invaluable, as was her constant encouragement during my graduate studies. More

than anybody else, my parents gave me my passion for knowledge, and it is to them that I dedicate this

doctoral dissertation.

iv

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xx

1 Introduction 1

1.1 Abstract Source-Level Modeling . 3

1.2 Source-Level Trace Replay . 10

1.3 Trace Resampling and Load Scaling . 13

1.4 Thesis Statement . 15

1.5 Contributions . 15

1.6 Overview . 17

2 Related Work 19

2.1 Packet-Level Traffic Generation . 20

2.2 Source-Level Traffic Generation . 23

2.2.1 Web Traffic Modeling . 27

2.2.2 Non-Web Traffic Source-level Modeling . 30

2.2.3 Beyond Single Application Modeling . 32

2.3 Scaling Offered Load . 33

2.4 Implementing Traffic Generation . 35

2.5 Summary . 35

3 Abstract Source-level Modeling 38

3.1 The Sequential a-b-t Model . 40

3.1.1 Client/Server Applications . 40

3.1.2 Beyond Client/Server Applications . 48

3.2 The Concurrent a-b-t Model . 50

v

3.3 Abstract Source-Level Measurement . 53

3.3.1 From TCP Sequence Numbers to Application Data Units 53

3.3.2 Logical Order of Data Segments . 56

3.3.3 Data Analysis Algorithm . 59

3.4 Validation using Synthetic Applications . 65

3.5 Analysis Results . 69

3.5.1 Variability Across Sites . 72

3.5.2 Time-of-Day Variability and Workload Directionality 80

3.6 Summary . 83

4 Network-Level Parameters and Metrics 87

4.1 Network-level Parameters . 88

4.1.1 Round-Trip Time . 88

4.1.2 Receiver Window Size . 102

4.1.3 Loss Rate . 104

4.2 Network-level Metrics . 108

4.2.1 Aggregate Throughput Time Series . 109

4.2.2 Throughput Marginals . 118

4.2.3 Throughput Self-Similarity and Long-Range Dependence 125

4.2.4 Time Series of Active Connections . 132

4.3 Summary . 135

5 Generating Traffic 139

5.1 Replaying Traces at the Source-Level . 139

5.1.1 Trace Partitioning . 141

5.1.2 Conducting Experiments . 142

5.1.3 Data Collection . 145

5.2 Validation of Source-level Trace Replay . 146

5.2.1 Leipzig-II . 146

5.2.2 UNC 1 PM . 154

5.2.3 Abilene-I . 158

5.3 Summary . 162

vi

6 Reproducing Traffic 164

6.1 Beyond Comparing Connection Vectors . 164

6.2 Source-level Replay of Leipzig-II . 168

6.2.1 Time Series of Byte Throughput . 168

6.2.2 Time Series of Packet Throughput . 171

6.2.3 Marginal Distributions . 173

6.2.4 Long-Range Dependence . 177

6.2.5 Time Series of Active Connections . 182

6.3 Source-level Replay of UNC 1 PM . 183

6.3.1 Time Series of Byte Throughput . 183

6.3.2 Time Series of Packet Throughput . 185

6.3.3 Marginal Distributions . 186

6.3.4 Long-Range Dependence . 189

6.3.5 Time Series of Active Connections . 192

6.4 Mid-Chapter Review . 194

6.4.1 Observations on Byte Throughput . 194

6.4.2 Observations on Packet Throughput . 196

6.4.3 Observations on Active Connections . 197

6.5 Source-level Replay of UNC 1 AM . 197

6.5.1 Time Series of Byte Throughput . 197

6.5.2 Time Series of Packet Throughput . 199

6.5.3 Marginal Distributions . 200

6.5.4 Long-Range Dependence . 202

6.5.5 Time Series of Active Connections . 205

6.6 Source-level Replay of UNC 7:30 PM . 205

6.6.1 Time Series of Byte Throughput . 205

6.6.2 Time Series of Packet Throughput . 207

6.6.3 Marginal Distributions . 208

6.6.4 Long-Range Dependence . 210

6.6.5 Time Series of Active Connections . 213

6.7 Source-level Replay of Abilene-I . 214

6.7.1 Time Series of Byte Throughput . 214

vii

6.7.2 Time Series of Packet Throughput . 215

6.7.3 Marginal Distributions . 216

6.7.4 Long-Range Dependence . 218

6.7.5 Time Series of Active Connections . 218

6.8 Summary . 221

7 Trace Resampling and Load Scaling 223

7.1 Poisson Resampling . 226

7.1.1 Basic Poisson Resampling . 226

7.1.2 Byte-Driven Poisson Resampling . 231

7.2 Block Resampling . 236

7.3 Summary . 245

8 Conclusions and Future Work 247

8.1 Empirical Modeling of Traffic Mixes . 248

8.2 Refining and Extending our Modeling . 250

8.3 Assessing Realism in Synthetic Traffic . 252

8.4 Incorporating Additional Network-Level Parameter . 254

8.5 Flexible Traffic Generation . 255

BIBLIOGRAPHY 257

viii

LIST OF TABLES

3.1 Breakdown of the TCP connections found in five traces. 69

4.1 Estimated Hurst parameters and their confidence intervals for the packet throughput time
series of five traces. 131

4.2 Estimated Hurst parameters and their confidence intervals for the byte throughput time
series of five traces. 131

6.1 Estimated Hurst parameters and their confidence intervals for the byte throughput time
series of Leipzig-II and its four types of source-level trace replay. 178

6.2 Estimated Hurst parameters and their confidence intervals for the packet throughput time
series of Leipzig-II and its four types of source-level trace replay. 181

6.3 Estimated Hurst parameters and their confidence intervals for the byte throughput time
series of UNC 1 PM and its four types of source-level trace replay. 190

6.4 Estimated Hurst parameters and their confidence intervals for the packet throughput time
series of UNC 1 PM and its four types of source-level trace replay. 193

6.5 Estimated Hurst parameters and their confidence intervals for the byte throughput time
series of UNC 1 AM and its four types of source-level trace replay. 203

6.6 Estimated Hurst parameters and their confidence intervals for the packet throughput time
series of UNC 1 AM and its four types of source-level trace replay. 204

6.7 Estimated Hurst parameters and their confidence intervals for the byte throughput time
series of UNC 7:30 PM and its four types of source-level trace replay. 211

6.8 Estimated Hurst parameters and their confidence intervals for the packet throughput time
series of UNC 7:30 PM and its four types of source-level trace replay. 212

6.9 Estimated Hurst parameters and their confidence intervals for the byte throughput time
series of Abilene-I and its four types of source-level trace replay. 219

6.10 Estimated Hurst parameters and their confidence intervals for the packet throughput time
series of Abilene-I and its four types of source-level trace replay. 220

7.1 Estimated Hurst parameters and their confidence intervals for the connection arrival time
series of UNC 1 PM and UNC 1 AM, and their Poisson arrival fits. 235

7.2 Estimated Hurst parameters and their confidence intervals for five subsamplings obtained
from the connection arrival time series of UNC 1 PM and UNC 1 AM 243

ix

LIST OF FIGURES

1.1 Network traffic seen from different levels. 4

1.2 An a-b-t diagram illustrating a persistent HTTP connection. 6

1.3 A diagram illustrating the interaction between two BitTorrent peers. 9

1.4 Overview of Source-level Trace Replay. 10

3.1 An a-b-t diagram representing a typical ADU exchange in HTTP version 1.0. 40

3.2 An a-b-t diagram illustrating a persistent HTTP connection. 41

3.3 An a-b-t diagram illustrating an SMTP connection. 44

3.4 Three a-b-t diagrams representing three different types of NNTP interactions. 46

3.5 An a-b-t diagram illustrating a server push from a webcam using a persistent HTTP
connection. 48

3.6 An a-b-t diagram illustrating Icecast audio streaming in a TCP connection. 49

3.7 Three a-b-t diagrams of connections taking part in the interaction between an FTP client
and an FTP server. 49

3.8 An a-b-t diagram illustrating an NNTP connection in “stream-mode”, which exhibits data
exchange concurrency. 51

3.9 An a-b-t diagram illustrating the interaction between two BitTorrent peers. 51

3.10 A first set of TCP segments for the connection vector in Figure 3.1: lossless example. . . . 54

3.11 A second set of TCP segments for the connection vector in Figure 3.1: lossy example. . . 55

3.12 Distributions of ADU sizes for the testbed experiments with synthetic applications. 66

3.13 Distributions of quiet time durations for the testbed experiments with synthetic applications. 66

3.14 Distributions of ADU sizes for the testbed experiments with synthetic applications. 68

3.15 Distributions of quiet time durations for the testbed experiments with synthetic applications. 68

3.16 Bodies of the A and B distributions for Abilene-I, Leipzig-II and UNC 1 PM. 73

3.17 Tails of the A and B distributions for Abilene-I, Leipzig-II and UNC 1 PM. 73

3.18 Bodies of the A and B distributions with per-byte probabilities for Abilene-I, Leipzig-II
and UNC 1 PM . 74

3.19 Bodies of the E distributions for Abilene-I, Leipzig-II and UNC 1 PM. 74

3.20 Bodies of the E distributions with per-byte probabilities for Abilene-I, Leipzig-II and
UNC 1 PM. 75

3.21 Tails of the E distributions for Abilene-I, Leipzig-II and UNC 1 PM. 75

x

3.22 Average size of the epochs in each connection vector as a function of the number of epochs
for Abilene-I, Leipzig-II and UNC 1 PM. 76

3.23 Average of the median size of the ADUs in each connection vector as a function of the
number of epochs for Abilene-I, Leipzig-II and UNC 1 PM. 76

3.24 Average of the median size of the ADUs in each connection vector as a function of the
number of epochs, for Leipzig-II. 77

3.25 Average of the median size of the ADUs in each connection vector as a function of the
number of epochs for Abilene-I. 77

3.26 Bodies of the TA and TB distributions for Abilene-I, Leipzig-II and UNC 1 PM. 77

3.27 Tails of the TA and TB distributions for Abilene-I, Leipzig-II and UNC 1 PM. 77

3.28 Distribution of the durations of the quiet times between the final ADU and connection
termination. 79

3.29 Bodies of the A and B distributions for the concurrent connections in Abilene-I, Leipzig-II
and UNC 1 PM. 79

3.30 Tails of the A and B distributions for the concurrent connections in Abilene-I, Leipzig-II
and UNC 1 PM. 79

3.31 Bodies of the TA and TB distributions for the concurrent connections in Abilene-I,
Leipzig-II and UNC 1 PM. 80

3.32 Tails of the TA and TB distributions for the concurrent connections in Abilene-I, Leipzig-
II and UNC 1 PM. 80

3.33 Bodies of the A distributions for UNC 1 AM, UNC 1 PM and UNC 7:30 PM. 81

3.34 Bodies of the B distributions for UNC 1 AM, UNC 1 PM and UNC 7:30 PM. 81

3.35 Bodies of the TB distributions for UNC 1 AM, UNC 1 PM and UNC 7:30 PM. 82

3.36 Tails of the TB distributions for UNC 1 AM, UNC 1 PM and UNC 7:30 PM. 82

3.37 Bodies of the TA distributions for three UNC traces. 83

3.38 Tails of the TA distributions for three UNC traces. 83

4.1 A set of TCP segments illustrating RTT estimation from connection establishment. 91

4.2 Two sets of TCP segments illustrating RTT estimation ambiguities in the presence of loss
and early retransmission in connection establishment. 92

4.3 A set of TCP segments illustrating RTT estimation using the sum of two OSTTs. 93

4.4 A set of TCP segments illustrating the impact of delayed acknowledgments on OSTTs. . . 95

4.5 Comparison of RTT estimators for a synthetic trace: no loss and enabled delayed ac-
knowledgments. 96

4.6 Comparison of RTT estimators for a synthetic trace: no loss and disabled delayed ac-
knowledgments. 96

xi

4.7 Comparison of RTT estimators for a synthetic trace: fixed loss rate of 1% for all connec-
tions. 98

4.8 Comparison of RTT estimators for a synthetic trace: loss rates uniformly distributed
between 0% and 10%. 98

4.9 A set of TCP segments illustrating an invalid OSTT sample due to the interaction between
loss and cumulative acknowledgments. 98

4.10 Comparison of RTT estimators for a synthetic trace: loss rates uniformly distributed
between 0% and 10%. 99

4.11 Comparison of RTT estimators for synthetic traces: fixed loss rate of 1%; real RTTs up
to 4 seconds. 99

4.12 Bodies of the RTT distributions for the five traces. 100

4.13 Bodies of the RTT distributions with per-byte probabilities for the five traces. 100

4.14 Comparison of the sum-of-minima and sum-of-medians RTT estimators for UNC 1 PM. . 101

4.15 Comparison of the sum-of-minima and sum-of-medians RTT estimators for Leipzig-II. . . 101

4.16 Bodies of the distributions of maximum receiver window sizes for the five traces. 103

4.17 Bodies of the distributions of maximum receiver window sizes with per-byte probabilities
for the five traces. 103

4.18 Measured loss rates from experiments with 1% loss rates applied only on one direction or
on both directions of the TCP connections. 106

4.19 Bodies of the distributions of loss rates for the five traces. 108

4.20 Bodies of the distributions of loss rates with per-byte probabilities for the five traces. . . 108

4.21 Breakdown of the byte throughput time series for Leipzig-II inbound. 110

4.22 Breakdown of the packet throughput time series for Leipzig-II inbound. 110

4.23 Breakdown of the byte throughput time series for Leipzig-II outbound. 112

4.24 Breakdown of the packet throughput time series for Leipzig-II outbound. 112

4.25 Breakdown of the byte throughput time series for Leipzig-II outbound. 112

4.26 Breakdown of the packet throughput time series for Leipzig-II outbound. 112

4.27 Breakdown of the byte throughput time series for Abilene-I Ipls/Clev. 113

4.28 Breakdown of the packet throughput time series for Abilene-I Ipls/Clev. 113

4.29 Breakdown of the byte throughput time series for Abilene-I Clev/Ipls. 114

4.30 Breakdown of the packet throughput time series for Abilene-I Clev/Ipls. 114

4.31 Breakdown of the byte throughput time series for UNC 1 PM inbound. 115

4.32 Breakdown of the packet throughput time series for UNC 1 PM inbound. 115

4.33 Breakdown of the byte throughput time series for UNC 1 PM outbound. 116

xii

4.34 Breakdown of the packet throughput time series for UNC 1 PM outbound. 116

4.35 Breakdown of the byte throughput time series for the three UNC traces. 117

4.36 Breakdown of the packet throughput time series for the three UNC traces. 117

4.37 Byte throughput marginals of Leipzig-II inbound, its normal distribution fit, the marginal
distribution of its Poisson arrival fit, and the normal distribution fit of this Poisson arrival
fit. 119

4.38 Packet throughput marginals of Leipzig-II inbound, its normal distribution fit, the marginal
distribution of its Poisson arrival fit, and the normal distribution fit of this Poisson arrival
fit. 119

4.39 Byte throughput marginals of UNC 1 PM outbound, its normal distribution fit, the
marginal distribution of its Poisson arrival fit, and the normal distribution fit of this
Poisson arrival fit. 120

4.40 Packet throughput marginals of UNC 1 PM outbound, its normal distribution fit, the
marginal distribution of its Poisson arrival fit, and the normal distribution fit of this
Poisson arrival fit. 121

4.41 Quantile-quantile plots with simulation envelops for the marginal distribution of Leipzig-
II inbound. The top four plots show byte throughput, while the four bottom plots show
packet throughput. 122

4.42 Quantile-quantile plots with simulation envelops for the marginal distribution of UNC 1
PM outbound. The top four plots show byte throughput, while the four bottom plots
show packet throughput. 123

4.43 Wavelet spectra of the packet throughput time series for Leipzig-II inbound and its Poisson
arrival fit. 129

4.44 Wavelet spectra of the byte throughput time series for Leipzig-II inbound and its Poisson
arrival fit. 129

4.45 Wavelet spectra of the packet throughput time series for Abilene-I. 130

4.46 Wavelet spectra of the byte throughput time series for Abilene-I. 130

4.47 Wavelet spectra of the packet throughput time series for UNC 1 PM. 131

4.48 Wavelet spectra of the byte throughput time series for UNC 1 PM. 131

4.49 Breakdown of the active connections time series for Leipzig-II. 132

4.50 Impact of the definition of active connection on Leipzig-II. 132

4.51 Breakdown of the active connections time series for Abilene-I. 133

4.52 Impact of the definition of active connection on Abilene-I. 133

4.53 Breakdown of active connections time series for UNC 1 PM using both definitions of active
connection. 134

4.54 Impact of the time-of-day on the active connections time series for the three UNC traces. 134

5.1 Overview of Source-level Trace Replay. 140

xiii

5.2 Diagram of the network testbed where the experiments of this dissertation were conducted.141

5.3 End-host architecture of the traffic generation system. 143

5.4 Bodies and tails of the A distributions for Leipzig-II and its source-level trace replays. . . 146

5.5 Bodies and tails of the B distributions for Leipzig-II and its source-level trace replays. . . 148

5.6 Bodies and tails of the E distributions for Leipzig-II and its source-level trace replays. . . 149

5.7 Bodies and tails of the TA distributions for Leipzig-II and its source-level trace replays. . 149

5.8 Bodies and tails of the TB distributions for Leipzig-II and its source-level trace replays. . 151

5.9 Bodies of the round-trip time and receiver window size distributions for Leipzig-II and its
source-level trace replays. 152

5.10 Bodies the loss rate distributions for Leipzig-II and its source-level trace replays, with
probabilities computed per connection (left) and per byte (right). 152

5.11 Bodies and tails of the A distributions for UNC 1 PM and its source-level trace replays. . 154

5.12 Bodies and tails of the B distributions for UNC 1 PM and its source-level trace replays. . 155

5.13 Bodies and tails of the E distributions for UNC 1 PM and its source-level trace replays. . 155

5.14 Bodies and tails of the TA distributions for UNC 1 PM and its source-level trace replays. 156

5.15 Bodies and tails of the TB distributions for UNC 1 PM and its source-level trace replays. 156

5.16 Bodies of the round-trip time and receiver window size distributions for UNC 1 PM and
its source-level trace replays. 157

5.17 Bodies of the loss rate distributions for UNC 1 PM and its source-level trace replays, with
probabilities computed per connection (left) and per byte (right). 158

5.18 Bodies and tails of the A distributions for Abilene-I and its source-level trace replays. . . 159

5.19 Bodies and tails of the B distributions for Abilene-I and its source-level trace replays. . . 159

5.20 Bodies and tails of the E distributions for Abilene-I and its source-level trace replays. . . 159

5.21 Bodies and tails of the TA distributions for Abilene-I and its source-level trace replays. . . 160

5.22 Bodies and tails of the TB distributions for Abilene-I and its source-level trace replays. . 160

5.23 Bodies of the round-trip time and receiver window size distributions for Abilene-I and its
source-level trace replays. 161

5.24 Bodies of the loss rate distributions for Abilene-I and its source-level trace replays, with
probabilities computed per connection (left) and per byte (right). 161

6.1 Byte throughput time series for Leipzig-II inbound and its four types of source-level trace
replay. 169

6.2 Byte throughput time series for Leipzig-II outbound and its four types of source-level
trace replay. 170

xiv

6.3 Packet throughput time series for Leipzig-II inbound and its four types of source-level
trace replay. 171

6.4 Packet throughput time series for Leipzig-II outbound and its four types of source-level
trace replay. 172

6.5 Byte throughput marginals for Leipzig-II inbound and its four types of source-level trace
replay. 173

6.6 Byte throughput marginals for Leipzig-II outbound and its four types of source-level trace
replay. 175

6.7 Packet throughput marginals for Leipzig-II inbound and its four types of source-level trace
replay. 176

6.8 Packet throughput marginals for Leipzig-II outbound and its four types of source-level
trace replay. 177

6.9 Wavelet spectra of the byte throughput time series for Leipzig-II inbound and its four
types of source-level trace replay. 178

6.10 Wavelet spectra of the byte throughput time series for Leipzig-II outbound and its four
types of source-level trace replay. 178

6.11 Wavelet spectra of the packet throughput time series for Leipzig-II inbound and its four
types of source-level trace replay. 181

6.12 Wavelet spectra of the packet throughput time series for Leipzig-II outbound and its four
types of source-level trace replay. 181

6.13 Active connection time series for Leipzig-II and its four types of source-level trace replay. 182

6.14 Byte throughput time series for UNC 1 PM inbound and its four types of source-level
trace replay. 183

6.15 Byte throughput time series for UNC 1 PM outbound and its four types of source-level
trace replay. 184

6.16 Packet throughput time series for UNC 1 PM inbound and its four types of source-level
trace replay. 185

6.17 Packet throughput time series for UNC 1 PM outbound and its four types of source-level
trace replay. 186

6.18 Byte throughput marginals for UNC 1 PM inbound and its four types of source-level trace
replay. 187

6.19 Byte throughput marginals for UNC 1 PM outbound and its four types of source-level
trace replay. 187

6.20 Packet throughput marginals for UNC 1 PM inbound and its four types of source-level
trace replay. 188

6.21 Packet throughput marginals for UNC 1 PM outbound and its four types of source-level
trace replay. 189

6.22 Wavelet spectra of the byte throughput time series for UNC 1 PM inbound and its four
types of source-level trace replay. 190

xv

6.23 Wavelet spectra of the byte throughput time series for UNC 1 PM outbound and its four
types of source-level trace replay. 190

6.24 Wavelet spectra of the packet throughput time series for UNC 1 PM inbound and its four
types of source-level trace replay. 193

6.25 Wavelet spectra of the packet throughput time series for UNC 1 PM outbound and its
four types of source-level trace replay. 193

6.26 Active connection time series for UNC 1 PM and its four types of source-level trace replay.194

6.27 Byte throughput time series for UNC 1 AM inbound and its four types of source-level
trace replay. 198

6.28 Byte throughput time series for UNC 1 AM outbound and its four types of source-level
trace replay. 198

6.29 Packet throughput time series for UNC 1 AM inbound and its four types of source-level
trace replay. 199

6.30 Packet throughput time series for UNC 1 AM outbound and its four types of source-level
trace replay. 199

6.31 Byte throughput marginals for UNC 1 AM inbound and its four types of source-level trace
replay. 200

6.32 Byte throughput marginals for UNC 1 AM outbound and its four types of source-level
trace replay. 200

6.33 Packet throughput marginals for UNC 1 AM inbound and its four types of source-level
trace replay. 201

6.34 Packet throughput marginals for UNC 1 AM outbound and its four types of source-level
trace replay. 201

6.35 Wavelet spectra of the byte throughput time series for UNC 1 AM inbound and its four
types of source-level trace replay. 203

6.36 Wavelet spectra of the byte throughput time series for UNC 1 AM outbound and its four
types of source-level trace replay. 203

6.37 Wavelet spectra of the packet throughput time series for UNC 1 AM inbound and its four
types of source-level trace replay. 204

6.38 Wavelet spectra of the packet throughput time series for UNC 1 AM outbound and its
four types of source-level trace replay. 204

6.39 Active connection time series for UNC 1 AM and its four types of source-level trace replay.205

6.40 Byte throughput time series for UNC 7:30 PM inbound and its four types of source-level
trace replay. 206

6.41 Byte throughput time series for UNC 7:30 PM outbound and its four types of source-level
trace replay. 206

6.42 Packet throughput time series for UNC 7:30 PM inbound and its four types of source-level
trace replay. 207

xvi

6.43 Packet throughput time series for UNC 7:30 PM outbound and its four types of source-
level trace replay. 207

6.44 Byte throughput marginals for UNC 7:30 PM inbound and its four types of source-level
trace replay. 208

6.45 Byte throughput marginals for UNC 7:30 PM outbound and its four types of source-level
trace replay. 208

6.46 Packet throughput marginals for UNC 7:30 PM inbound and its four types of source-level
trace replay. 209

6.47 Packet throughput marginals for UNC 7:30 PM outbound and its four types of source-level
trace replay. 209

6.48 Wavelet spectra of the byte throughput time series for UNC 7:30 PM inbound and its
four types of source-level trace replay. 211

6.49 Wavelet spectra of the byte throughput time series for UNC 7:30 PM outbound and its
four types of source-level trace replay. 211

6.50 Wavelet spectra of the packet throughput time series for UNC 7:30 PM inbound and its
four types of source-level trace replay. 212

6.51 Wavelet spectra of the packet throughput time series for UNC 7:30 PM outbound and its
four types of source-level trace replay. 212

6.52 Active connection time series for UNC 7:30 PM and its four types of source-level trace
replay. 213

6.53 Byte throughput time series for Abilene-I Clev/Ipls and its four types of source-level trace
replay. 214

6.54 Byte throughput time series for Abilene-I Ipls/Clev and its four types of source-level trace
replay. 214

6.55 Packet throughput time series for Abilene-I Clev/Ipls and its four types of source-level
trace replay. 215

6.56 Packet throughput time series for Abilene-I Ipls/Clev and its four types of source-level
trace replay. 215

6.57 Byte throughput marginals for Abilene-I Clev/Ipls and its four types of source-level trace
replay. 216

6.58 Byte throughput marginals for Abilene-I Ipls/Clev and its four types of source-level trace
replay. 216

6.59 Packet throughput marginals for Abilene-I Clev/Ipls and its four types of source-level
trace replay. 217

6.60 Packet throughput marginals for Abilene-I Ipls/Clev and its four types of source-level
trace replay. 217

6.61 Wavelet spectra of the byte throughput time series for Abilene-I Clev/Ipls and its four
types of source-level trace replay. 219

xvii

6.62 Wavelet spectra of the byte throughput time series for Abilene-I Ipls/Clev and its four
types of source-level trace replay. 219

6.63 Wavelet spectra of the packet throughput time series for Abilene-I Clev/Ipls and its four
types of source-level trace replay. 220

6.64 Wavelet spectra of the packet throughput time series for Abilene-I Ipls/Clev and its four
types of source-level trace replay. 220

6.65 Active connection time series for Abilene-I and its four types of source-level trace replay. . 221

7.1 Bodies of the distributions of connection inter-arrivals for UNC 1 PM and 1 AM, and
their exponential fits. 227

7.2 Tails of the distributions of connection inter-arrivals for UNC 1 PM and 1 AM, and their
exponential fits. 227

7.3 Bodies of the distributions of connection inter-arrivals for Abilene-I and Leipzig-II, and
their exponential fits. 227

7.4 Tails of the distributions of connection inter-arrivals for Abilene-I and Leipzig-II, and their
exponential fits. 227

7.5 Average offered load vs. number of connections for 1,000 Poisson resamplings of UNC 1
PM. 229

7.6 Histogram of the average offered loads in 1,000 Poisson resamplings of UNC 1 PM. 229

7.7 Tails of the distributions of connection sizes for UNC 1 PM. 230

7.8 Analysis of the accuracy of connection-driven Poisson Resampling from 6,000 resamplings
of UNC 1 PM (1,000 for each target offered load). 230

7.9 Comparison of average offered load vs. number of connections for 1,000 connection-driven
Poisson resamplings and 1,000 byte-driven Poisson resamplings of UNC 1 PM. 232

7.10 Histogram of the average offered loads in 1,000 byte-driven Poisson resamplings of UNC
1 PM. 232

7.11 Analysis of the accuracy of byte-driven Poisson Resampling from 4,000 resamplings of
UNC 1 PM (1,000 for each target offered load). 233

7.12 Analysis of the accuracy of byte-driven Poisson Resampling using source-level traces re-
play: replays of three separate resamplings of UNC 1 PM for each target offered load,
illustrating the scaling down of load from the original 177.36 Mbps. 233

7.13 Analysis of the accuracy of byte-driven Poisson Resampling using testbed experiments:
replay of one resampling of UNC 1 AM for each target offered load, illustrating the scaling
up of load from the original 91.65 Mbps. 233

7.14 Connection arrival time series for UNC 1 PM (dashed line) and a Poisson arrival process
with the same mean (solid line). 235

7.15 Connection arrival time series for UNC 1 AM and a Poisson arrivals process with the
same mean. 235

xviii

7.16 Wavelet spectra of the connection arrival time series for UNC 1 PM and a Poisson arrival
process with the same mean. 235

7.17 Wavelet spectra of the connection arrival time series for UNC 1 AM and a Poisson arrival
process with the same mean. 235

7.18 Block resamplings of UNC 1 PM: impact of different block lengths on the wavelet spectrum
of the connection arrival time series. 238

7.19 Block resamplings of UNC 1 AM: impact of different block lengths on the wavelet spectrum
of the connection arrival time series. 239

7.20 Block resamplings of UNC 1 PM: average offered load vs. number of connection vectors
(left) and corresponding histograms of average offered loads (right) in 3,000 resamplings. . 241

7.21 Wavelet spectra of several random subsamplings of the connection vectors in UNC 1 PM
(left) and 1 AM (right) . 242

7.22 Analysis of the accuracy of byte-driven Block Resampling using source-level trace replay:
replays of two separate resamplings of UNC 1 PM for each target offered load, illustrating
the scaling down of load from the original 177.36 Mbps. 243

7.23 Analysis of the accuracy of byte-driven Block Resampling using source-level trace replay:
replay of one resampling of UNC 1 AM for each target offered load, illustrating the scaling
up of load from the original 91.65 Mbps. 243

7.24 Wavelet spectra of the packet arrival time series for UNC 1 PM and the source-level trace
replays of two block resamplings of this trace. 245

7.25 Wavelet spectra of the packet arrival time series for UNC 1 PM and the source-level trace
replays of three Poisson resamplings of this trace. 245

xix

LIST OF ABBREVIATIONS

ACK Positive acknowledgment TCP segment

ADU Application Data Unit

API Application Programming Interface

AQM Active Queue Management

BGP Border Gateway Protocol

BPF Berkeley Packet Filter

C.I. Confidence Interval

CCDF Complementary Cumulative Distribution Function

CDF Cumulative Distribution Function

DAG Data Acquisition and Generation

FIFO First-In First-Out

FIN TCP control flag indicating “no more data from sender”

FTP File Transfer Protocol

GB Gigabyte

GPS Global Positioning System

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

I/O Input/Output

ICMP Internet Control Message Protocol

IP Internet Protocol

IRC Internet Relay Chat

ISP Internet Service Provider

K-S Kolmogorov-Smirnov test

KB Kilobyte

Kpps Kilo packet per second

LRD Long-Range Dependence

MB Megabyte

MIME Multipurpose Internet Mail Extensions

MSS Maximum Segment Size

MTU Maximum Transmission Unit

xx

Mbps Megabit per second

NNTP Network News Transfer Protocol

OSTT One-Side Transit Time

PMA Passive Measurement and Analysis

Q-Q Quantile-Quantile

RED Random Early Detection

RFC Request For Comments

RST TCP control flag indicating “connection reset”

RTT Round-Trip Time

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

SYN Synchronize TCP control segment

SYN-ACK Positive acknowledgement of SYN segment

TCP Transport Control Protocol

UDP User Datagram Protocol

UNC University of North Carolina at Chapel Hill

URL Universal Resource Locator

xxi

CHAPTER 1

Introduction

As far as the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality.

— Albert Einstein (1879–1955)

Humankind cannot stand very much reality.

— T. S. Elliot (1888–1965)

Research in networking has to deal with the extreme complexity of many layers of technology inter-

acting with each other in frequently unexpected ways. As a consequence, there is a broad consensus

among researchers that purely theoretical analysis is not enough to demonstrate the effectiveness of

network technologies. More often than not, careful experimentation in simulators and network testbeds

under controlled conditions is needed to validate new ideas. Every researcher therefore faces, at some

point or another, the need to design realistic networking experiments, and synthetic network traffic is a

foremost element of these experiments. Synthetic network traffic represents not only the workload of a

computer network, but also the direct or indirect target of any optimization. For instance, congestion

control research focuses on preserving as much as possible the ability of a network to transfer data in

the face of overload. Therefore, evaluating a new congestion control mechanism in a transport proto-

col such as the Transport Control Protocol (TCP) [Pos81] usually requires constructing experiments in

which a number of network hosts exchange data using this protocol in an environment with one or more

saturated links. The value of the new mechanism is then expressed as a function of the performance of

these data exchanges. For example, the new mechanism may be optimized for achieving a higher overall

throughput or a more fair allocation of bandwidth.

A fundamental insight, which provides the main motivation for this dissertation, is that the char-

acteristics of synthetic traffic have a dramatic impact on the outcome of networking experiments. For

example, a new mechanism that improves the throughput of bulk, long-lasting file transfers in a congested

environment may not improve and may even degrade the response time of the small data exchanges in

web traffic. This was precisely the case of Random Early Detection (RED), an Active Queue Manage-

ment (AQM) mechanism. The original analysis by Floyd and Jacobson [FJ93a] clearly demonstrated

the benefits of RED over the basic First-In First-Out (FIFO) queuing mechanism for bulk transfers. In

this study, RED queues were exposed to a small number (2–4) of large file transfers. However, a later

experimental study by Christiansen et al. [CJOS00] showed that this first AQM mechanism degraded

the performance of web traffic in highly congested environments. In contrast to the original evaluation,

web traffic mostly consists of a very large number of small data transfers, which create a very differ-

ent workload. The emergence of the web clearly changed the nature of Internet traffic, and made it

necessary to revisit existing results obtained under different workloads. The systematic evaluation of

network mechanisms must therefore include experiments covering the wide range of traffic characteristics

observed on Internet links. It is critical to provide the research community with methods and tools for

generating synthetic traffic as representative as possible of this range of characteristics.

The concept of source-level modeling introduced by Paxson and Floyd [PF95] constitutes a major

influence on this dissertation. These authors advocated for building models of the behavior of Internet

applications (i.e., the sources of Internet traffic), and generating traffic in networking experiments by

driving network stacks with these application models. The main benefit of this approach is that traffic

is generated in a closed-loop manner, which fully preserves the fundamental feedback loop between

network endpoints and network characteristics. For example, a model of web traffic can be used to

generate traffic using TCP/IP network stacks, and the generated traffic will properly react to different

levels of congestion in networking experiments. In contrast, open-loop traffic generation is associated to

models of the packet arrivals on network links, and these models are insensitive to changes in network

conditions, and tied to the original conditions under which they were developed. This makes them

inappropriate for experimental studies that change these conditions.

The main motivation of our work is to address one important difficulty with source-level modeling.

In the past, source-level modeling has been associated with characterizing the behavior of individual

applications. While this approach can result in high-quality models, it is a difficult process that requires

a large amount of effort. As a consequence, only a small number of models is available, and they are

often outdated. This is in sharp contrast to the traffic observed in most Internet links, which is driven

by rich traffic mixes composed of a large number of applications. Source-level modeling of individual

applications does not scale to modern traffic mixes, making it very problematic for networking researchers

to conduct representative experiments with closed-loop traffic.

2

This dissertation presents a new methodology for generating network traffic in testbed experiments

and software simulations. We make three main contributions. First, we develop a new source-level model

of network traffic, the a-b-t model , for describing in a generic and intuitive manner the behavior of the

applications driving TCP connections. Given a packet header trace collected at an arbitrary Internet

link, we use this model to describe each TCP connection in the trace in terms of data exchanges and

quiet times, without any knowledge of the actual semantics of the application. Our algorithms make

it possible to efficiently derive empirical characterizations of network traffic, reducing modeling times

from months to hours. The same analysis can be used to incorporate network-level parameters, such as

round-trip times, to the description of each connection, providing a solid foundation for traffic generation.

Second, we propose a traffic generation method, source-level trace replay , where traffic is generated by

replaying the observed behavior of the applications as sources of traffic. This is therefore a method for

generating entire traffic mixes in a closed-loop manner. One crucial benefit of our method is that it can

be evaluated by directly comparing an original trace and its source-level replay. This makes it possible

to systematically study the realism of synthetic traffic, in the terms of how well our description of the

connections in the original traffic mix reflects the nature of the original traffic. In addition, this kind of

comparison provides a means to understand the impact that the different characteristics of a traffic mix

have on specific traces and on Internet traffic in general. Third, we propose and study two approaches

for introducing variability in the generation process and scaling (up or down) the level of traffic load in

the experiments. These operations greatly increase the flexibility of our approach, enabling a wide range

of experimental investigations conducted using our traffic generation method.

1.1 Abstract Source-Level Modeling

This dissertation presents a methodology for generating synthetic network traffic that addresses

some of the main shortcomings of existing techniques. Figure 1.1 illustrates the levels of detail at which

Internet traffic can be studied, providing a good starting point for framing our discussion. We focus on

the traffic on a single Internet link, such as the one between the University of North Carolina at Chapel

Hill (UNC) and the Internet. We can study the traffic in this link at different levels of detail. The

top-most time-line represents traffic observed in the link between UNC and the Internet as a sequence

of packet arrivals. This level of detail is known as the aggregate packet arrival level. Here packets from

many different connections were interleaved creating a complex arrival process in the network link. In

general, TCP traffic accounts for the vast majority of the packets on Internet links (usually between 90%

3

����� � ���
	��
��	��

��� ���

�������
�
��� ���! �"

�����#�
���
� �%$ &'��� � &(�'�

�����)�
�* +"

�����)�
�,�,� �%$ &-�.�

/��(0#1(�-2
���!/�3 4���56387 � 1 �,9 � /��:0�; $ �=<(>)�

�*>?> � �(>?<-����@#< 9#A �-�?� �B� � C-<?D
3:�.C-�)D

7�� &->�D �-EF" � &(&-� 9 �,� � &�@?< 9#A �(�?� �G� � C-<)D 2

�!H:2I� � < 9 �)7 � 1 �
9 �=3:�.C-�)D

�!J?J?D � 9 <-�
� � &K3:�:C.�#DILNM?O P�O QIR8�)H6� � < � � � 9(S

T Q U-V?V=H.W.�N�(2 X�Q Y(V:V�H.W'���(2 Y(V(V�H Z?Q Y(V?V=H

" � &(&.� 9 �
� � &K[(� D �N� � � &->

Figure 1.1: Network traffic seen from different levels.

and 95%), which justifies our focus on TCP in this work. The second time-line depicts the packet arrivals

that belonged to a single TCP connection. These packets were used to send data back and forth between

two network endpoints, one located at UNC, and the other one somewhere on the Internet. The sources

of these data are applications running on the endpoints, which rely on the packet switching service

provided by the Internet to communicate. Prominent examples of these applications are the World

Wide Web, email, file sharing, etc. Hundreds of different applications are commonly found on Internet

links. The traffic observed at an Internet link is therefore the result of multiplexing the communication

of a large number of endpoints driven by a wide range of applications. This dissertation considers the

problem of generating traffic in networking experiments that preserves both the aggregate-level and the

connection-level properties of traffic observed in a real network link. Note that we restrict ourselves

to this most basic form of the problem where only a single link is considered both for observing traffic

and for reproducing it in networking experiments. Our findings can certainly be applied to a broader

context, e.g., multiple links along a path following the “parking lot topology” [PF95], links in an ISP,

etc., but we choose to keep to this problem in its most essential form throughout this dissertation.

As mentioned before, every connection on the Internet is driven by an application exchanging data

between two endpoints. It is therefore possible to examine traffic at a higher-level, where the com-

munication is described in terms of application data units (ADUs) rather than network packets. This

4

application level is illustrated in the bottom time-line of Figure 1.1, which reveals that the source of the

packets in the second time-line was the exchange of data between a web browser and a web server using a

TCP connection. The time-line shows a first ADU of 2,500 bytes, which carried a request for an HTML

page. The way the data is organized within this ADU and its meaning is given by the specification of

the HyperText Transfer Protocol (HTTP) [FGM+97], which standardizes the exchange of data between

web browsers and web servers. The time-line shows a second ADU, sent by the web server to the web

browser in response to the first ADU. It carried the actual HTML source code of the page requested

by the browser. Its size was 4,800 bytes, which included not only the HTML source code but also an

appropriate HTTP header. The time-line shows another pair of ADUs that also corresponded to an

HTTP request and an HTTP response, which this time carried an image file. Each ADU is associated

to one or more packets in the second time-line. The amount of data in these ADUs and its meaning was

decided by the application, while the actual number of packets, their sizes, the need for retransmissions,

etc., were decided by lower layers (transport and below).

The application level provides the starting point for the traffic modeling and generation methodology

developed in this dissertation. Our approach to traffic generation relies on the notion of source-level

modeling , advocated by Paxson and Floyd [FP01]. Rather than directly generating packets according

to some trace or some packet arrival model, source-level modeling involves simulating the behavior of

the applications running on the endpoints and allowing lower layers to control the actual exchange of

packets. For example, generating traffic with a source-level model of web traffic means to simulate web

browsers and web servers according to statistical models of web page sizes, the durations of user think

times and other source-level parameters [Mah97, BC98, SHCJO01].

Modeling traffic at the source level produces descriptions of traffic that are mostly independent of

the underlying protocols and network conditions, so they can be used to drive traffic generation in

experiments that modify these same protocols and conditions. For this reason, source-level models

are also known as network-independent model . For example, the size of an HTML page carried in a

TCP connection does not change with the degree of congestion (it always has the same number of

characters). Therefore, its size is a network-independent property. Lower-level descriptions of traffic,

such as characterizations of packet arrivals, are network dependent . For example, the rate at which

the packets of a TCP connection arrive decreases as the degree of congestion increases, since TCP

uses a congestion control algorithm that decreases the sending rate as the loss rate increases. Also,

packet losses force TCP endpoints to perform retransmissions. This means that the transmission of the

same amount of data at the source-level (e.g., an HTML page) at different times may require different

5

��� ������
	���
���������
	���
������

��������
��������������
������

����� �"!#�$�

! �%�'&(�%�

) ���%*+�,��-'.����/�10

) ���%*+�,����2
3'4����50

6 ������
������6 ������
������

��7'8 ����0���
��������7'8 ����0���
������

) ���%*+�,��-'.����9�'�

) ���%*+�1����2
3'4����5�

��7�:���
��������7�:���
������

0�8 0;	��<��
=�����0�8 0;	��<��
������

) ���%*+�1��-'.����/�,�

) ���%*+�,����2
3'4����>�

?�@ A=B$C�D�E�C F @ A�B$C=D�E�C

G�3�H'.�I>��4��10 G 3�H'.�I>��4��,�

�12
3�H'J�� �%2
3�H'JK��12
3�H'J�0

Figure 1.2: An a-b-t diagram illustrating a persistent HTTP connection.

numbers of packets to be transferred, depending on the number of lost packets. A source-level model

describes the sizes of ADUs, but not the times at which a connection should lower its sending rate or

retransmit a packet. For this reason, the same model can be used to generate traffic under different

network conditions, such as low and high levels of congestion. Endpoints generating traffic using these

models are able to adapt to each specific set of network conditions in the experiments. This preserves

the fundamental feedback loop that exists between endpoints and network conditions. For this reason,

this type of traffic generation is said to be closed-loop. On the contrary, traffic generated according to

lower level models is necessarily open-loop. For example, tcpreplay [tcpb] can be used to reenact the

sending of every packet recorded in a trace, which results in open-loop traffic that is insensitive to the

underlying network conditions. This traffic is inappropriate for experiments where network conditions

are important, such as the evaluation of congestion control mechanisms.

In the past, source-level modeling has been considered a synonym of application modeling, so re-

searchers have developed a number of application-specific models including models for web traffic, file

transferring and other individual applications. This approach is good if one is interested in the traffic

generated by a single application (or by a handful of applications). However, if one is interested in

realistic traffic mixes, application-specific traffic modeling has some important shortcomings. The first

problem is that application specific modeling does not scale well to the large number of applications

that form contemporary traffic mixes. For example, the weekly traffic report from Internet2 [Con04]

collects separate statistics for more than 80 different applications that make up Internet2 traffic. Using

existing technology, it is simply too time-consuming to develop and populate individual models for each

application. Moreover, even if we had the resources to examine the behavior of all applications, many

applications use proprietary protocols, so painstaking reverse engineering is needed to understand and

model their behavior. In addition, Internet traffic evolves quickly, since new applications and improved

versions of the existing ones appear very frequently.

6

This dissertation proposes a more general solution to the source-level modeling and the traffic gen-

eration problems. We develop an abstract model of network data exchange wherein each connection is

described independently of the semantics of the application initiating the connection. This idea is illus-

trated in the third time-line of Figure 1.1. Here the communication is described in generic terms, simply

as a sequence of ADU exchanges between the two endpoints of the TCP connection, without attaching

any meaning to the ADUs. Other generic characteristics of traffic include the direction in which the

ADUs are sent, from the connection initiator or from the connection acceptor, and the duration of quiet

times between ADUs, which are due to user behavior and processing times. These characteristics can

generally be used to describe the behavior of any specific application. For example, the ADUs of web

traffic are HTTP requests and responses, while the inter-ADU times are user think times and server

processing times. The crucial observation is that the sizes of ADUs and the times between them can

be measured from the packet traces of two connections without knowledge of the behavior of the ap-

plication driving the connection. This makes it possible to construct a source-level description of the

entire set of connections observed in a measured link, instead of only the connections driven by one or

a few well-known applications. Any trace of packets traversing a network link can be transformed into

an abstract source-level trace, without examining the payload of the packets and without instrumenting

the endpoints.

Our approach to source-level modeling results in an abstract representation of a TCP connection

using a notation that we call an a-b-t connection vector . We also refer to this idea as the a-b-t model ,

in the sense that it provides a mental model for understanding network traffic at the source level, rather

than in the sense of a mathematical or statistical model1. The term a-b-t is descriptive of the basic

building blocks of this model: a-type ADUs (a’s), which are sent from the connection initiator to the

connection acceptor, b-type ADUs (b’s), which flow in the opposite direction, and quiet times (t’s), during

which no data segments are exchanged. We will make use of these terms to describe the source-level

behavior of TCP connections throughout this dissertation.

Our a-b-t model has a sequential version and a concurrent version. The sequential version applies

to connections where the endpoints follow a strict order in their exchange of ADUs. In this version,

a TCP connection is described by a vector of epochs (e1, e2, . . . , en). Each epoch has the form ej =

(aj , taj , bj , tbj), where aj is the size of an ADU sent from the connection initiator to the connection

acceptor, bj is the size of an ADU sent in the opposite direction, and taj and tbj are inter-ADU quite

1Our a-b-t model provides however a good foundation for developing mathematical and statistical models of traffic at
the source-level. This dissertation consistently follows a non-parametric approach to traffic modeling. The only exception is
the Poisson Resampling method presented in Chapter 7, for which we also offer a more powerful non-parametric alternative,
block resampling.

7

times (during which the endpoints are idle). We call this representation of source-level behavior a

sequential connection vector . For example, the connection illustrated in Figure 1.2 is represented as

((329, 0, 403, 0.12), (403, 0, 25821, 3.12), (356, 0, 1198, 15.3))

using the sequential a-b-t model. This connection has three epochs, each carrying one HTTP re-

quest/response pair. The first epoch has an ADU a1 of size 329 bytes, which was sent from the connection

initiator (a web browser) to the connection acceptor (a web server), and an ADU b1 of size 803 bytes,

which was sent in the opposite direction. We also observe some quiet times between the ADUs, such tb2,

which had a duration of 3.12 seconds. While Figure 1.2 includes labels for HTTP requests, responses

and documents, our a-b-t notation is completely generic.

We consider this TCP connection sequential because only one endpoint sent data to the other one at

any point in the lifetime of the connection. It is important to iterate that an ADU is not a TCP segment

(i.e., TCP packet), but an application message that is independent of its actual network representation

as a link-level packet. As such, an ADU can be of arbitrary size, like the smaller a1 = 329 bytes and the

larger b2 = 25, 821 bytes in the previous example. The transferring of a1 would usually involve a single

TCP segment, but it is also possible that this segment gets duplicated, or lost and then retransmitted.

In this case, the TCP endpoint sending a1 would result in the generation of two or more segments

carrying this ADU. Our notation would still describe this part of the TCP connection as a single 329-

byte ADU, and not as the sequence of TCP segments used to transfer the data. Similarly, transferring

b2 = 25, 821 bytes requires a minimum of 18 TCP segments in a path without loss and with a regular

Maximum Segment Size (MSS) of 1,460 bytes (the one derived from Ethernet’s Maximum Transmission

Unit (MTU) of 1,500 bytes, after subtracting 20 bytes for the IP header and 20 bytes for the TCP

header). It may require many more segments in a lossy environment, or in a path with a lower MTU.

However, these details are irrelevant at the abstract source level, where b2 captures the need of one of

the endpoints to send 25,821 bytes of data, and this need is independent of the way in which the data

is transferred by the network. Our modeling is therefore network-independent, which makes it suitable

for generating closed-loop traffic.

While most TCP connections are driven by applications that follow a sequential pattern of ADU

exchanges, we can also find cases in which the two endpoints send data to each other at the same time.

This is illustrated in Figure 1.3 using a BitTorrent [Coh03] connection, where we can see ADUs whose

transmission overlaps in time (i.e., the ADUs are exchanged concurrently). This pattern is certainly less

8

��� ������
	����	

�
�����
�

�
�������

��� ���������������
��� ���!��"���#

�$�
	�$�
	

��� �!�������������
��� ���%��"���#

��&�'(��&�'(

��� ��)*� ��# +

��&�'(��&�'(

��� ��)�� ��# +

&�	&�	

, �$"�-��/.0�

&�	&�	

� ���%���1��23���$+

&�	&�	

� ���%������20� �$+

4�'�	4�'�	

4$��5�6�'(879� ��24$��5�6�'(�7:� ��2

��� �$"��
;

�/�$<�=���23�
��� �$"��
;

4�'$	4�'$	

�/�$<�=$��20�
��� �$"���>

4�'$	4�'$	

�/�$<�=$��20�
��� ��"��@?

4�'$	4�'$	

�/�$<�=$��20�
��� �$"��
A

4�'$	4�'$	

�/�$<�=$��20�
��� �$"���B

4$��5$6�'(�79����24���5�6�'C	�7:�%��2

��� �$"���>

4$��5�6/'C	�7:�%��24$��5�6�'D	�7:� ��2

��� �$"��E?

4$��5�6�'(�7:� ��24$��5�6�'(�7:�%��2

��� �$"��
A

4$��5�6�'D	�7:� ��24$��5�6�'C	�79� ��2

��� �$"��
B

Figure 1.3: A diagram illustrating the interaction between two BitTorrent peers.

common that the sequential one, but it is supported in important protocols like HTTP/1.1 (pipelining),

NNTP (streaming mode) and BitTorrent. Our analysis shows that while the fraction of connections

with concurrent data exchanges is usually small, (17.4%), such concurrent connections often carry a

significant fraction (15%-35%) of the total bytes seen in a trace, and hence modeling these connections

is critical if one wants to generate realistic traffic mixes.

To represent concurrent ADU exchanges, the actions of each endpoint are considered to occur inde-

pendently of each other. Thus each endpoint is a separate source generating ADUs that appear as a

sequence of epochs following a unidirectional flow pattern. Formally, this means that we represent each

connection as a pair (α, β) of connection vectors of the form

α = ((a1, ta1), (a2, ta2), . . . , (ana
, tana

))

and

β = ((b1, tb1), (b2, tb2), . . . , (bnb
, tbnb

)),

where ai and bi are sizes of ADUs sent from the initiator and from the acceptor of the TCP connection

respectively, and tai and tbi are quiet times between the ADUs. We call this representation of source-

level behavior a concurrent connection vector . Unlike the sequential version of the a-b-t model, this

representation does not capture any causality between the two directions of a TCP connection. As

a consequence, traffic generated according to this version of the model usually exhibits a substantial

number of concurrent data exchanges.

The a-b-t model provides a simple yet expressive way of describing source-level behavior in a generic

manner that is not tied to the details of any application. In addition, this non-parametric model was

designed to incorporate quantities (ADU sizes, ADU directionality, and inter-ADU quiet time duration)

that can be extracted from packet header traces in a efficient, accurate manner. We can easily imagine

more complex and expressive models of TCP connections for which no efficient data acquisition algorithm

9

Tmix Tra f f ic
G enera tors

Tmix Tra f f ic
G enera tors

Tra ce P a rtitioning

TE S TB E D

O rig ina l P a ck et
H ea d er Tra ce

Th

O rig ina l P a ck et
H ea d er Tra ce

Th

O rig ina l
Connection Vectors

Tc

O rig ina l
Connection Vectors

Tc

Trace Analysis

G enera ted P a ck et
H ea d er Tra ce

Th′

G enera ted P a ck et
H ea d er Tra ce

Th′

R ep l a y ed
Connection Vectors

Tc′

R ep l a y ed
Connection Vectors

Tc′
Trace Analysis

Figure 1.4: Overview of Source-level Trace Replay.

exists, or models that deal with characteristics of source-level behavior that cannot be extracted purely

from packet headers. In the case of the a-b-t model, we have developed a data acquisition algorithm

that relies on TCP sequence numbers for measuring ADU sizes, and on the packet arrival timestamps

obtained during trace collection to determine inter-ADU quite times. Our algorithm constructs a data

structure in which TCP segments are ordered according to their logical data order , i.e., the order in which

data must be delivered to the application layer of the receiving endpoint. In reconstructing this logical

order for each connection, we have developed methods for dealing with network pathologies such as

arbitrary segment reordering, duplication and retransmission. Furthermore, when the data segments in

a TCP connection cannot be ordered according to the logical data order, we can classify the connection

as concurrent with certainty. Our data structure supports both sequential (i.e., bidirectional) and

concurrent (i.e., unidirectional) ordering, making it possible to extract ADU sizes and quiet times with

a single pass over the segments of a TCP connection found in a trace. The analysis can be performed in

O(sW) time, where s is the number of data segments in the connection and W is the maximum size of

the TCP window (which bounds the maximum amount of reordering).

1.2 Source-Level Trace Replay

Our abstract source-level modeling of TCP connection provides a solid foundation for generation

traffic mixes in simulators and network testbeds. We propose to generate traffic using source-level trace

replay , as illustrated in Figure 1.4. Given a packet header trace Th collected from some Internet link, we

10

first use our data acquisition algorithm to analyze the trace and describe its content as a collection of

connection vectors Tc = {(Ti, Ci)}, where Ti is the relative start time of the i-th TCP connection, and Ci

is the sequential or concurrent connection vector corresponding to this connection. The basic approach

for generating traffic according to Tc is to replay every connection vector Ci. Each connection vector

Ci is replayed by starting a TCP connection precisely at Ci’s relative start time Ti, and transmitting

the measured sequence of ADUs (aj and bj) separated in time by the inter-ADU measured quiet times

(tai and tbi). In this dissertation, we evaluate a specific implementation of this approach for FreeBSD

network testbeds, where traffic is generated using a tool we developed called tmix .

The goal of the direct source-level trace replay of Tc is to reproduce the source-level characteristics

of the traffic in the original link, generating the traffic in a closed-loop fashion. Closed-loop traffic

generation implies the need to simulate the behavior of applications, using regular network stacks to

actually translate source-level behavior into network traffic. In particular, our experiments use an

implementation which relies on the standard socket interface to reproduce the data exchanges in each

connection vector. Generating traffic in this manner is closed-loop in the sense that it preserves the

feedback mechanism in TCP, which adapts its behavior to changes in network conditions, such as loss

and receiver saturation. In contrast, packet-level trace replay, the direct reproduction of Th, is an

open-loop traffic generation method in the sense that TCP control algorithms are not used during the

generation, and hence the traffic does not adapt to network conditions.

The evaluation of our methodology consists of comparing the original trace Th and the synthetic

trace T ′
h obtained from the source-level trace replay. Validating our traffic generation method consists

of transforming T ′
h into a set of connection vectors T ′

c , using the same method used to transform Th

into Tc. We then compare the resulting set of connection vectors T ′
c with the original Tc. In principle,

they should be identical, since Tc represents the invariant source-level characteristics of Th. There are

however some differences that are explained by the nature of the model and our measurement methods.

The direct comparison of Th and T ′
h also provides a way to study the accuracy of our approach in

terms of how well traffic is described by the a-b-t model. This is however a subtle exercise. The actual

replay of Tc, which creates T ′
h, necessarily requires the selection of a a set of network-level parameters,

such as round-trip times and TCP receiver window sizes, for each TCP connection in the source-level

trace replay. The exact set of generated TCP segments and their arrival times is a direct function of these

parameters. As a consequence, if we conduct a source-level trace replay using arbitrary network-level

parameters, we obtain a T ′
h with little resemblance to the original Th. The replayed a-b-t connection

11

vectors may be a perfect description of the source behavior driving the original connections, but the

generated packet-level trace T ′
h would still be very different from the original Th. To address this

difficulty, our replay incorporates network-level parameters individually derived from each connection

in Th. We have also incorporated methods for measuring three important network-level parameters

(round-trip time, TCP receiver window size and loss rate) into our analysis and generation procedure.

While this set of parameters is by no means complete, it does include the main parameters that affect

the average throughput of a TCP connection found in a trace. This enables us to generate traffic in a

closed-loop manner that approximates measured traces very closely.

Incorporating network-level properties is important, but it is critical to understand the main short-

coming of this approach. The goal of our work is not to make the generated traffic T ′
h identical to the

original traffic Th, which could be accomplished with a simple packet-level replay. As mentioned before,

packet-level replays generate traffic that does not adapt to changes in network conditions, resulting in

open-loop traffic. Our goal is to develop a closed-loop traffic generation method based on a detailed

characterization of source behavior. Traffic generated in a closed-loop manner can adapt to different

network conditions, which are intrinsic when evaluating different network mechanisms. Our comparison

of Th and T ′
h is only a means to understand the quality of traffic generation method, where quality is

considered to be higher as the original trace is more closely approximated. If enough parameters of the

original traffic are accurately measured and incorporated into the traffic generation experiment, we ex-

pect to observe a great similarity between Th and T ′
h. On the contrary, if we are missing some important

parameters, we expect to observe substantial differences between traces.

By construction, traffic generated using source-level trace replay can never be identical to the original

traffic. The statistical properties of original packet header traces are the result of multiplexing a large

number of connections onto a single link, and these connections traverse a large number of different paths

with a variety of network conditions. It is simply not possible to fully characterize this environment and

reproduce it in a laboratory testbed or in a simulation. This is both because of the limitations of passive

inference from packet headers, and because of the stochastic nature of network traffic. Source-level trace

replay can never incorporate every factor that shaped Th, and therefore differences between Th and T ′
h

are unavoidable. Still, finding a close match between an original trace and its replay, even if they are

not identical, constitutes strong evidence of the accuracy of the a-b-t model and the data acquisition

and generation methods we have developed. It also demonstrates the feasibility of generating realistic

network traffic in a closed-loop manner that resembles a rich traffic mix.

12

1.3 Trace Resampling and Load Scaling

As long as the network setup of a simulation or testbed experiment remains unchanged, the source-

level trace replay of a connection vector trace Tc = {(Ti, Ci)} always results in traffic that is similar to

the original trace. Every replay contains the same number of TCP connections behaving according to the

same connection vector specification and starting at the same times. Only tiny variations are introduced

on the end-systems by changes in clock synchronization, operating system scheduling and interrupt

handling, and at switches and routers by the stochastic nature of packet multiplexing. Source-level trace

replay has therefore two desirable properties:

• The quality of the synthetic traffic can be evaluated by directly comparing synthetic and original

traffic. This makes it possible to study the accuracy of the analysis methods and the generation

system with complete freedom, using any metric that can be derived from real traffic. In contrast,

more abstract methods based on parametric models of traffic are inherently stochastic and therefore

more difficult to evaluate. For such methods, it is less obvious whether the observed difference

between the traffic generated using the parametric model and the original traffic from which the

model derives should be admitted.

• The generation of the synthetic traffic is fully reproducible. A researcher can expose a collection of

network protocols and mechanisms to exactly the same closed-loop traffic, which provides the right

foundation for fair comparative studies. In contrast, stochastic variation in the traffic generated

using parametric models is often difficult to control. For example, experiments with models that

rely on heavy-tailed distributions converge very slowly to comparable conditions, as discussed by

Crovella and Lipsky [CL97].

While these properties are important, the practice of experimental networking often requires to introduce

controlled variability in the generated traffic for exploring a wider range of scenarios. This motivates

the development of methods that manipulate Tc in order to generate different traffic that still resembles

the original one. Furthermore, developing a statistically sound way of manipulating Tc is essential for

generating traffic with different levels of offered load. This manipulation to match a target offered load is

a very common need in experimental networking research. This is because the performance of a network

mechanism or protocol is often affected by the amount of traffic to which it is exposed. Therefore,

rigorous experimental studies frequently require to generate a complete range of target loads.

13

In this dissertation, we propose two flexible methods for introducing variability in traffic generation

experiments. In both cases, the set of connection vectors in Tc is randomly resampled, resulting in a

new set T ′
c that preserves the aggregate source-level characteristics of the original traffic. In our first

method, Poisson Resampling , we construct a new connection vector trace T ′
c by randomly resampling

connections from Tc, and assigning them exponentially distributed inter-arrival times. As a result,

connections in T ′
c arrive according to a Poisson process. In the second method, Block Resampling , we

resample blocks (groups) of connections rather than individual connections. This method results in a

more realistic connection arrival process, which matches the substantial burstiness observed in real traces.

In more technical terms, Block Resampling preserves the moderate long-range dependence found in real

connection arrival processes, while Poisson Resampling results in a short-range dependent connection

arrivals process. This difference is demonstrated in our experimental evaluation of the two methods.

In addition, the evaluation shows that the duration of the resampling block creates a trade-off between

shorter blocks (which increase the number of distinct resamplings) and long-range dependence (which

disappears for short blocks). Our analysis demonstrates that block durations between 1 and 5 minutes

offer the best compromise.

Researchers often need to conduct a set of experiments with a range of different traffic loads. When

using a traditional source-level model, e.g., a model of web traffic, researchers have to first conduct

a preliminary experimental study to determine how the parameters of the model, e.g., the number of

user equivalents, affect the generated load [CJOS00, LAJS03, KcLH+02]. This is usually known as the

calibration of traffic generator. Our resampling methods eliminate this common need for calibrating

traffic generators, since the resampling process can be controlled to match a specific target load (i.e.,

generated load is known a priori). In the case of Poisson Resampling, this is accomplished by changing

the mean arrival rate of connections. In the case of Block Resampling, offered load is manipulated

using block thinning (i.e., subsampling) and block thickening (i.e., combining blocks). Our work reveals

that load scaling cannot be based simply on controlling the number of connections. Such an approach

frequently results in offered loads that are far from the target, because the number of connections in a

resample is not strongly correlated with the offered load represented by these connections. We address

this difficulty by developing byte-driven versions of Poisson Resampling and Block Resampling, which

scale load using a running count of the total data in the resampled trace T ′
c . Unlike the number of

connections, the total amount of data in T ′
c is strongly correlated to traffic load offered by T ′

c . Our

experiments confirm that byte-driven resampling is highly accurate, eliminating the common need for

calibrating traffic generators.

14

1.4 Thesis Statement

This dissertation considers the following thesis:

1. An abstract source-level model can describe in detail the entire set of TCP application behaviors

observed in real networks.

2. Descriptions of abstract source-level behavior can be empirically derived from packet header traces

in an efficient, accurate manner.

3. Traffic generation based on this abstract source-level modeling results in synthetic traffic that is

realistic and suitable for experimental networking research.

4. The abstract source-level model of a trace can be manipulated to introduce statistically valid vari-

ability in the generated traffic and also to accurately match a target offered load while preserving

application characteristics.

1.5 Contributions

We highlight the following contributions from this dissertation:

• We develop the concept of abstract source-level modeling and the a-b-t notation for describing the

source-level behavior of entire traffic mixes. We identify a fundamental dichotomy in source-level

behavior between connections that exchange data sequentially and connections that exchange data

concurrently. Our a-b-t notation includes a sequential version and a concurrent version that makes

it possible to appropriately describe these two types of behaviors.

• We formulate a formal test of concurrency that can be applied to the packet headers of any TCP

connection, and that does not suffer from false positives. This enables us to accurately classify

connections as sequential or concurrent. We show that only a small fraction of TCP connections

(less than 4% in our traces) exchange data concurrently, but that these TCP connections account

for a substantial fraction (up to 32%) of the total traffic.

• We present an efficient algorithm for transforming a packet header trace into a collection of se-

quential and concurrent a-b-t connection vectors. Given a TCP connection for which we observe s

segments and that has a maximum receiver window size of W , the asymptotic cost of our algorithm

15

is O(sW). We demonstrate that this algorithm is accurate using traffic generated from synthetic

applications (i.e., with known characteristics).

• We develop source-level trace replay, a closed-loop traffic generation method that uses a-b-t con-

nection vectors as a non-parametric model of network traffic. One key benefit of this approach

is the possibility of directly comparing original and generated traffic, which we use to evaluate

the “realism” of our traffic generation approach. This comparison requires us to incorporate some

network-level parameters (round-trip times, maximum receiver window sizes, and possibly loss

rates) into the traffic generation. These parameters can be measured from packet header traces.

We pay special attention to passive round-trip time estimation in our data acquisition, developing

the concept of One-Side Transit Time and studying the impact of delayed acknowledgments on

passive round-trip time estimation.

• We implement our traffic generation method in a network testbed, developing a new distributed

traffic generation tool, tmix . We use this implementation to study the results of a large collection

of trace replay experiments, evaluating the need for detailed source-level modeling and the impact

of losses on measured network traffic. Our results demonstrate that detailed source-level modeling

is often required for accurately approximating real traffic, which demonstrates that source-level

behavior is a major factor shaping Internet traffic. The most substantial differences are observed

for the number of active connections and the number of packet arrivals per unit of time. Byte

arrivals per unit of time and long-range dependence do not improve so consistently with the use of

detailed source-level modeling. We also show that losses had only a secondary effect in our traces,

but they are not negligible when comparing original and generated traffic.

• We present two trace resampling algorithms which can be used to derive new traces from an existing

one, preserving its statistical characteristics at the source-level. Our comparison of the two methods

reveals that the observed long-range dependence in connection arrivals has no apparent impact on

the long-range dependence of packet and byte arrivals.

• We demonstrate the need for byte-driven rather than connection-driven resampling in order to

accurately scale offered loads, and develop byte-driven versions of our two resampling methods.

This approach eliminates the need for the experimental calibration of traffic generators (which

study the relationship between the parameters of the generator and the offered traffic load).

• Our entire methodology makes it possible to conduct networking experiments with closed-loop

synthetic traffic derived from real traces in an automated manner. This eliminates the need for

16

painstaking parametric modeling.

1.6 Overview

Chapter 2 presents a review of the state-of-the-art in synthetic traffic generation. We first expand our

discussion of packet-level traffic generation and data acquisition, and then examine source-level traffic

generation more in depth. We review the literature on application-specific modeling, discussing models

of web traffic and other applications, and also consider several approaches for generating traffic driven

by more than one application. We also discuss existing methods for controlling the traffic load created in

networking experiments. The chapter finally considers some research efforts addressing implementation

issues.

Chapter 3 discusses abstract source-level modeling, presenting several examples of real applications

and how their behavior can be described using our a-b-t notation. We also present our measurement

algorithm for transforming a packet header trace into a collection of sequential and concurrent a-b-t

connection vectors. The chapter also includes a validation of the measurement method using synthetic

applications, and a measurement study that examines the statistical properties of the a-b-t connection

vectors extracted from five real traces.

Chapter 4 focuses on network-level measurement. We first describe our methods for measuring round-

trip times, window sizes and loss rates, and an evaluation of their accuracy. While this set of parameters

is by no means complete, it does include the main parameters that affect the average throughput of a

TCP connection found in a trace. The second part of Chapter 4 describes the network-level metrics

that we consider in the evaluation of our traffic generation method: packet and byte throughput time

series, their marginal distributions, wavelet spectra, Hurst parameter estimates and time series of active

connections.

Chapter 5 describes source-level trace replay and our implementation in a network testbed. We

present a validation of this implementation using the source-level trace replays of five traces. For each

trace, we study the a-b-t connection vectors extracted from the original traces and those found in

replays with and without packet losses at the network links. The results demonstrate the accuracy of

our approach, and also uncover some difficulties, which are in some cases inherent to the a-b-t model

and its passive method of data acquisition.

17

Chapter 6 examines the results of several source-level trace replay experiments. Our analysis com-

pares original traces and their source-level trace replays using the rich set of metrics introduced in

Chapter 4, revealing a remarkably close approximation. This study also includes a comparison of traf-

fic generated with the a-b-t model and with a simplified version that “disables” source-level modeling,

which is shown to perform well for some metrics and poorly for others. As in the previous chapter, we

also consider experiments with and without artificial losses, showing that loss did not have a dominant

impact on the characteristics of the original traffic. In general, our results provide a strong justification

of our source-level modeling approach, demonstrating that the closed-loop replay of a-b-t connection

vectors closely resembles real traffic.

Chapter 7 presents our two resampling methods, Poisson Resampling and Block Resampling. These

methods enable the researcher to introduce controlled variability in source-level trace replay experiments,

without sacrificing reproducibility. In addition, we consider the problem of load scaling, i.e., how to

control the resampling process to obtain a new trace with a target offered load. Our work demonstrates

that this task can be accomplished by keeping track of the total number of data bytes in the resampled

trace, but not by keeping track of the number of connections. Our scaling methods eliminate the common

need for running a preliminary study to calibrate the traffic generator.

Chapter 8 presents our conclusions and discusses future work.

18

CHAPTER 2

Related Work

A scientific theory should be as simple as possible, but no simpler.

— Albert Einstein (1879–1955)

The greatest challenge to any thinker is stating the problem in a way that will allow a
solution.

— Bertrand Russell (1872–1970)

This chapter presents an overview of the research literature relevant for realistic traffic generation.

We consider two types of works. First, we discuss the body of literature that developed the concepts

and techniques currently in use for generating synthetic traffic in simulations and testbed experiments.

Second, we examine the Internet measurement literature that informs the discussion of what is meant

by “realistic” traffic generation. Intuitively, synthetic traffic resembling Internet traffic can only be

realistic if derived from measurements conducted from real network links. We could argue that any

Internet measurement paper helps to gain a better understanding of the nature of the Internet and its

traffic, being therefore relevant for realistic traffic generation. However, the sheer size of the Internet

measurement literature makes a complete overview impractical, so we will restrict ourselves to the main

works that had a direct impact on Internet traffic generation. It is also interesting to note that the most

recent trend in the field of traffic generation is precisely to combine traffic measurement and generation

into a single, coherent approach [HCJS+01, LH02, SB04, HCSJ04].

Traffic generation for experimental networking research was identified as one of the key challenges

in Internet modeling and simulation by Paxson and Floyd [PF95] in 1995. Interestingly, Floyd and

Kohler [FK03] made a similar point in 2003, and argued that it was still difficult to conduct experiments

with representative, validated synthetic traffic. While traffic measurement and Internet measurement in

general have become increasingly popular in recent years, most studies are exploratory and provide little

foundation to build traffic generators. This chapter provides an overview of the major works in the field

of Internet traffic generation, considering first packet-level traffic generation and then source-level traffic

generation. Other aspects of traffic generation, such as load scaling, incorporating network-dependencies

and implementation issues are discussed at the end of the chapter.

2.1 Packet-Level Traffic Generation

In this dissertation we restrict the question of generating realistic traffic to a single link. This is the

most essential form of the traffic generation problem. It does not seem possible to tackle the problem

of generating traffic for multiple links, say the backbone of an ISP, if single-link traffic generation is not

fully understood.

The simplest way of generating realistic traffic on a single link is to inject packets into the network

according to the characteristics of the packets observed traversing a real link. We will use the term

packet-level traffic generation to refer to this approach. Packet-level traffic generation can mean either

performing a packet-level replay , i.e., reproducing the exact arrivals and sizes of every observed packet,

or injecting packets in such a manner as to preserve some set of statistical properties considered funda-

mental, or relevant for a specific experiment. Packet-level replay, which has been implemented in tools

like tcpreplay [tcpb], is a straightforward technique that is useful for certain types of experiments where

configuration of the network is not expected to affect the generated traffic. In other words, whenever it

is reasonable to generate traffic that is invariant of (i.e., unresponsive to) the experimental conditions,

then packet-level replay is an effective means for generating synthetic traffic. For example, packet-level

replays of traces collected from the Internet have been used to evaluate cache replacement policies in

routing tables [Jai90, Fel88, GcC02]. In this type of experiments, different cache replacement policies

are compared by feeding the lookup cache of a routing engine with a packet trace and computing the

achieved hit ratio. Also, studies that require malicious traffic generation can often make use of packet-

level replay [SYB04, RDFS04]. Malicious traffic (e.g., a SYN flood) is frequently not responsive to

network conditions (and their degradation).

Before conducting an experiment in which traffic is generated using packet-level replay, researchers

must obtain one or more traces of the arrivals of packets to a network link. These traces are collected

using a packet “sniffer” to monitor the traffic traversing some given link. This packet capturing can be

performed with and without hardware support. The most prominent example of software-only capture

is the Berkeley Packet Filter (BPF) system [MJ93, tcpa]. BPF includes a packet capturing library,

20

libpcap, and a command-line interface and trace analysis tool, tcpdump. BPF relies on the promiscuous

mode of network interfaces to observe packets traversing a network link and to create a trace of them

in the “pcap” format. Due to privacy and size considerations, most traces only include the protocol

headers (IP and TCP/UDP) of each packet and a timestamp of the packet’s arrival. Monitoring high-

speed links with a software-only system is problematic, given that traffic has to be forwarded from the

network interface to the monitoring software using the system bus. The system bus may not be fast

enough for this task depending on the load on the monitored link. High loads can result in “dropped”

packets that are absent from the collected trace. Furthermore, the extra forwarding from the wire to

the monitoring program, which usually involves buffering in the network interface and in operating

system layers, makes timestamps rather inaccurate. In the case of BPF, timestamping inaccuracies of

a few hundreds of microseconds are quite common. In order to overcome these difficulties, researchers

often make use of specialized hardware that can extract headers and provide timestamps without the

intervention of the operating system. This is of course far more expensive, but it dramatically improves

timestamp accuracy and increases the volume of traffic that can be collected without drops. The DAG

platform [Pro, GMP97, MDG01] is a good example of this approach, and it is widely used in network

measurement projects. The timestamping accuracy of DAG traces is on the order of nanoseconds.

Multiple DAG cards, possibly at different locations, can also be synchronized using an external clock

signal, such as the one from the Global Positioning System (GPS). Besides collecting their own traces,

researchers can also make use of public repositories of pcap and DAG traces, such as the Internet Traffic

Archive [Int] and the PMA project at NLANR [nlab].

While packet-level replay is conceptually simple, it involves a number of engineering challenges.

First, traffic generators usually rely on operating systems layers and abstractions, such as raw sockets,

to perform the packet-level replay. Most operating systems provide no guarantee on the exact delay

between the time of packet injection by the traffic generator and the time at which the packet leaves

the network interface. Servicing interrupts, scheduling processes, etc., can introduce arbitrary delays,

which make the arrival process of the packet replay differ from the original and intended arrival process.

This inaccuracy may or may not be significant for a given experiment. Another challenge is the replay

of traces collected in high-speed links. The rate of packet arrivals in a trace can be far higher than the

rate at which a single host can generate packets. For example, the speed at which a commodity PC

can inject packets into the network is primarily limited by the speed of its bus and the bandwidth of

its network interface. As a consequence, replying a high rate trace often requires an experimenter to

partition the trace into subtraces that have to be replayed using a collection of hosts. In this case, it is

21

important to carefully synchronize the replay of these hosts. This is generally a difficult task, since the

synchronization has to be done using the network itself, which introduces variable I/O delays. Clock

drift is also a concern with common PC clocks.

Ye et al. [YVIB05] discussed packet-level replay of high rate traces, focusing on OC-48, and how to

evaluate the accuracy of the replay. They proposed flow-based splitting to construct a partition of the

original trace that can be accurately replayed by an ensemble of traffic generators. This addresses the

challenge of replaying a trace using multiple traffic generators without reordering the packets within a

flow. In contrast, round-robin assignment of packets to traffic generators, called choice of N in this work,

results in packets belonging to the same flow generated by different traffic generators. As a consequence,

the generated traffic exhibits substantial packet reordering. This reordering is due to the difficulty of

maintaining the generators perfectly synchronized with commodity hardware, so one generator can easily

get ahead of another and modify the order of packets within a flow. Ye et al. also discussed the difficulties

created by buffering on the network cards, which modifies the properties of the packet arrival process at

fine scales. An alternative to the approach in Ye et al. is to rely on specialized hardware. Most DAG

cards support packet-level replay, bypassing the network stack. However, no information is available on

how accurately the generated traffic preserves the properties of original packet arrival process.

Packet-level replay has two important shortcomings: it is inflexible and it is open-loop. Given that

a packet-level replay is the exact reproduction of a collected trace, both in terms of packet arrival times

and packet content, there is no way to introduce variability in the experiments other than acquiring a

collection of traces and using a different trace in different runs of the experiments. This makes packet

replay inflexible, since the researcher has to limit his experiments to the available traces and their

characteristics. The “right” traces may not be available or may be difficult to collect. Even conducting

experiments that study simple questions can be cumbersome. For example, a researcher that intends to

test a cache replacement policy under heavy loads must find traces with high packet arrival rates, which

may or may not be available. Similarly, evaluating a queuing mechanism under a range of (open-loop)

loads requires one to find traces covering this range of loads, and may involve mixing traces from different

locations, which could cast doubt on the realism of the resulting traffic and thus on the conclusions of

the evaluation.

More flexible traffic generation can be achieved by generating packets according to a set of statistical

properties derived from real measurements. The challenge then is to determine which properties of

traffic are most important to reproduce so that the synthetic generated traffic makes the experiments

22

“realistic enough.” For example, Internet traffic has been found to be very bursty, showing very frequent

changes in throughput (both for packets and bytes per unit of time). Therefore, most experiments

should make use of synthetic traffic that preserves this observed burstiness. Leland et al. [LTWW93]

observed that this burstiness can be studied using the framework provided by statistical self-similarity .

At a high-level, self-similarity means that traffic is equally bursty, i.e., equal variance in arrival times,

across a wide range of time scales. This is similar to the geometric self-similarity that fractals exhibit.

Mathematically, statistical self-similarity manifests itself as long-range dependence, a sub-exponential

decay of the autocorrelation of a time-series with scale. This is in sharp contrast to Poisson modeling

and its short-range dependence, which implies an exponential decay of the autocorrelation with scale.

Therefore, it is generally difficult to accept experimental results where synthetic traffic does not exhibit

some degree of self-similarity. Accordingly, some experiments may simply rely on some method for

generating a self-similar process [Pax97] and inject packets into the experiments according to this process.

Studies on queuing dynamics, e.g., [ENW96], made use of this traffic generation approach.

Other experiments with a more stringent need for realism may also attempt to reproduce other known

properties of traffic. For example, a realistic distribution of IP addresses is essential for experiments

in which route caching performance is evaluated. To accomplish this, packet-level traffic generation

can be combined with a statistical model of packet arrival and a model of address structure. As one

example, Aida and Abe [AA01] proposed a generative model based on the finding that the popularity

of addresses follows a powerlaw (a heavy-tailed distribution with a hyperbolic shape). In contrast,

Kohler et al. [KLPS02] focused on the hierarchical structure of addresses and prefixes, which is shown

to be well-described by a multi-fractal model. Both studies could be used to enrich packet-level traffic

generation.

2.2 Source-Level Traffic Generation

While packet-level traffic generation based on a set of statistical properties is convenient for the

experimenter, and attractive from a mathematical point of view, it fails to preserve an essential property

of Internet traffic. As Floyd and Paxson [PF95] point out, packet-level traffic generation is open-loop, in

the sense that it does not preserve the feedback loop that exists between the sources of the traffic (the

endpoints) and the network. This feedback loop comes from the fact that endpoints react to network

conditions, and this reaction itself can change these conditions, and therefore trigger further changes in

the behavior of the endpoints. For example, TCP traffic reacts to congestion by lowering its sending rate,

23

which in turn decreases congestion. A trace of packet arrivals collected at some given link is therefore

specific to the characteristics of this link, the time of the tracing paths of the connections that traversed

it, etc. Therefore, any changes that the experimenter makes to the experimental conditions make the

packet-level traffic invalid since the traffic generation process is insensitive to these changes (unlike real

Internet traffic). For example, packet-level replay of TCP traffic does not react to congestion in any

manner.

The solution is to model the sources of traffic, i.e., to model the network behavior of the applications

running on the endpoints that communicate using network flows. Source-level models are then used to

drive network stacks which do implement flow and congestion control mechanisms, and therefore react

to changes in network conditions as real Internet endpoints do. As a result, the generated traffic is

closed-loop, which is far more realistic for a wide range of experiments.

The simplest source-level model is the infinite source model . The starting point of the infinite source

model is the availability of an infinite amount of data to be communicated from one endpoint to another.

Generating traffic according to this model means that a traffic generator opens one or more transport

connections, and constantly provides them with data to be transferred. This means that, for each

connection, one of the endpoints is constantly writing (sending data packets) while the other endpoint

is constantly reading (receiving data packets). The sources are never the bottleneck in this model. The

only process that limits the rate at which the endpoints transmit data is the network, broadly defined

to include any mechanism below the sources, such as TCP’s maximum receiver window.

The infinite source model is very attractive for several reasons, which make it rather popular in

both theoretical and experimental studies [FJ93b, KHR02, AKM04, SBDR05]. First, the infinite source

model has no parameters and hence it is easy to understand and amenable to formal analysis. It was,

for example, the foundation for the work on the mathematical analysis of steady-state TCP throughput

[PFTK98, BHCKS04]. Second, its underlying assumption is that the largest flows on the network, which

account for the majority of the packets and the bytes, “look like” infinite sources. For example, an

infinite source provides a convenient approximation to a multi-gigabyte file download using FTP. Third,

infinite sources are well-behaved, in the sense that, if driving TCP connections, they try to consume as

much bandwidth as possible. They also result in the ideal case for bandwidth sharing. This makes them

useful for experiments in the area of congestion control, since infinite sources can easily congest network

links.

Despite their convenience, infinite sources are unrealistic and do not provide a solid foundation for

24

networking experiments, or even for understanding the behavior and performance of the Internet. The

pioneering work by Cáceres et al. [CDJM91], published as early as 1991, provided a first insight into

the substantial difference between infinite sources and real application traffic. These authors exam-

ined packet header traces from three sites (the University of California at Berkeley, the University of

Southern California, and Bellcore in New Jersey) using the concept of application-level conversations.

An application-level conversation was defined as the set of packets exchanged between two network

endpoints. These conversations could include one or more “associations” (TCP connections and UDP

streams). A general problem when studying traffic for extended periods is the need to separate traf-

fic into independent units of activity, which in this case correspond to conversations. Endpoints may

exchange traffic regularly, say every day, but that does not mean that they are engaged in the same con-

versation for days. Danzig et al. separated conversations between the same endpoints by identifying long

periods without any traffic exchange, which are generally referred to as idle times or quiet times in the

literature. In their study, they used a threshold of 20 minutes to differentiate between two conversations.

The authors examined conversations from 13 different applications, characterizing them with the help

of empirical cumulative distribution functions (empirical CDFs). The results include empirical CDFs

for the number of bytes in each conversation, the directionality of the flow of data (i.e., whether the

two endpoints sent a similar amount of data), the distribution of packet sizes, the popularity of different

networks, etc. Danzig and Jamin [DJ91] used these distributions in their traffic generation tool, tcplib.

The results from this work are further discussed in Section 2.2.2.

Cáceres et al. pointed out a number of substantial differences between their results and the assump-

tions of earlier works. First, the majority of connections carried very small amounts of data, less than

10 KB in 75-90% of the cases. This is true for both interactive applications (e.g., telnet and rlogin) and

bulk transfer applications (e.g., FTP, SMTP). This is in sharp contrast to the infinite availability of data

to be transferred assumed in the infinite source model. The dynamics of such short data transfers are

completely different from those of infinite sources, which for example have time to fully employ conges-

tion control mechanisms. The second difference was that traffic from most applications was shown to be

strongly bidirectional, and it included at least one request/response phase, i.e., an alteration in the role

of the endpoints as senders of data. The infinite source model is inherently unidirectional, with one of

the endpoints always acting as the sender, and the other endpoint always acting as the receiver. Third,

the authors observed a wide range of packet sizes, and a large fraction of the data packets were small,

even for bulk applications. Data packets from an infinite source are necessarily full size, since there is

by definition enough data to completely fill new packets.

25

These measurement results highlighted a substantial difference between infinite sources and real

traffic, and later experimental studies demonstrated the perils of using traffic from infinite sources in

the evaluating of network mechanisms. Joo et al. [JRF+99, JRF+01] demonstrated that infinite TCP

sources tend to become synchronized, so they increase or decrease their transmission rate at the same

time. This pattern is completely absent from more realistic experiments in which the majority of the

sources have small and diverse amounts of data to send. As a result, loss patterns, queue lengths and

other characteristics are strikingly different when more realistic synthetic traffic is used. Joo et al. also

studied the difference between open-loop and closed-loop traffic generation.

The area of active queue management has provided several illustrations of the misleading results

obtained with the unrealistic infinite sources. The first AQM scheme, RED, was presented by Floyd and

Jacobson in [FJ93b], and evaluated using infinite sources. Their results showed that RED significantly

outperformed FIFO, the usual router queuing mechanism. Later work by Christiansen et al. [CJOS00]

demonstrated that RED offers very little benefit, if any, when exposed to more realistic traffic where

sources are not infinite. In particular, they used a model of web-like traffic, which is discussed later in

this chapter.

Paxson’s analysis [Pax94] of packet header traces from seven different network links provided further

support for the conclusions of Cáceres et al. In addition, Paxson considered the parsimonious modeling

of traffic from different applications. He characterized four prominent applications, telnet, NNTP, SMTP

and FTP, using analytic models to fit the empirical distributions. Analytic models are more commonly

known as parametric models in the statistical literature, and correspond to classical distributions, such

as the Pareto distribution, that can be fully characterized with a mathematical expression and only one

or a few parameters. As Paxson pointed out, the use of analytic models results in a concise description

of network applications that can be easily communicated and compared, and are often mathematically

tractable. His methodology has had a lasting influence in application-level modeling. He clearly demon-

strated that analytic fits (i.e., parametric models) of the observed distributions can closely approximate

the characteristics of real applications. However, it is important to remember that traffic is not nec-

essarily more realistic when generated by analytic models as opposed to empirical models. Empirical

CDFs, derived from network measurement of sufficient size, provide a perfectly valid foundation for

traffic generators. Furthermore, finding analytic fits of complex random variables that do not match

well-known statistical distributions is a daunting task.

26

2.2.1 Web Traffic Modeling

Modeling web traffic has received substantial attention since the sudden emergence of the World

Wide Web in the mid-nineties. Arlitt and Williamson [AW95] proposed an early model for generating

web traffic1, based on packet header traces collected at the University of Saskatchewan. The model was

centered around the concept of a conversation, as proposed by Cáceres et al. [CDJM91]. In this case,

a conversation was the set of connections observed between a web browser and a web server. These

authors were the first to consider questions such as the distribution of the number of bytes in requests

and responses, the arrival rates of connections, etc. In general, the proposed model has parameters that

are quite different from those of later works. For example, an Erlang model of response sizes was used,

which is in sharp contrast to the heavy-tailness observed by other authors. While Arlitt and Williamson

did not provide any details on the statistical methods they employed, it is likely that the small sample

size (less than 10,000 TCP connections) made it difficult to develop a more statistically representative

model.

One of the major efforts in the area of web traffic modeling oriented toward traffic generation took

place at Boston University. Cunha et al. [CBC95] examined client traces collected by instrumenting

browsers at the Department of Computer Science. Unlike the packet header traces used in Arlitt and

Williamson, client traces include application information such as the exact URL of each web object

requested and downloaded in each TCP connection. The authors made use of this information to

study page and server popularity, which are relevant for web caching studies. In addition, the authors

proposed the use of powerlaws for constructing a parametric model of web traffic. They relied on the

Pareto distribution for modeling the sizes of downloaded objects, and the parameterless Zipf’s law for

modeling the popularity of specific pages. Crovella and Bestavros [CB96] used these findings to explain

the long-range dependence observed in the packet arrivals of web traffic. Their explanation was derived

from earlier work by Willinger et al. [WTSW97], which showed that the multiplexing of heavy-tailed

ON/OFF sources results in long-range dependent traffic. Crovella and Bestavros demonstrated that the

underlying distributions of web object sizes, the effects of caching and user preference in file transferring,

the effect of user “think time”, and the superimposition of many web transfers precisely creates the

multiplexing process hypothesized by Willinger et al.

Crovella and Bestavros also showed that the explanation behind the suitability of powerlaws for

describing the sizes of web objects is that the sizes of files are well described by powerlaws. This refined

1To be more specific, Arlitt and Williamson proposed a model of “Mosaic” traffic. Mosaic was the first web browser.

27

previous studies of file-system characteristics (e.g., [BHK+91]), which observed long-tailed distributions

of file sizes (but did not propose powerlaw models).

Powerlaw modeling has had a lasting impact on traffic modeling, which is natural given that the

transfer of files is one of the most common uses of many application protocols. Countless studies have

confirmed the usefulness of powerlaws for modeling application traffic. The eloquent term “mice and

elephants” [GM01, MHCS02, EV03], often applied to Internet traffic, precisely refers to the basic char-

acteristic of powerlaws: a majority of values are small (mice) but the uncommon large values (elephants)

are so large that they account for a large fraction of the total value. For example, web traffic usually

shows around 90% of web objects below 10 KB, but larger objects often account for 90% of the total

bytes. Researchers have used this general finding of powerlaw sizes to develop a generic, and mostly

ad hoc, source-level model. Traffic generated according to this model consists of a collection of TCP

connections that transfer a single file, such that the distribution of file sizes follows a powerlaw. Re-

searchers often refer to this kind of synthetic traffic as “mice-and-elephants-like” or “web-like” traffic

[MGT00, KHR02]. This simple approach is rather convenient for traffic generation, but it ignores the

more complex patterns of connection usage (e.g., bidirectionality, quiet times, etc.), and the differences

among applications present in real Internet traffic.

It is important to note that recent work on the characterization of web traffic has improved our un-

derstanding of powerlaw/heavy-tailed modeling. Downey revisited the modeling of file sizes in [Dow01b]

and of flow sizes in [Dow01a], suggesting that lognormal distributions are more appropriate than pow-

erlaws (or heavy-tailed distributions). The historical survey by Mitzenmacher [Mit04] uncovered similar

controversies in other fields, such as economics and biology. Hernández-Campos et al. demonstrated

that lognormal distributions and powerlaws offer similar results in the regions of the distribution for

which enough samples are available, specifically in the body and in the “moderate” tail. Beyond these

regions, in the “far” tail, the lack of samples makes it impossible to choose between different models.

This is because, for a fixed set of parameters and a fixed sample size equal to the original number of

observations, some samplings of the lognormal and the powerlaw models match the original distribution,

while other samplings do not. Hernández-Campos et al. also proposed the use of a mixture model

(i.e., a combination of several classical models), the double Pareto lognormal, which enables far more

accurate fits than those achieved with Pareto or lognormal models. The inherently more flexible double

Pareto lognormal model can capture the systematic deviations from simpler models that are commonly

observed in the tails of the distributions of web object sizes. Nuzman et al. [NSSW02] modeled HTTP

connection arrivals using the biPareto distribution, which provides a simpler but powerful alternative to

28

mixture models. A Pareto distribution appears linear in a log-log scale, while the biPareto distribution

shows two linear regions and a smooth transition between them. The biPareto distribution is therefore

a generalization of the Pareto distribution.

The modeling efforts at Boston University culminated with the development of the SURGE model

of web traffic [BC98]. The SURGE model described the behavior of each user as a sequence of web

page downloads and think times between them. Each web page download consisted of one or more web

objects downloaded from the same server. Barford and Crovella provided parametric fits for each of

the components of the SURGE model, heavily relying on powerlaws and other long-tailed distributions.

They also studied how SURGE traffic stressed web servers, and found SURGE’s high burstiness far more

demanding in terms of server CPU performance than that of less elaborate web traffic generators, such

as the commercial WebStone.

A model of web traffic contemporary to SURGE was also presented by Mah [Mah97]. It described

web traffic using empirical CDFs, which were derived from the analysis of packet header traces. As in the

case of the SURGE model, the data came from the population of users in a computer science department.

The two models were compared by Hernández-Campos et al. [HCJS03], showing substantial consistency.

The introduction of persistent connections in HTTP motivated further work on web traffic modeling.

Barford et al. studied the performance implications of persistent connections [BC99], and modified the

SURGE model to incorporate persistency [BBBC99]. The analysis of persistent connections was also a

major topic in Smith et al. [SHCJO01] and Hernández-Campos et al. [HCJS03]. These studies were far

larger in scope, focusing on the web traffic of an entire university rather than of a single department.

These latter two works provided the starting point for the analysis method presented in this dissertation.

Many experimental studies made use of synthetic traffic generated according to one of the aforemen-

tioned web traffic models. For example, Christiansen et al. [CJOS00] made use of the Mah model, while

Le et al. [LAJS03] used the Smith et al. model. The popular NS-2 [BEF+00] network simulator also

supports web traffic generation using models that are structurally similar to the SURGE model. This

feature of NS was used in Joo et al. [JRF+99, JRF+01] to compare web traffic and infinite sources,

and by Feldmann et al. [FGHW99] to study the impact of different parameters of the web traffic model

on the burstiness of the generated traffic. Another web traffic generator available in NS-2 was devel-

oped by Cao et al. [CCG+04]. Unlike other web traffic models, it was connection-oriented rather than

user-oriented, and included non-source-level characteristics, such as packet sizes.

An important effort in web traffic analysis and generation was “Monkey See, Monkey Do” method,

29

developed by Cheng et al. [CHC+04a]. The method involved recording source-level and network-level

characteristics for each observed connection, and reproducing these characteristics using a synthetic

workload generator. This idea is similar to the one developed in this dissertation, although we tackle

the modeling and generation of entire traffic mixes and not just web traffic. In addition, their measure-

ment methods were optimized for monitoring traffic near Google’s web servers. The authors assumed

independent short flows, data acquisition close to well-provisioned web servers, and no congestion in

the client-to-server direction (which was plausible in the context of requests that were far smaller than

responses).

2.2.2 Non-Web Traffic Source-level Modeling

Two prominent source-level modeling efforts took place before the invention of the World Wide Web.

Danzig and Jamin [DJ91] developed tcplib, a collection of source-level descriptions of traffic. It included

descriptions of the following applications:

• Telnet was described using three random variables: connection duration, packet inter-arrival time,

and packet size. The initiator of the Telnet connection always sent one-byte packets, while the

acceptor responded with packets matching the packet size distribution. The authors claimed that

rlogin connections were also well-described by this model.

• File Transfer Protocol (FTP) was described using three random variables: number of items trans-

ferred, item size (i.e., file size), and packet size. The model only described FTP-DATA transactions

used to transfer a single file or a directory listing. It did not describe the FTP-Control connection

that each client/server pair must use to manage each FTP-DATA transaction.

• Simple Mail Transfer Protocol (SMTP) was described using only one random variable: item size,

which included size of mail message and address verification (i.e., control) messages. Responses

from the acceptor were considered negligible, and not modeled.

• Network News Transfer Protocol (NNTP) was described using two random variables: number of

items transferred, and size of items (i.e., NNTP articles). The bidirectional nature of the protocol

and the use of control messages was not part of the model.

Tcplib also included a model of phone conversations with two random variables, talk spurt duration and

quiet time (i.e., pause) duration, borrowed from [Bra65]. Each random variable was specified using an

30

empirical CDF. Traffic generation involved using the inverse transformation method [Jai91] to sample

each empirical CDF independently.

In general, the application models in tcplib were rather simplistic, but they represented a giant step

forward from the non-measurement-derived models of the early 90s. However, the use and capabilities of

the modeled applications has dramatically changed since the development of tcplib. For example, the size

of attachments in SMTP connections has dramatically increased due to the widespread implementation of

Multipurpose Internet Mail Extensions (MIME). In addition, newer applications have become prominent

or replaced the ones in tcplib. For example, the Telnet protocol has been mostly replaced by the Secure

Shell (SSH) protocol. SSH is an encrypted protocol, so it requires more bytes per message. It also

supports port forwarding, wherein other applications can communicate through SSH connections.

Paxson [Pax94] studied the same four applications as in tcplib, developing parametric models for each

of them. Paxson also discussed how application characteristics change over time and across sites. This

inherent variability motivated the use of parametric models, which are necessarily approximations of the

empirical data. This approximation is not worse than the variability observed over time and across sites,

so the author argued that parametric models were as accurate as empirical ones, but with the added

benefits of being mathematically tractable and parsimonious. His analysis showed that bulk-transfer

sizes were generally well-modeled by the log-normal distribution. Another of his findings was that

connection inter-arrivals (except those of NNTP connections) were consistent with non-homogeneous

Poisson arrivals, with fixed hourly rates.

The methodological contribution in Paxson’s work is substantial. He demonstrated the difficulty

of providing statistically valid parametric models of the distributions associated with Internet traffic.

He consistently observed parametric fits that were clearly adequate when examined graphically, but

that failed traditional goodness-of-fit tests. This was caused by the massive sample sizes, an endemic

characteristics of traffic measurement datasets. As an alternative to the statistical tests, Paxson proposed

the use of a goodness-of-fit metric, which provides a quantitative assessment of the distance between

the empirical data and the parametric model. His proposed metric is however insensitive to deviations

in the tails, casting doubt on the approach due to the ubiquitous finding of heavy-tailed phenomena in

network traffic.

Web traffic quickly dominated most traffic mixes after its emergence in 1995, and remained the most

prominent traffic type until file-sharing applications surpassed it in recent years. This motivated a large

body of work on web traffic characterization, and little attention was paid to other traffic. The models

31

developed by Danzig, Jamin and Paxson, were not improved or updated by other researchers.

File-sharing applications currently rival or frequently surpass web traffic in terms of traffic volume.

They also represent a harder modeling problem than web traffic. The number of file-sharing applications

is large and they use widely different communication strategies. Furthermore, the set of popular file-

sharing applications is constantly changing. There is a growing body of traffic modeling literature

focusing on file-sharing applications, but no traffic generator is yet available. Two prominent modeling

studies were conducted at the University of Washington. Sariou et al. [SGG02] studied Napster and

Gnutella traffic, and Gummadi et al. [GDS+03] studied Kazaa traffic. Karagiannis et al. [KBBkc03]

examined a larger set of file-sharing applications in backbone links.

Modeling of multimedia traffic has also received some attention. Variable bit-rate video was studied

in Garret et al. and Knightly et al. [GW94, KZ97]. Real Audio traffic was studied by Mena and

Heidemann [MH00], providing a first source-level view of streaming-media, mostly on UDP flows.

There are commercial synthetic traffic generation products such as Chariot [Inc] and IXIA but these

generators are typically based on a limited number of application source types. Moreover, it is not clear

that any are based on empirical measurements of Internet traffic.

2.2.3 Beyond Single Application Modeling

The need for more representative traffic generation has motivated research on methods that can tackle

the modeling of the entire suite of applications using an Internet link. The work in this dissertation lies

in this area. Our preliminary steps were an extension of the methods used to model web traffic in Smith

et al. [SHCJO01] to model other applications, as described in Hernández-Campos et al. [HCJS+01]. The

same kind of analysis of TCP header sequence numbers, acknowledgment numbers and connection quiet

times applied to web traffic was used to populate models of SMTP and NNTP traffic. These models

were derived from packet header traces collected at the University of North Carolina at Chapel Hill,

and consisted of empirical distributions capturing different source-level characteristics of these protocols,

such as object sizes. Lan and Heidemann [LH02] conducted a related effort, reusing the same techniques

and software tools for data acquisition. Their RAMP tool populated models of web and FTP traffic

directly from packet header traces, and generate traffic accordingly.

Harpoon [SB04] also tackled the same problem that is the focus of this dissertation. They considered

the problem of analyzing entire traffic mixes and generating traffic accordingly. Their measurement

32

methods were far less elaborate. Rather than the detailed models of the ADU exchange in TCP connec-

tions used in our work, Harpoon focused on modeling flows. Flows are defined as sets of packets with

the same source and the same destination. As a consequence, Harpoon modeled each TCP connection

as two unidirectional flows. Another difference with our approach is that Harpoon did not incorporate

the notion of bidirectional data exchange, neither sequential nor concurrent, essentially treating multiple

ADUs (as defined in the a-b-t model) as a single ADU. Idle times within connections were not part of the

Harpoon traffic model either. In addition, any measured flow (i.e., one side of a connection) with only

a small amount of data or with only acknowledgment packets was not used for traffic generation. This

substantially simplified the modeling, but it eliminated the rich packet-level dynamics observed in TCP

connections, and demonstrated in later chapters of this dissertation. In addition to this, network-level

parameters were not part of the data acquisition, so round-trip times and maximum receiver window

sizes were arbitrarily chosen. Harpoon could also generate UDP traffic. The underlying model was to

send packets at a constant bit rate, with either fixed or exponentially distributed interval arrivals. These

models were not populated from measurement. Another novel feature of Harpoon was the ability to

generate traffic that reproduced IP address structure according to a measured distribution of address

frequency. Their study included a comparison between Harpoon’s closed-loop traffic and traffic from a

commercial (open-loop) packet-level traffic generator, demonstrating substantial differences. For exam-

ple, closed-loop sources were shown to back off as congestion increases, while open-loop source did not.

Like the work in this dissertation and Lan and Heidemann, Harpoon provided an automated method to

acquire data and use it to generate traffic, which Sommers and Barford eloquently called “self-tuning”

traffic generation. We could say that there is a growing consensus in the field of traffic generation regard-

ing the need to develop tools that combine measurement and generation to tackle the wide variability

over time and across links found in real Internet traffic.

2.3 Scaling Offered Load

One of the key requirements of traffic generation is the ability to scale the offered load , i.e., to generate

a wide range of link loads with the same model of application behavior. This makes it possible to evaluate

the performance of a network mechanism under various loads, which translates into different degrees of

congestion, while preserving the same application mix. For example, the evaluation of AQM mechanism

in [CJOS00, LAJS03] compared the performance of FIFO to RED and other AQM mechanisms for loads

between 50% to 110% of a link’s capacity where the queuing mechanism was used. In these studies,

33

the authors preceded their study by a set of calibration experiments. These experiments were used to

derive an expression for the linear dependency between the number of (web) user equivalents and the

average offered load, which enabled the researchers to systematically scale offered loads in their evaluation

experiments. Calibration is generally applicable to any application-level model. When calibrating, the

researchers try to relate one or more parameters of the model and the average offered load to obtain

a calibration function. Deriving a calibration function is a time-consuming process, since an entire

collection of experiments must be run to correlate offered load and model parameters with confidence.

Kamath et al. [KcLH+02] studied load scaling methods, but they concentrated only on scaling

up the offered load. Their intention was to conduct experiments with much higher offered loads than

those observed during measurement. In particular, they considered the problem of generating traffic for

loading a 1 Gbps link using only measurements from a 10 Mbps link, an 11-hour packet header trace. The

authors considered three different techniques. The first two techniques involved a transformation of the

original trace into a scaled-up version, and then a packet-level replay. The first transformation technique

was packet arrival scaling, which scales up the load by multiplying the arrival time of each packet in the

original trace by a constant factor between 0 and 1 (i.e.,,shrinking packet inter-arrivals). In their study,

they used a scaling factor of 0.001. The second transformation technique is trace merging, which scales

up load by merging, i.e., superimposing, the packet arrivals from more than one trace. They divided the

11-hour trace into 100 subtraces and then combined them to form a shorter, higher-throughput trace.

The third technique is structural modeling which meant to develop a web traffic model from the original

trace using the methods in Smith et al. [SHCJO01]. The authors did not discuss how the load created

by this structural model was increased. Their analysis compared a number of distributions from the

generated traces to those from the original trace. Packet arrival scaling was shown to completely distort

flow durations and destination address diversity. Trace merging reproduced flow and packet arrival

properties accurately, but it distorted destination address characteristics (studied using the number of

unique addresses observed per unit of time). Web traffic generation was accurate, but it showed far

less complex distributions of connection bytes, packet sizes, and connection durations. This is because

a structural model based only on web traffic lacks the diversity of application behavior, and therefore

communication patterns, in the original trace, which included traffic from many different applications

and not just web traffic.

34

2.4 Implementing Traffic Generation

Source-level traffic generators for network testbeds (rather than for software simulators) are usually

implemented using user-level programs that make use of the socket interface to generate traffic. This

is the case for tcplib [DJ91], httperf [MJ98], SURGE [BC98], and other web traffic generators [BD99,

CJOS00]. In order to introduce network-level parameters in test-bed experiments, such as a realistic

distribution of round-trip times, it is necessary to rely on a layer of simulation either in the end hosts

or somewhere in the path of the traffic. For example, Rizzo’s dummynet [Riz97] makes it possible to

apply arbitrary delays, loss rates and bandwidth constraints on the end systems to specific network

flows or collections of network flows (that share a network prefix). The implementation combines event-

driven simulation and packet queuing, and sits between the IP and link layers. Dummynet is part of

the standard distribution of the FreeBSD operating system. The experiments in this dissertation were

performed using an extended version of dummynet that can be controlled from the application layer2.

Kamath et al. [KcLH+02] argue that source-level traffic generation is much more demanding in terms

of CPU and memory processing than packet-level replay. While it is indeed true that far more CPU

time is needed to simulate endpoint behavior and use network stacks, memory requirements are actually

far more stringent for packet-level replay. This is because packet header traces are much longer than

their source-level representations. For example, the approach in this dissertation considers the replay

of source-level traces that are roughly 100 times smaller than the packet header traces from which they

were derived.

2.5 Summary

Our review of related work has focused on the existing literature in network traffic generation,

including works relevant for data acquisition and traffic modeling. Characterizing network traffic at the

packet level provides important insights, such as the finding of pervasive self-similarity by Willinger et

al. [WTSW97]. However, this approach does not provide the proper foundation for generating traffic

for most experimental studies. As argued by Floyd and Paxson [PF95], packet-level traffic generation

breaks the end-to-end feedback loop in adaptive network protocols, such as TCP, resulting in traffic that

does not react to the experimental conditions realistically. On the contrary, source-level models enable

2This is also possible in the original implementation, using one firewall rule for each flow, but it does not scale to the
hundreds of simultaneous flows in our experiments.

35

closed-loop traffic generation, so they are applicable to a wider range of situations.

In the past, source-level traffic generation has been associated with models of application behavior.

Our overview of the state-of-the-art discussed several highly influential works devoted to application-

level modeling. Cáceres et al. [CDJM91] introduced empirical application models to networking research.

Paxson [Pax94] proposed the use of more statistically rigorous methods for developing parametric source-

level models. Crovella et al. [CB96] developed a rich model of web traffic, and explained self-similarity

in terms of source-level characteristics.

Application-level modeling has some important shortcomings that provide the motivation for this

dissertation. Internet traffic mixes are created by a large number of distinct applications, so single

application models are not representative of real traffic. Furthermore, the composition of traffic mixes

is constantly changing, and even individual applications often evolve, modifying the way in which they

interact with the network. As a consequence, the number of high-quality application-level models is small

(and insufficient), and these models are hardly ever updated. In this dissertation, we propose a more

scalable approach to source-level modeling, where application behavior is described in a generic, but

still detailed, manner. Furthermore, our data acquisition methods are efficient and mostly automated,

dramatically reducing the time to go from measurement to traffic generation.

Our combination of data acquisition and traffic generation is most closely related to two contemporary

works. Sommers and Barford [SB04] developed the Harpoon approach for generating traffic mixes

whose characteristics are derived from measurements in an algorithmic manner. Their approach did not

include any detailed source-level modeling of TCP connections. They described a connection simply

as a unidirectional file transfer whose size is equal to the total amount of payload in its packets. In

contrast, our primary emphasis is on detailed source-level modeling, where we introduce the a-b-t model

and uncover the dichotomy between sequential and concurrent data exchange. Harpoon made use of

simplified network-level parameters, which are set to arbitrary constants. In our approach, network-level

parameters are carefully measured and incorporated into the traffic generation. The work by Sommers

and Barford considered two issues that are not addressed in our own work. First, they proposed a

method for generating UDP traffic. The underlying source-level model is however not derived from

measurement. Second, they reproduced the IP address distribution in the replayed trace. This cannot

be performed with publicly available traces, like ours, since they are anonymized.

Another work similar to ours is Cheng et al. [CHC+04a]. The authors presented a method for

characterizing packet header traces of web traffic and accurately replaying them. Generated traffic was

36

evaluated by comparing the original trace with its synthetic version generated in a testbed. We tackle

the same source-level trace replay problem but applied to every application rather than only to web

traffic. Our approach is more ambitious and necessarily more abstract.

Our work also considers the common problems of resampling and scaling traffic load in networking

experiments. In general, scaling offered load has been performed by conducting a preliminary exper-

imental study to relate the parameters of the source-level model and the offered load. For example,

Christiansen et al. [CJOS00] computed a calibration function that described offered load as a func-

tion of the number of user equivalents employed in web traffic generation. We propose an alternative

approach that eliminates the need for preliminary calibration studies.

37

CHAPTER 3

Abstract Source-level Modeling

model: (11a) a description or analogy used to help visualize something (as an atom)
that cannot be directly observed.

— Merrian–Webster English Dictionary

Anything that has real and lasting value is always a gift from within.

— Franz Kafka (1883–1924)

Abstract source-level modeling provides a method to describe the workload of a TCP connection at

the source level in a manner than is not tied to the specifics of individual applications. The starting

point of this method is the observation that at the transport level, a TCP endpoint is doing nothing

more than sending and receiving data. Each application (i.e., web browsing, file sharing, etc.) employs

its own set of data units for carrying application-level control messages, files, and other information.

The actual meaning of the data is irrelevant to TCP, which is only responsible for delivering data in a

reliable, ordered, and congestion-responsive manner. As a consequence, we can describe the workload of

TCP in terms of the demands by upper layers of the protocol stack for sending and receiving Application

Data Units (ADUs). This workload characterization captures only the sizes of the units of data that

TCP is responsible for delivering, and abstracts away the details of each application (e.g., the meaning

of its ADUs, the size of the socket reads and writes, etc.). The approach makes it feasible to model the

entire range of TCP workloads, and not just those that derive from a few well-understood applications as

is the case today. This provides a way to overcome the inherent scalability problem of application-level

modeling.

While the work of a TCP endpoint is to send and receive data units, its lifetime is not only dictated

by the time these operations take, but also by quiet times in which the TCP connection remains idle,

waiting for upper layers to make new demands. TCP is only affected by the duration of these periods of

inactivity and not by the cause of these quiet times, which depends on the dynamics of each application

(e.g., waiting for user input, processing a file, etc.). Longer lifetimes have an important impact, since

the endpoint resources needed to handle TCP state must remain reserved for a longer period of time1.

Furthermore, the window mechanism in TCP tends to aggregate the data of those ADUs that are sent

within a short period of time, reducing the number of segments that have to travel from source to

destination. This is only possible when TCP receives a number of back-to-back requests to send data. If

these requests are separated by significant quiet times, no aggregation occurs and the data is sent using

at least as many segments as ADUs.

We have formalized these ideas into the a-b-t model , which describes TCP connections as sets of ADU

exchanges and quiet times. The term a-b-t is descriptive of the basic building blocks of this model: a-type

ADUs (a’s), which are sent from the connection initiator to the connection acceptor, b-type ADUs (b’s),

which flow in the opposite direction, and quiet times (t’s), during which no data segments are exchanged.

We will make use of these terms to describe the source-level behavior of TCP connections throughout

this dissertation. The a-b-t model has two different flavors depending on whether ADU interleaving is

sequential or concurrent. The sequential a-b-t model is used for modeling connections in which only one

ADU is being sent from one endpoint to the other at any given point in time. This means that the two

endpoints engage in an orderly conversation in which one endpoint will not send a new ADU until it has

completely received the previous ADU from the other endpoint. On the contrary, the concurrent a-b-t

model is used for modeling connections in which both endpoints send and receive ADUs simultaneously.

The a-b-t model not only provides a reasonable description of the workload of TCP at the source-

level, but it is also simple enough to be populated from measurement. Control data contained in TCP

headers provide enough information to determine the number and sizes of the ADUs in a TCP connection

and the durations of the quiet times between these ADUs. This makes it possible to convert an arbitrary

trace of segment headers into a set of a-b-t connection vectors, in which each vector describes one of

the TCP connections in the trace. As long as this process is accurate, this approach provides realistic

characterizations of TCP workloads, in the sense that they can be empirically derived from measurements

of real Internet links.

In this chapter, we describe the a-b-t model and its two flavors in detail. For each flavor, we first

discuss a number of sample connections that illustrate the power of the a-b-t model to describe TCP

connections driven by different applications, and point out some limitations of this approach. We then

present a set of techniques for analyzing segment headers in order to construct a-b-t connection vectors

and provide a validation of these techniques using traces from synthetic applications. We finally examine

1Similarly, if resources are allocated along the connection’s path, they must be committed for a longer period.

39

the characteristics of a set of real traces from the point of view of the a-b-t model, providing a source-level

view of the workload of TCP.

3.1 The Sequential a-b-t Model

3.1.1 Client/Server Applications

The a-b-t connection vector of a sequential TCP connection is a sequence of one or more epochs. Each

epoch describes the properties of a pair of ADUs exchanged between the two endpoints. The concept of

an epoch arises from the client/server structure of many distributed systems, in which one endpoint acts

as a client and the other one as a server. The client sends a request for some service (e.g., performing a

computation, retrieving some data, etc.) that is followed by a response from the server (e.g., the results

of the requested action, a status code, etc.). An epoch represents our abstract characterization of a

request/response exchange. An epoch is characterized by the size a of the request and the size b of the

response.

The HTTP that underlines the World-Wide Web provides a good example of the kinds of TCP

workloads created by client/server applications. Figure 1 shows a simple a-b-t diagram that represents

a TCP connection between a web browser and a web server, which communicate using the HTTP 1.0

application-layer protocol [BLFF96]. In this example, the web browser (client side) initiates a TCP

connection to a web server (server side) and sends a request for an object (e.g., HTML source code, an

image, etc.) specified using a Universal Resource Locator (URL). This request constitutes an ADU of

size 341 bytes. The server then responds by sending the requested object in an ADU of size 2,555 bytes.

The representation in the figure captures:

• the sequential order of the ADUs within the TCP connection (first the HTTP request then the

HTTP response – in this case, order also implies “causality”),

��� ������
	���
���������
	���
������

��� ����� ��
��������� ����� ��
������

� �
� �"!$# �&% �
!

� �
� % �'!$("�
!

) ���$*+!$��,
-����.�

) ���$*/!$����0�132����

Figure 3.1: An a-b-t diagram representing a typical ADU exchange in HTTP version 1.0.

40

��� ������
	���
���������
	���
������

��������
��������������
������

����� �"!#�$�

!��%�'&(�%�

) ���%*+�,��-'.����/�10

) ���%*+�1����2
3'4����50

6 ������
������6 ������
������

��7'8 ����0���
��������7'8 ����0���
������

) ���%*+�,��-'.����9�'�

) ���%*+�,����2
3'4����:�

��7�;<��
��������7�;���
������

0�8 0=	��<��
������0�8 0=	��<��
������

) ���%*+�,��-,.����/�,�

) ���%*+�1����2
3'4����>�

?=@ A�B$C�D�E�C F @ A�B$CGD�E�C

H 3�I'.�JK��4��10 H 3�I'.�JK��4��,�

�%2
3�I'LM� �%2
3�I'LM��12
3�I'L�0

Figure 3.2: An a-b-t diagram illustrating a persistent HTTP connection.

• the direction in which the ADUs flow (above the time line for the ADU sent from the connection

initiator to the connection acceptor; below the time line for the ADU sent from the connection

acceptor to the connection initiator), and

• the sizes of the ADUs (using annotations and the lengths of the rectangles, which are proportional

to the number of bytes).

The diagram provides a visualization in the spirit of abstract source-level modeling, since it does not

incorporate any specific information about the actual contents of the ADUs. The bytes in the first ADU

(HTTP request) represent an HTTP header that includes a URL, and the bytes in the second ADU

(HTTP response) represent an HTTP header (with a success code of 200 OK) followed by the requested

object (e.g., HTML source code). In this example, the purpose of this particular connection was well-

understood, and that allowed us to assign labels to the ADUs (HTTP request and response) and to

the TCP endpoints (web browser and server). In general, when we examine how the ADUs flow in an

arbitrary TCP connection, we do not have this application-specific information (or we can only guess it).

The same diagram (without the HTTP-specific labels) could be used to represent different connections

with completely different payloads in ADUs of the same size. The diagram does not include any network-

level information either, so this diagram could also represent connections with very different maximum

segment sizes, round-trip times, and other network properties below the application level. Note that

this example, and the following ones, came from real connections that were actually observed. In some

cases, we had access to the actual segment payloads and used them to add annotations to the ADUs.

In other cases, we used port numbers and our understanding of the protocols to add these annotations.

Some client/server applications use a new connection for each request/response exchange, while

other applications reuse a connection for more than one exchange, creating connections with more

than one epoch. As long as the application has enough data to send, multi-epoch connections can

41

improve performance substantially, by avoiding the connection establishment delay and TCP’s slow

start phase. For example, HTTP was revised to support more than one request/response exchange

in the same “persistent” TCP connection [FGM+97]. Figure 3.2 illustrates this type of interaction.

This is a connection between a web browser and a web server, in which the browser first requests the

source code of an HTML page, and receives it from the web server, just like in Figure 3.1. However,

the use of persistent HTTP makes it possible for the browser to send another request using the same

connection. Unlike the example in Figure 3.1, this persistent connection remains open after the first

object is downloaded, so the browser can send another request without first closing the connection and

reopening a new one. In Figure 3.2 the web browser sends three ADUs that specify three different URLs,

and the server responds with three ADUs. Each ADU contains an HTTP header that precedes the actual

requested object. If the requested object is not available, the ADU may only contain the HTTP header

with an error code. Note that the diagram has been annotated with extra application-level information

showing that the first two epochs were the result of requesting objects from the same document (i.e.,

same web page), and the last epoch was the result of requesting a different document.

The diagram in Figure 3.2 includes two time gaps between epochs (represented with dashed lines).

In both cases, these are quiet times in the interaction between the two endpoints. We call the time

between the end of one epoch and the beginning of the next, the inter-epoch quiet time. The first quiet

time in the a-b-t diagram represents processing time in the web browser, which parsed the web page it

received, retrieved some objects from the local cache, and then made another request for an object in

the same document (that was not in the local cache). Because of its longer duration, the second quiet

time is most likely due to the time taken by the user to read the web page, and click on one of the links,

starting another page download from the same web server.

As will be discussed in Section 3.3, it is difficult to distinguish quiet times caused by application

dynamics, which are relevant for a source-level model, and those due to network performance and

characteristics, which should not be part of a source-level model (because they are not caused by the

behavior of the application). The basic heuristic employed to distinguish between these two cases is the

observation that the scale of network events is hardly ever above a few hundred milliseconds2. Going

back to the example in Figure 3.2, the only quiet time that could be safely assumed to be due to

the application (in this case, due to the user) is the one between the second and third epochs. The

120 milliseconds quiet time between the first and second epochs could easily be due to network effects

2Some infrequent events, such as routing changes due to link failures, can last several seconds. We generally model
large numbers of TCP connections, so the few occasions in which we confuse application quiet times with long network
quiet times have no measurable statistical impact when generating network traffic.

42

(such as having the sending of the second request delayed by Nagle’s algorithm [Nag84]), and therefore

should not be part of the source-level behavior. Similarly, the two a-b-t diagrams shown so far have not

depicted any time between the request and the response inside the same epoch. In general, web servers

process requests so quickly that there is no need to incorporate intra-epoch quiet times in a model of the

workload of a TCP connection. While this is by far the most common case, some applications do have

long intra-epoch quiet times, and the a-b-t model can include these.

Formally, a sequential a-b-t connection vector has the form Ci = (e1, e2, . . . , en) with n ≥ 1 epoch

tuples. An epoch tuple has the form ej = (aj , taj , bj , tbj) where

• aj is the size of the jth ADU sent from the connection initiator to the connection acceptor. aj will

also be used to name the jth ADU sent from the initiator to the acceptor.

• bj is the size of the jth ADU sent in the opposite direction (and generally in response to the request

made by aj).

• taj is the duration of the quiet time between the arrival of the last segment of aj and the departure

of the first segment of bj . taj is defined from the point of view of the acceptor (often the server),

but ultimately our estimate of the duration is based on the arrival times of segments at some

monitoring point.

• tbj is either the duration of the quiet time between bj and aj+1 (for connections with at least j +1

epochs), or the quiet time between the last data segment (i.e., last segment with a payload) in the

connection and the first control segment used to terminate the connection.

Note that taj is a quiet time as seen from the acceptor side, while tbj is a quiet time as seen from the

initiator side. The idea of these definitions is to capture the network-independent component of quiet

times, without being concerned with the specific measurement method. In a persistent HTTP connection,

a’s would usually be associated to HTTP requests, b’s to HTTP responses, ta’s to processing times on

the web server, and tb’s to browser processing times and user think times. We can say that a quiet time

taj is “caused” by an ADU aj , and that a quiet time tbj is caused by an ADU bj . Both time components

are defined as quiet times observed at one of the endpoints, and not at some point in the middle of the

network where the packet header tracing takes place.

As mentioned in the introduction, the name of the model comes from the three variable names used in

this model, which are used to capture the essential source-level properties: data in the “a” direction, data

43

��� ���

����	�
���
������	�
���
��

� ����� � ���������

� ��������������� �����

 � �!#"�$%�&� � ')($

�* �	�
��+
���* �	�
���
��
" ��,�-

.���.�	�
���
��.��%.�	�
��+
��

 �/*! � $�021�3 '#� ')($

��45� ,
6*6 	�
)��
��6�6 	�
)�+
��

/��%	/��%	

 �/*! -�7

�8�����
6 /�	6 /*	

��9*	��9*	

 �/�! -�7

�:4���4
;*	;*	 * %< /�;*9=	�
���
�� * *< /*;*9=	�
��+
��

� 021�3 > �
��)�?1�@�

/*!*	/*!�	

 �/*! -A7

B*B�	B*B�	

 �/*! -A7

Figure 3.3: An a-b-t diagram illustrating an SMTP connection.

in the “b” direction, and time “t” (non-directional, but associated with the processing of the preceding

ADU, as discussed in Section 3.1.1). Using the notation of the a-b-t model, we can succinctly describe

the HTTP connection in Figure 3.1 as a single-epoch connection vector of the form

((341, 0, 2555, 0))

where the first ADU, a1, has a size of 341 bytes, and the second ADU, b1, has a size of 2,555 bytes. In

this example the time between the transmission of the two data units and the time between the end of

b1 and connection termination are considered too small to be included in the source level representation,

so they are set to 0. Similarly, we can represent the persistent HTTP connection shown in Figure 3.2 as

((329, 0, 403, 0.12), (403, 0, 25821, 3.12), (356, 0, 1198, 15.3))

where quiet times are given in seconds. Notice that tb3 is not zero for this connection, but a large number

of seconds (in fact, probably larger than the duration of the rest of the activity in the connection!).

Persistent connections are often left open in case the client decides to send a new HTTP request reusing

the same TCP connection3. As we will show in Section 3.5, this separation is frequent enough to justify

incorporating it in the model. Gaps between connection establishment and the sending of a1 are almost

nonexistent.

As another example, the Simple Mail Transfer Protocol (SMTP) connection in Figure 3.3 illustrates

a sample sequence of data units exchanged by two SMTP servers. The first server (labeled “sender”)

previously received an email from an email client, and uses the TCP connection in the diagram to contact

the destination SMTP server (i.e., the server for the domain of the destination email address). In this

example, most data units are small and correspond to application-level (SMTP) control messages (e.g.,

the host info message, the initial HELO message, etc.) rather than application objects. The actual email

3In general, persistent HTTP connections are closed by web servers after a maximum number of request/response
exchanges (epochs) is reached or a maximum quiet time threshold is exceeded. By default, Apache, the most popular web
server, limits the number of epochs to 5 and the maximum quiet time to 15 seconds.

44

message of 22,568 bytes was carried in ADU a6. The a-b-t connection vector for this connection is

((0, 0, 93, 0), (32, 0, 191, 0), (77, 0, 59, 0), (75, 0, 38, 0), (6, 0, 50, 0), (22568, 0, 44, 0)).

Note that this TCP connection illustrates a variation of the client/server design in which the server

sends a first ADU identifying itself without any prior request from the client. This pattern of exchange

is specified by the SMTP protocol wherein servers identify themselves to clients right after connection

establishment. Since b1 is not preceded by any ADU sent from the connection initiator to the connection

acceptor, the vector has a1 = 0 (we sometimes refer to this phenomenon as a “half-epoch”).

This last example illustrates an important characteristic of TCP workloads that is often ignored in

traffic generation experiments. TCP connections do not simply carry files (and requests for files), but are

often driven by more complicated interactions that impact TCP performance. An epoch where aj > 0

and bj > 0 requires at least one segment to carry aj from the connection initiator to the acceptor, and

at least another segment to carry bj in the opposite direction. The minimum duration of an epoch is

therefore one round-trip time (which is precisely defined as the time to send a segment from the initiator

to the acceptor plus the time to send a segment from the acceptor back to the initiator). This means

that the number of epochs imposes a minimum duration and a minimum number of segments for a TCP

connection. The connection in Figure 3.3 needs 4 round-trip times to complete the “negotiation” that

occurs during epochs 2 to 5, even if the ADUs involved are rather small. The actual email message

in ADU b6 is transferred in only 2 round-trip times. This is because b6 fits in 16 segments4, and it

is sent during TCP’s slow start. Thus the first round-trip time is used to send 6 segments, and the

second round-trip time is used to send the remaining 10 segments. The duration of this connection

is therefore dominated by the control messages, and not by the size of the email. In particular, this

is true despite the fact that the email message is much larger than the combined size of the control

messages. If the application protocol (i.e., SMTP) were modified to somehow carry control messages

and the email content in ADU a2, then the entire connection would last only 4 round-trip times instead

of 6, and would require fewer segments. In our experience, it is common to find connections in which

the number of control messages is orders of magnitude larger than the number of ADUs from files or

other dynamically-generated content. Clearly, epoch structure has an impact on the performance (more

precisely, on the duration) of TCP connections and should therefore be modeled accurately.

Application protocols can be rather complicated, supporting a wide range of interactions between

4This assumes the standard maximum segment size, 1,460 bytes, and a maximum receiver window of at least 10 full
size segments. A large fraction of TCP connections observed on real networks satisfy these assumptions.

45

��� ���

����	�
��	

��� ��
������������

��� ��
������������
���
������ "!
�$#&%'�)(*�)+

�-,����
�����-����� �.�/��� 0.1���2

+ � 	+ � 	

+ � ��34	�576 ��!+ � �
34	8576 ��!

����� 2"9): ;�<>='?)#&6A@ B�C �
� 6D#E@ � % ��FHGJI
KML : N�O PRQ

��� ���� � 	� � 	

��� ��
�
$�/�/�

��� ��
�
$�/�/�
��� +�� � #&% � #
� � ? F 5

+7ST	+UST	
� ��VW��X'��,"Y�
��

���
��	���
�4	
� ��� ���8 X"#[Z !
G 2)P$\T] KM^�_a` : ;�bcQ

� ��V � ��VW�
+ � 	+ � 	

d)e +��7ST	8576 ��!d)e +
�UST	�576 ��!
� � ������ f���� "!
G 2)P$\ I�KcL : N�O P�: ;�bcQ

�g�/��� 0.1��h9�: ;.<A=
�8S�	�8ST	

3�*�+�	8576 ��!3)*�+�	�576 ��!
����� 9�: ;.<A=gi&j�C C j "!

GkI�KcL : N�O PlQ

�nm�������9): ;
o�=
S d 	S d 	

��ph	��p4	

�
��� ���� "! 6qj�r �

�"	*
*'	
GJI�KML : N�O PRQ

��	�4	
s Y�� �

���4	���4	

� �����$t�B
B ��!U!

+���	+
��	

S � 	S � 	

���������8 "!
� � #&%�@ B �

X'��,"Y�

t�u�B)(! t
Z�Z
j)#D6

+�ph	+8ph	

S � 	S � 	

t�u�B)(! t
Z�Z
j)#D6
! 6J?�6Dt !

X'��,"Y�

t�u�B)(6 ��! 6

+��4	+��4	

� � 	� � 	

t
u�B
B ! (6 ��! 6
! 6J?�6&t !

��� ���

����	�
��	

��� ��
������������

��� ��
������������
���
������ "!
�$#&%'�)(*�)+

�-,����
�����-�����

+
��	+
�"	

S � 	S � 	
���������8 "!
� � #&%�@ B �

�,��
�

3�	34	

� � 	� � 	
�US � j�v
�n�w9�: ;�<A=

GkI�KcL : N�O PRQ

d ��+�	7576 ��!d �
+�	8576 ��!

� � 	� � 	
� S �

Z�j ! 6 ��F j/v

x ,g���)�

+��4	+��4	

� � 	� � 	

��� S F ?�6q?
GJy P I ;)P K 2zQ

{8| }U~.�l�U�7�

Figure 3.4: Three a-b-t diagrams representing three different types of NNTP interactions.

the two endpoints. Most of them assume a client/server model of interaction and hence can be cast into

the sequential a-b-t model. For example, Figure 3.4 shows three types of interactions that are supported

by the Network News Transfer Protocol (NNTP) [KL86, Bar00]. The first a-b-t diagram exhibits the

straightforward behavior of an NNTP reader (i.e., a client for reading newsgroup postings) posting a

new article. The two endpoints exchange a few control messages in the first three epochs, and then the

client uploads the content of the article in ADU a4.

The second connection shows an NNTP reader using a TCP connection to first check whether the

server knows about any new articles in two newsgroups (unc.support and unc.test). After that, the

reader requests an overview of those messages (using XOVER). The server replies with the subjects

of the new articles and some other information. Finally, after a 5.02 seconds of inactivity, the reader

requests the content of one of the new articles. This relatively long time suggests that the user of the

NNTP reader waited some time before actually requesting the reader to display the content of a new

article.

The way NNTP servers interact is illustrated in the third connection. One of the peers will ask the

other about new newsgroups and articles. This typically involves hundreds or even thousands of ADUs

sent in each direction. The connection shown here has only a small subset of the ADUs observed in one

of these connections between NNTP peers. Here the initiator peer asked for new groups first, and then

46

for new articles. One article was sent from the initiator to the acceptor, and another one in the opposite

direction.

These examples provide a good illustration of the complexity of modeling applications one by one,

and they provide further evidence supporting the claim that our abstract source-level model is widely

applicable. In general, the use of a multi-epoch model is essential to accurately describe how applications

drive TCP connections.

Incorporating Quiet Times into Source-Level Modeling

Unlike ADUs, which flow from the initiator to the acceptor or vice versa, quiet times are not associated

with any particular direction of a TCP connection. However, we have chosen to use two types of

quiet times in our sequential a-b-t model. This choice is motivated by the intended meaning of quiet

time, and by the difference between the duration of the quiet times observed at different points in the

connection’s path. When we were developing the model, we initially considered quiet times independent

of the endpoint causing them. They were simply “connection quiet times”. In practice, quiet times

in sequential connections are associated with source-level behavior in only one of the endpoints. For

example, a “user think time” in an HTTP connection is associated with a quiet time on the initiator

side (which is waiting for the user action), while a server processing delay in a Telnet connection is

associated with the acceptor side (which is waiting for a result). In every case, one endpoint is quiet

for some period before sending new data, and the other endpoint remains quiet, waiting for these new

data to arrive. Having two types of quiet times, ta and tb, makes it possible to annotate the side of the

connection that is the source of the quiet time.

The second reason for the use of two types of quiet times is that the duration of the quiet time

depends on the point at which the quiet time is measured. The endpoint that is not the source of

the quiet time will observe a quiet time that depends on the network and not only on the source-level

behavior of the other endpoint. This is because the new ADU which defines the end of the quiet time

needs some time to reach its destination. In the example in Figure 3.2, the quiet time between a1 and

b1 observed by the server endpoint is very small (only the time needed to retrieve the requested URL).

However, this quiet time is longer when observed by the client, since it is the time between the last

socket write of a1 and the first socket read of b1. It includes the server processing time, and at least

one full round-trip time. Ideally, we would like to measure this quiet time ta1 on the server side, in

order to characterize source-level behavior in a completely network-independent manner. Similarly, we

47

��� ������
	�����
�������
	�����
��������������� �

���!�#"�� �

����$!%����&

�('��(���)���*
+����('��(���,����
����

-�.0/(1)��2

3�4�57698*:�6<;

�('���=!	�����
+���� '���= 	�����
����

-�.0/(1)��	
�('�>
	�?)����
+���� '�>�	�?)����
����

-�.0/
1,���

@ 3757698*:�6<;

� '�>
	�?)����
����� '�>�	�?)����
����

-�.0/
1)�A=

3&BA57698*:�6<;

�
>�?�2��,����
�����
>�?�2��)����
����

-�.0/(1)��C

@ 4�57698*:�6<;B�D�5E6F8*:�6<;

Figure 3.5: An a-b-t diagram illustrating a server push from a webcam using a persistent HTTP
connection.

would like to measure tb1 on the client side. In summary, source-level quiet times are non-directional,

in the sense that they do not travel in one direction or the other, but they are associated with one of

the endpoints, which is the source of the quiet time.

3.1.2 Beyond Client/Server Applications

Not all applications follow the strict pattern of requests and responses that characterizes traditional

client/server applications. For example, HTTP is commonly used for server push operations5, in which

the server periodically refreshes the state of the client without any prior request. Figure 3.5 illustrates

this behavior using a TCP connection where a web browser first requests a webcam URL (UNC’s

“Pitcam” in this example), and the web server responds with a sequence of image frames separated

by small quiet times. The browser renders each frame as soon as it is received, creating a continuous

movie. Each frame can be considered an individual ADU, so this connection does not follow the basic

request/response sequence of previous examples. The notation provided by the sequential a-b-t model can

still be used to represent this source-level behavior using the connection vector (e1, e2, e3, e4, e5) where

e1 = (392, 0.041, 97939, 0), e2 = (0, 0.057, 97942, 0), e3 = (0, 0.035, 97820, 0), e4 = (0, 0.054, 97820, 0),

and e5 = (0, 0.037, 98019, 0). While this connection has no natural epochs in the request/response sense,

we can describe the connection by assigning each frame to a separate bj , and each quiet time between

frames to a taj (since the connection vector is intended to capture a quiet time on the server side).

The same type of server push behavior is found in streaming applications. A TCP connection

carrying Icecast traffic (from ibiblio.org) is shown in Figure 3.6. Icecast is a popular audio streaming

application that follows the same pattern of ADUs discussed in the previous paragraph, and can be

5HTTP server push is implemented using a special content type, x-mixed-replace, which makes the browser expect a
response object that is composed of other objects (separated by a configurable boundary string). Since no limit is imposed
on the number of objects in this composite, webcam movies are usually implemented as a simple sequence of JPEG images
that the web browser reads and renders continuously until the user moves to another page. This type of web service should
not be confused with HTML’s automatic page refresh tag, which is commonly used for slow rate webcams (e.g., one image
every 30 seconds). In this case, the browser refreshes the current page by downloading again the current page and hence
the interaction follows the regular request/response pattern.

48

��� ������
	�����
	��
����������

� ���������

���������! #" $&%�%
')(+*�,-(/. 0�12')(/.

	!3!4��	!3!4�� 3!	�56���3�	�56��� 3�7�8!76�3�7�8!7!� 9 �!	��9 ��	!� 8!76���8!7!�!� 	 9�9 	��	 9!9 	�� 9 ��76�9 ��7!�

$/%�:
'2(+*-,-(#. ;

$
'2(/.

$&%�%
'2(+*-,�(/. <#0='2(/.

3�7
4�3��3�7
4�3!�

$&%
1)'2(+*�,-(/.

Figure 3.6: An a-b-t diagram illustrating Icecast audio streaming in a TCP connection.

>/?A@>#?+@

B&CED#F @B�C+D/F @

FED @F+D @

? D @? D @
FEG @F+G @

C+G#H @CEGEH @
C >E@C >+@

FIB @FAB @
G @G @

CIB @CAB @
D @D @

J F @J F @

KIL M+N
D @D @

J B @J B @
OQPIR
S�TAUIVXW
Y VQZ

C+[@CE[@
\I\I]
^-_I`
W
TAa Ucb U

N+d/eEf�L

\IRIR
N+gQTAU

M&L h�f

\AOQi
iAOQ\Xj+\QRIkXl

eAm�MEn

OQPIR
S�TIUAVIY VQZ

CIB @CAB @
\Q\I]

^-_A`�T+a UXb U

C >E@C >E@
o
p N o

C+[@CE[@
\IRIR
q

D @D @

J F @J F @

r!s�L N

\I\AO
t�_I_Iu+vQgQU

\I\IR
e+w _+xyN/e p

s&M&fEz eIm-MEM

iIiAO
m�VQ_IVcgXW
`
_A{Q|

\IiIR
}�UAa W
~ _A`
U

D @D @

J F @J F @

eIm-MEn

\I\+�
e+�I|c|XY �XU

J F @J F @
\Q\+�

e+�I|c|XY �XU

C >+@C >E@
z�fQN&z

�6�/� ���-�
���&���!���

> F#� CAB&C/� [EG#H @+�A� �E�> F/� CIB�C/� [#G#H @+�A� �+�
p Y w�U ~ b _Aw g
KQY |�b Y VQZ xQY a U6Z ~I~ W i+� i+� \E� b �Aw�� ZQ�

�
�/� ���-�
���&�������

�
�#� ���-�
���&���!���

���/�E� �#�+��� �/��F�� �Q�������/� ��� �&� �

�!�#�#� �E�E��� �#��C
� �I��� ��¡ � ¡E�

�!�#�#� �E�E��� �#� >
� �I��� ��¡ � ¡+�

Figure 3.7: Three a-b-t diagrams of connections taking part in the interaction between an FTP
client and an FTP server.

described using the same type of connection vector. Each bj is associated to an MPEG audio frame.

Note that the sizes of the ADUs and the durations of the quiet times between them are highly variable,

unlike the example in Figure 3.5. Perhaps surprisingly, TCP is widely used for carrying streaming traffic

today, despite its inability to perform the typical trade-off between loss recovery and delay in multimedia

applications. Streaming over TCP has two significant benefits:

• Streaming traffic can use TCP port numbers associated with web traffic and therefore overcome

firewalls that block other port numbers. This is important for web sites that deliver web pages

and multimedia streams, since it guarantees that the user will be able to download the multimedia

content.

• Most clients experience such low loss rates, that TCP’s loss recovery mechanisms have an in-

significant impact on the timing of the stream. The common use of stream buffering prior to the

beginning of the playback further reduces the impact of loss recovery.

The interaction between the two endpoints of a client/server application does not generally require

more than one TCP connection to be opened between the two endpoints. As we have seen, some

applications use a new connection for each request/response exchange, while others make use of multi-

epoch connections (e.g., persistent connections in HTTP/1.1). Handling more than one TCP connection

can have some performance benefits, but it does complicate the implementation of the applications (e.g.,

49

it may require using concurrent programming techniques). However, some applications do interact using

several TCP connections and this creates interdependencies between ADUs. For example, Figure 3.7

illustrates an FTP session6 between an FTP client program and FTP server in which three connections

are used. The connection in the top row is the “FTP control” connection used by the client to first

identify itself (with username and password), then list the contents of a directory, and then retrieve a

large file. The actual directory listing and the file are received using separate “FTP data” connections

(established by the client) with a single ADU b1. The figure illustrates how the start of the data

connections depends on the use of some ADUs in the control connection (i.e., the directory listing LIST

does not occur until after the RETR ADUs has been received), and how the control connection does not

send the 226 Complete ADU until the data connections have completed.

While the sequential a-b-t model can accurately describe the source-level properties of these three

connections, the model cannot capture the interdependency between the connections. The FTP exam-

ple in Figure 3.7 shows three connections with a strong dependency. The two FTP data connections

necessarily followed a 150 Opening operation in the FTP control connection. Our current model cannot

express this kind of dependencies between connections or between the ADUs of more than one connec-

tion. It would be possible to develop a more sophisticated model capable of describing these types of

dependencies, but it seems very difficult to populate such a model from traces in an accurate manner

without knowledge of application semantics. As an alternative, the traffic generation approach proposed

in this dissertation carefully reproduces relative differences in connection start times, which tend to

preserve temporal dependencies between connections. Our experimental results also suggest that the

impact of interconnection dependencies is negligible, at least for our collection Internet traces.

3.2 The Concurrent a-b-t Model

In the sequential model we have considered so far, application data is either flowing from the client

to the server or from the server to the client. However, some TCP connections are not driven by this

traditional style of client/server interaction. Some applications send data from both endpoints of the

connection at the same time. Figure 3.8 shows an NNTP connection between two NNTP peers (servers)

in which NNTP’s “streaming mode” is used. As shown in the diagram, ADUs b5 and b6 are sent from

the connection acceptor to the connection initiator while ADU a6 is being sent in the opposite direction.

6This is an abbreviated version of the original session, in which there was some directory navigation and more directory
listings. The control connection used port 21, while the data connections used dynamically selected port numbers. Note
also that significant inter-ADU times due to user think time are not shown in the diagram.

50

��� ������
	����	

��� ��
�
������

��� ��
�
������
�����������������
����� � !

� "�	� "#	

�%$%&'�
� ���'��(��

) "
) "�	
����"

��*+�,����-.$
/

0�1 � 0 /
2�3 4'576
) ��) �
	

081 � 0 /
2�3 4 9�6
) ��) �
	

081 � 0 /
2�3 4�:;6
) "�) "�	

��(</=��� 1 � � 2�3 4�9�6
>@?�ACB 3 D�E FHG

����I J�K�L.	M!M*�� N����I J�K�L�	�!O*P��N

)�Q)�Q 	
) "�L
��R�S�T *
NO��S�� 2�3 4'576

081 � 0 /
2�3 4�UM6
) ��) ��	

) ��) ��	
� "�L�N;��S��
2�3 4 9�6

���
	����	
) "�L
��R�S�T *
N;��S�� 2�3 4�:;6

)�Q)�Q 	
) "�L#��R�S�T *
NO��S�� 2�3 4�UM6

Figure 3.8: An a-b-t diagram illustrating an NNTP connection in “stream-mode”, which exhibits
data exchange concurrency.

V�W X<YZO[%\Z�[<\

]�Y�Y�^%_

]�Y�Y�^.`
`�a b@V c ded+f�ghb
]�d,cOb�c�i�c j

ZM[%\ZM[%\

`�a b�V�c ded+f�ghb
]�d,cObPc�i�c j

Z�k l�\Z�k l�\
`�a b@mna f�j o

Z�k�l�\Z�k l�\
`�a b@m@a f�j o

k�\k�\
p gMi qOc�rsf

k�\k�\
W ghbPf�d7f�tub+fMo

k�\k�\
W ghbPf�d+f�tsb,fMo

v�l�\v�lO\
vMZ�wOx�l�\;yzb,f�tvMZ�wOx�l�\hyHb,f�t
]�a fMi�f%{

^�fM| }�f�tub
]�a fMi f%{

v�lM\v lM\
^�fM| }Mf�tsb
]�a fMi�f�~

v�lM\v�lM\
^�fM| }Mf�tsb
]�a fOi�f
�

v�lM\v�lM\
^�fM| }Mf�tsb
]�a fMi�f%�

v�lM\v�lM\

^�fM| }Mf�tsb
]�a fMi�f<�

vMZ�wMx�l�\hyzb+f�tvOZ�wOx�l8\hyHbPf�t
]�a fMi�f�~

vMZ�wOx�l8\hyHbPf�tvMZ�wOx�l�\hyHb,f�t
]�a fMi f#�

vMZ�wOx�l�\hyHb,f�tvMZ�wOx�l�\hyHbPf�t
]�a fMi�f%�

vMZ�wOx�l�\hyHb,f�tvMZ�wOx�l8\hyzb,f�t
]�a fMi�f
�

Figure 3.9: An a-b-t diagram illustrating the interaction between two BitTorrent peers.

ADUs b5 and b6 carry 438 messages, where the acceptor NNTP peer tells the initiator that it is not

interested in articles id3 and id4. ADU a6 carried article id2 in the opposite direction. There is no

causal dependency between these ADUs, which make it possible for the two endpoints to send data

independently. Therefore this connection is said to exhibit data exchange concurrency in the sense that

one or more pairs of ADUs are exchanged simultaneously. In contrast, the connections illustrated in

previous figures exchanged data units in a sequential fashion. A fundamental difference between these

two types of communication patterns is that sequential request/response exchanges (i.e., epochs) always

take a minimum of one round-trip time. Data exchange concurrency makes it possible to send and

receive more than one ADU per round-trip time, and this can increase throughput substantially. In the

figure, the initiator NNTP peer is able to send check requests to the other party quicker because it can

do so without waiting for the corresponding responses, each of which would take a minimum of one full

round-trip time to arrive.

Another example of concurrent data exchange is shown in Figure 3.9. Here two BitTorrent peers

[Coh03] exchange pieces of a large file that both peers are trying to download. The BitTorrent protocol

supports the backlogging of requests (i.e., pieces k and m of the file are requested before the download of

the preceding piece is completed), and also the simultaneous exchange of file pieces (i.e., the transmission

of pieces k and l of the file coexist with the transmission of piece m). As discussed above, this type of

behavior helps to avoid quiet times in BitTorrent connections, thereby increasing average throughput.

Furthermore, this example illustrates a type of application in which both endpoints act as client and

51

server (both request and receive file pieces).

Application designers make use of data concurrency for two primary purposes:

• Keeping the pipe full, by making use of requests that overlap with uncompleted responses. Rather

than waiting for the response of the last request to arrive, the client keeps sending new requests

to the server, building up a backlog of pending requests. The server can therefore send responses

back-to-back, and maximize its use of the path from the server to the client. Without concurrency,

the server remains idle between the end of a response and the arrival of a new request, hence the

path cannot be fully utilized.

• Supporting “natural” concurrency, in the sense that some applications do not need to follow the

traditional request/response paradigm. In some cases, the endpoints are genuinely independent,

and there is no natural concept of request/response.

Examples of protocols that attempt to keep the pipe full are the pipelining mode in HTTP, the streaming

mode in NNTP, the Rsync protocol for file system synchronization, and the BitTorrent protocol for file-

sharing. Examples of protocols/applications that support natural concurrency are instant messaging

and Gnutella (in which the search messages are simply forwarded to other peers without any response

message). Since BitTorrent supports client/server exchanges in both directions, and these exchanges are

independent of each other, we can say that BitTorrent also supports a form of natural concurrency.

For data-concurrent connections, we use a different version of our a-b-t model in which the two

directions of the connection are modeled independently by a pair (α, β) of connection vectors of the

form

α = ((a1, ta1), (a2, ta2), . . . , (ana
, tana

))

and

β = ((b1, tb1), (b2, tb2), . . . , (bnb
, tbnb

))

Depending on the nature of the concurrent connection, this model may or may not be a simplification. If

the sides of the connection are truly independent, the model is accurate. Otherwise, if some dependency

exists, it is not reflected in our characterization (e.g., the fact that request ai necessarily preceded

response bj is lost). Our current data acquisition techniques cannot distinguish these two cases, and we

doubt that a technique to accurately distinguish them exists. In any case, the two independent vectors

in our concurrent a-b-t model provide enough detail to capture the two uses of concurrent data exchange

52

in a manner relevant for traffic generation. In the case of pipelined requests, one side of the connection

mostly carries large ADUs with little or no quiet time between them (i.e., backlogged responses). The

exact timing at which the requests arrive in the opposite direction is irrelevant as long as there is always

an ADU carrying a response to be sent. It is precisely the purpose of the concurrency to decouple the two

directions to avoid the one round-trip time per request/response pair that sequential connections must

incur in. There is, therefore, substantial independence in concurrent connections of this type, which

supports the use of a model like the one we propose. In the case of connections that are “naturally”

concurrent, the two sides are accurately described using two separate connection vectors.

3.3 Abstract Source-Level Measurement

The a-b-t model provides an intuitive way of describing source behavior in an application-neutral

manner that is relevant for the performance of TCP. However, this would be of little use without a

method for measuring real network traffic and casting TCP connections into the a-b-t model. We have

developed an efficient algorithm that can convert an arbitrary trace of TCP/IP protocol headers into a

set of connection vectors. The algorithm makes use of the wealth of information that segment headers

provide to extract an accurate description of the abstract source-level behavior of the applications driving

each TCP connection in the trace. It should be noted that this algorithm is a first solution to a complex

inference problem in which we are trying to understand application behavior from the segment headers

of a measured TCP connection without examining payloads, and hence without any knowledge of the

identity of the application driving the connection. This implies “reversing” the effects of TCP and the

network mechanisms that determine how ADUs are converted into the observed segments that carry

the ADU. The presented algorithm is by no means the only one possible, or the most sophisticated one.

However, we believe it is sufficiently accurate for our purpose, and we provide substantial experimental

evidence in this and later chapters to support this claim.

3.3.1 From TCP Sequence Numbers to Application Data Units

The starting point of the algorithm is a trace of TCP segment headers, Th, measured on some network

link. Our technique applies to TCP connections for which both directions are measured (known as a

bidirectional trace), but we will also comment on the problem of extracting a-b-t connection vectors from

a trace with only one measured direction (a unidirectional trace). While most public traces are bidirec-

53

��������� �

	�
 ACK
�
 D AT A

 D AT A
� � �����

�
 F I N
��� ��������� �����
� � �������

� ��
 F I N -! ACK

�"�$#&% �

�
 S Y N - ! ACK'(� �����

)�*,+�- . ' � �

/,0,1 2 354�6 �

7�8 9 2 3 � 6 � :

7 8 9(2 3 � 	 	 	

; <�= - .5>,? ?,@ TIME

Monitoring
P oint 1

Monitoring
P oint 2

t1 t2

I nitia tor
E nd p oint

A c c e p tor
E nd p oint

; < =�- . �

/,0 1 2 3 4�6 �

/,0 1 2 3 4�6 �

Figure 3.10: A first set of TCP segments for the connection vector in Figure 3.1: lossless example.

tional (e.g., those in the NLANR repository [nlaa]), unidirectional traces are sometimes collected when

resources (e.g., disk space) are limited. Furthermore, routing asymmetries often result in connections

that only traverse the measured link in one direction.

We will use Figure 3.10 to describe the basic technique for measuring ADU sizes and quiet time

durations. The figure shows a set of TCP segments representing the exchange of data illustrated in

the a-b-t diagram of Figure 3.1. After connection establishment (first three segments), a data segment

is sent from the connection initiator to the connection acceptor. This data segment carries ADU a1,

and its size is given by the difference between the end sequence number and the beginning sequence

number assigned to the data (bytes 1 to 341). In response to this data segment, the other endpoint

first sends a pure acknowledgment segment (with cumulative acknowledgment number 342), followed by

two data segments (with the same acknowledgment numbers). This change in the directionality of the

data transmission makes it possible to establish a boundary between the first data unit a1, which was

transported using a single segment and had a size of 341 bytes, and the second data unit b1, which was

transported using two segments and had a size of 2,555 bytes.

The trace of TCP segments Th must include a timestamp for each segment that reports the time

at which the segment was observed at the monitoring device. Timestamps provide a way of estimating

the duration of quiet times between ADUs. The duration of ta1 is given by the difference between the

timestamp of the 4th segment (the last and only segment of a1), and the timestamp of the 6th segment

(the first segment of b1). The duration of tb1 is given by the difference between the timestamp of the

54

TIME

Monitoring
P oint 1

Monitoring
P oint 2

t2

I nitia tor
E nd p oint

A c c e p tor
E nd p oint

��������� �

	�
 ACK
�
 D AT A

 D AT A
��� �����

���
 F I N
� ��������� � � ���
��!�� �����

�#"�
 F I N -$ ACK

���&%(' �

)
 S Y N - $ ACK*�� � � �

+
 D AT A

t1

,�-�.�/�0 * � �

1�2�3�4�5 "�6)

7�8�9 4 5 � 6 �#�

7 8�9 4 5) 	 	 	

:�;�< / 0 �

:#;�< / 0 �

1�2 3 4 5 "�6)

1�2 3 4 5 "�6)

1�2 3 4 5 "�6)7�8 9 4 5 � 6 � �

Figure 3.11: A second set of TCP segments for the connection vector in Figure 3.1: lossy example.

last data segment of b1 (7th segment in the connection) and the timestamp of the first FIN segment (8th

segment in the connection).

Note that the location of the monitoring point between the two endpoints affects the measured

duration of ta1 and tb1 (but not the measured sizes of a1 and b1). Measuring the duration of ta1 from

the monitoring point 1 shown in Figure 3.10 results in an estimated time t1 that is larger than the

estimated time t2 measured at monitoring point 2. Inferring application-layer quiet time durations is

always complicated by this kind of measurement variability (among other causes), so short quiet times

(with durations up to a few hundred milliseconds) should not be taken into account. Fortunately, the

larger the quiet time duration, the less significant the measurement variability becomes, and the more

important the effect of the quiet time is on the lifetime of the TCP connection. We can therefore choose

to assign a value of zero to any measured quiet time whose duration is below some threshold, e.g., 1

second, or simply use the measurement disregarding the minor impact of its inaccuracy.

If all connections were as “well-behaved” as the one illustrated in Figure 3.10, it would be trivial to

create an algorithm to extract connection vectors from segment header traces. This could be done by

simply examining the segments of each connection and counting the bytes sent between data direction-

ality changes. In practice, segment reordering, loss, retransmission, duplication, and concurrency make

the analysis much more complicated. Figure 3.11 shows a second set of segment exchanges that carry the

55

same a-b-t connection vector of Figure 3.1. The first data segment of the ADU sent from the connection

acceptor, the 6th segment, is lost somewhere in the network, forcing this endpoint to retransmit this

segment some time later as the 9th segment. Depending on the location of the monitor (before or after

the point of loss), the collected segment header trace may or may not include the 6th segment. If this

segment is present in the trace (like in the trace collected at monitoring point 2), the analysis program

must detect that the 9th segment is a retransmission and ignore it. This ensures we compute the correct

size of b1, i.e., 2,555 bytes rather than 4,015 bytes. If the lost segment is not present in the trace (like

in the trace collected at monitoring point 1), the analysis must detect the reordering of segments using

their sequence numbers and still output a size for b1 of 2,555 bytes. Measuring the duration of ta1 is

more difficult in this case, since the monitor never saw the 6th segment. The best estimation is the time

t1 between the segment with sequence number 341 and the segment with sequence number 2555. Note

that if the 6th segment is seen (as for a trace collected at monitoring point 2), the best estimate is the

time t2 between 5th and 6th segments. A data acquisition algorithm capable of handling these two cases

cannot simply rely on counts and data directionality changes, but must keep track of the start of the

current ADU, the highest sequence number seen so far, and the timestamp of the last data segment.

In our analysis, rather than trying to handle every possible case of loss and retransmission, we rely on

a basic property of TCP to conveniently reorder segments and still obtain the same ADU sizes and

inter-ADU quiet time durations. This makes our analysis simpler and more robust.

3.3.2 Logical Order of Data Segments

A fundamental invariant that underlies our previous ADU analyses is that every byte of application

data in a TCP connection receives a sequence number, which is unique for its direction7. This property

also means that data segments transmitted in the same direction can always be logically ordered by

sequence number, and this order is independent of both the time at which segments are observed and

any reordering present in the trace. The logical order of data segments is a very intuitive notion. If

segments 6 and 7 in Figure 3.10 carried an HTML page, segment 6 carried the first 1,460 characters of

this page, while segment 7 carried the remaining 1,095. Segment 6 logically preceded segment 7. When

the same page is transmitted in Figure 3.11, the first half of the HTML is in segment 6 (which was

lost) and again in segment 9. Both segments 6 and 9 (which were identical) logically precede segment

7, which carried the second half of the HTML page.

7This is true as long as the connection carries 4 GB or less. Otherwise, sequence numbers are repeated due to the
wraparound of their 32-bit representation. We discuss how to address this difficulty at the end of Section 3.3.3.

56

The notion of logical order of data segments can also be applied to segments flowing in opposite

directions of a sequential TCP connection. Each new data segment in a sequential connection must

acknowledge the final sequence number of the last in-order ADU received in the opposite direction. If

this is not the case, then the new data is not sent in response to the previous ADU, and the connection

is not sequential (i.e., two ADUs are being sent simultaneously in opposite directions). In the previous

examples in Figures 3.10 and 3.11, we can see that both data segments comprising b1 acknowledge the

final sequence number of a1. Intuitively, no data belonging to b1 can be sent by the server until a1 is

completely received and processed. The data in a1 logically precede the data in b1, and therefore the

segment carrying a1 logically precedes the segments carrying b1. Given the sequence and acknowledgment

numbers of two data segments, flowing in the same or in opposite directions, we can always say whether

the two segments carried the same data, or one of them logically preceded the other.

Connections that fit into the sequential a-b-t model are said to preserve a total order of data segments

with respect to the logical flow of data:

For any pair of data segments p and q, such that p is not a retransmission of q or vice

versa, either the data in p logically precedes the data in q, or the data in q logically precedes

the data in p.

In the example in Figure 3.11, the data in segment 9 logically precedes the data in segment 7 (e.g.,

segment 9 carries the first 1460 bytes of a web page, and segment 7 carries the rest of the bytes). We

know this because the sequence numbers of the bytes in segment 9 are below the sequence numbers of

the bytes in segment 7. The first monitoring point observes segment 7 before segment 9, so temporal

order of these two segments did not match their logical data order. A total order also exists between

segments that flow in opposite directions. In the example in Figure 3.11, the data in segment 4 logically

precede the data carried in the rest of the data segments in the connection. Timestamps and segment

reordering play no role in the total order that exists in any sequential connection.

Logical data order is not present in data-concurrent connections, such as the one shown in Figure 3.8.

For example, the segment that carried the last b-type ADU (the 438 don’t send ADU) may have been

sent roughly at the same time as another segment carrying some of the new data of the data unit sent

in the opposite direction (such as a CHECK ADU). Each segment would use new sequence numbers for its

new data, and it would acknowledge the data received so far by the endpoint. Since the endpoints have

not yet seen the segment sent from the opposite endpoint, the two segments cannot acknowledge each

other. Therefore, there is no causality between the segments, and no segment can be said to precede

57

the other. This observation provides a way of detecting data concurrency purely from the analysis of

TCP segment headers. The idea is that a TCP connection that violates the total order of data segments

described above can be said to be concurrent with certainty. This happens whenever a pair of data

segments, sent in opposite directions, do not acknowledge each other, and therefore cannot be ordered

according the logical data order.

Formally, a connection is considered to be concurrent when there exists at least one pair of data

segments p and q that either flow in opposite directions and satisfy

p.seqno > q.ackno (3.1)

and

q.seqno > p.ackno, (3.2)

or that flow in the same direction and satisfy

p.seqno > q.seqno (3.3)

and

q.ackno > p.ackno. (3.4)

, Where p.seqno and q.seqno are the sequence numbers of p and q respectively, and p.ackno and q.ackno

are the acknowledgment numbers of p and q respectively. Note that, for simplicity, our .ackno refers to

the cumulative sequence number accepted by the endpoint (which is one unit below the actual acknowl-

edgment number stored in the TCP header [Pos81]). The first pair of inequalities defines the bidirectional

test of data concurrency, while the second pair defines the unidirectional test of data concurrency. We

next discuss why a connection satisfying one of these tests must necessarily be associated with concurrent

data exchanging.

We consider first the case where p and q flow in opposite directions, assuming without loss of generality

that p is sent from initiator to acceptor and q from acceptor to initiator. If they are part of a sequential

connection, either p is sent after q reaches the initiator, in which case p acknowledges q so q.seqno =

p.ackno, or q is sent after p reaches the acceptor in which case p.seqno = q.ackno. Otherwise, a pair of

data segments that do not acknowledge each other exists, and the connection exhibits data concurrency.

In the case of segments p and q flowing in the same direction, we assume without loss of generality that

58

p.seqno < q.seqno. The only way in which q.ackno can be less than p.ackno is when p is a retransmission

sent after q, and at least one data segment k with new data sent from the opposite direction arrives

between the sending of p and the sending of q. The arrival of k increases the cumulative acknowledgment

number in p with respect to q, which means that q.ackno < p.ackno. In addition, k cannot acknowledge

p, or p would not be retransmitted. This implies that the connection is not sequential, since the opposite

side sent new data in k without waiting for the new data in p.

Thus, only data-concurrent connections have a pair of segments that can simultaneously satisfy

inequalities (3.1) and (3.2) or inequalities (3.3) and (3.4). These inequalities provide a formal test

of data concurrency, which we will use to distinguish sequential and concurrent connections in our

data acquisition algorithm. Data-concurrent connections exhibit a partial order of data segments, since

segments flowing in the same direction can always be ordered according to sequence numbers, but not

all pairs of segments flowing in opposite directions can be ordered in this manner.

Situations in which all of the segments in a concurrent data exchange are actually sent sequentially are

not detected by the previous test. This can happen purely by chance, when applications send very little

data or send it so slowly that concurrent data sent in the reverse direction is always acknowledged by

each new data segment. Note also that the test detects concurrent exchanges of data and not concurrent

exchanges of segments in which a data segment and an acknowledgment segment are sent concurrently.

In the latter case, the logical order of data inside the connection is never broken because there is no data

concurrency. Similarly, the simultaneous connection termination mechanism in TCP in which two FIN

segments are sent concurrently is usually not associated with data concurrency. In the most common

case, none of the FIN segments or only one of them carries data, so the data concurrency definition is

not applicable. It is however possible to observe a simultaneous connection termination where both FIN

segments carry data, which is considered concurrency if these segments satisfy inequalities (3.1) and

(3.2).

3.3.3 Data Analysis Algorithm

We have developed an efficient data analysis algorithm that can determine whether a connection is

sequential or concurrent, and can measure ADU sizes and quiet time durations in the presence of arbitrary

reordering, duplication, and loss. Rather than trying to analyze every possible case of reordering,

duplication/retransmission, and loss, we rely on the logical data order property, which does not depend

on the original order and timestamps.

59

Given the set of segment headers of a TCP connection sorted by timestamp, the algorithm performs

two passes:

1. Insert each data segment as a node into the data structure ordered segments. This is a list of nodes

that orders data segments according to the logical data order (bidirectional order for sequential

connections, unidirectional order for concurrent connections). The insertion process serves also to

detect data exchange concurrency. This is because connections are initially considered sequential,

so their segments are ordered bidirectionally, until a segment that cannot be inserted according to

this order is found. No backtracking is needed after this finding, since bidirectional order implies

unidirectional order for both directions.

2. Traverse ordered segments and output the a-b-t connection vector (sequential or concurrent) for

the connection. This is straight-forward process, since segments in the data structure are already

ordered appropriately.

The first step of the algorithm creates a doubly-linked list, ordered segments in which each list node

represents a data segment using the following four fields:

• seqnoA: the sequence number of the segment in the initiator to acceptor direction (that we will call

the A direction). This sequence number is determined from the final sequence number of the seg-

ment (if the segment was measured in the “A” direction), or from the cumulative acknowledgment

number (if measured in the “B” direction).

• seqnoB : the sequence number of the segment in the acceptor to initiator direction.

• dir: the direction in which the segment was sent (A or B).

• ts: the monitoring timestamp of the segment.

The list always preserves the following invariant that we call unidirectional logical data order : for any

pair of segments p and q sent in the same direction D, the ordered segments node of p precedes the

ordered segments node of q if and only if p.seqnoD < q.seqnoD. At the same time, if the connection

is sequential, the data structure will preserve a second invariant that we call bidirectional logical data

order , which is the opposite of the data concurrency conditions defined above: for any pair of segments

p and q, the ordered segments node of p precedes the ordered segments node of q if and only if

(p.seqnoA < q.seqnoA) ∧ (p.seqnoB = q.seqnoB)

60

or

(p.seqnoA = q.seqnoA) ∧ (p.seqnoB < q.seqnoB).

Insertion of a node into the list starts backward from the tail of the ordered segments looking for an

insertion point that would satisfy the first invariant. If the connection is still being considered sequential,

the insertion point must also satisfy the second invariant. This implies comparing the sequence numbers

of the new segment with those of the last segment in the ordered segments. The comparison can result

in the following cases:

• The last segment of ordered segments precedes the new one according to the bidirectional order

above. If so, the new segment is inserted as the new last element of ordered segments.

• The last segment of ordered segments and the new segment have the same sequence numbers. In

this case, the new segment is a retransmission and it is discarded.

• The new segment precedes the last segment of ordered segments according to the bidirectional

order. This implies that network reordering of TCP segments occurred, and that the new segment

should be inserted before the last segment of ordered segments to preserve the bidirectional

order of the data structure. The new segment is then compared with the predecessors of the last

segment in ordered segments until its proper location is found, or inserted as the first segment if

no predecessors are found.

• The last segment of ordered segments and the new segment have different sequence numbers and

do not show bidirectional order. This means that the connection is concurrent. The segment is

then inserted according to its unidirectional order.

Since TCP segments can be received out of order by at most W bytes (the size of the maximum receiver

window), the search pass (third bullet) never goes backward more than W segments. Therefore, the

insertion step takes O(s W) time, where s is the number of TCP data segments in the connection.

The second step is to walk through the linked list and produce an a-b-t connection vector. This can

be accomplished in O(s) time using ordered segments. For concurrent connections, the analysis goes

through the list keeping separate data for each direction of the connection. When a long enough quiet

time is found (or the connection is closed), the algorithm outputs the size of the ADU. For sequential

connections, the analysis looks for changes in directionality and outputs the amount of data in between

the change as the size of the ADU. Sufficiently long quiet times also mark ADU boundaries, indicating

61

an epoch without one of the ADUs.

Reordering makes the computation of quiet times more complex than it seems. As shown in Figure

3.11, if the monitor does not see the first instance of the retransmitted segment, the quiet times should

be computed based on the segments with sequence numbers 341 and 2555. This implies adding two more

fields to the list nodes:

• min ts: the minimum timestamp of any segment whose position in the order is not lower than

the one represented by this node. Due to reordering, one segment can precede another in the

bidirectional order and at the same time have a greater timestamp. In this case, we can use the

minimum timestamp as a better estimate of the send time of the lower segment.

• max ts: the maximum timestamp of any segment whose place in the order is not greater than the

one represented by this node. This is the opposite of the previous min ts field, providing a better

estimate of the receive time of the greater segment.

These fields can be computed during the insertion step without any extra comparison of segments. The

best possible estimate of the quiet time between two ADU becomes

q.min ts − p.max ts

for p being the last segment (in the logical data order) of the first ADU, and q being the first segment

(in the logical data order) of the second ADU. For the example in Figure 3.11, at monitoring point 1, the

value of min ts for the node for the 9th segment (that marks a data directionality boundary when segment

nodes are sorted according to the logical data order) is the timestamp of the 7th segment. Therefore,

the quiet time ta1 is estimated as t1. Note that the use of more than one timestamp makes it possible to

handle IP fragmentation elegantly. Fragments have different timestamps, so a single timestamp would

have to be arbitrarily set to the timestamp of one of the fragments. With our algorithm, the first fragment

provides sequence numbers and usually min ts, while the last fragment usually provides max ts.

Other Issues in Trace Processing

Our trace processing algorithm makes two assumptions. First, it assumes we can isolate the segments

of individual connections. Second, it assumes that no wraparound of sequence numbers occurs (otherwise,

logical data order would not be preserved). These two assumptions can be satisfied by preprocessing the

62

trace of segment headers. Isolating the segments of individual TCP connections was accomplished by

sorting packet header traces on five keys: source IP address, source port number, destination IP address,

destination port number, and timestamp. The first four keys can separate segments from different

TCP connections as long as no source port number is reused. When a client establishes more than

one connection to the same server (and service), these connections share IP addresses and destination

port numbers, but not source port numbers. This is true unless the client is using so many connections

that it reuses a previous source port number at some point. Finding such source port number reuses is

relatively common in our long traces, which are at least one hour long. Since segment traces are sorted

by timestamp, it is possible to look for pure SYN segments and use them to separate TCP connections

that reuse source port numbers. However, SYN segments can suffer from retransmissions, just like any

other segment, so the processing must keep track of the sequence number of the last SYN segment

observed. Depending on the operating system of the connection initiator, this sequence number is either

incremented or randomly set for each new connection. In either case, the probability of two connections

sharing SYN sequence numbers is practically zero.

Segment sorting according to the previous 5 keys requires O(s log s) time (we use the Unix sort

utility for our work). It is also possible to process the data without an initial sorting step by keeping

state in memory for each active connection. On the one hand, this can potentially eliminate the costly

O(s log s) step, making the entire processing run in linear time. On the other hand, it complicates

the implementation, and increases the memory requirements substantially8. Detecting the existence of

distinct connections with identical source and destination IP addresses and port numbers requires O(s)

time, simply by keeping track of SYN sequence numbers as discussed above. In our implementation,

this detection is done at the same time as segments are inserted into ordered segments data structure,

saving one pass.

TCP sequence numbers are 32-bit integers, and the initial sequence number of a TCP connection can

take any value between 0 and 232−1. This means that wraparounds are possible, and relatively frequent.

One way to handle sequence number wraparound is by keeping track of the initial sequence number and

performing a modular subtraction. However, if the SYN segment of a connection is not observed (and

therefore the initial sequence number is unknown), using modular arithmetic will fail whenever the

8The well-known tcptrace tool [Ost], provides a good example of the difficulty of efficiently implementing this technique.
tcptrace can analyze multiple connections at the same time, by keeping separate state for each connection, and making
use of hashing to quickly locate the state corresponding to the connection to which a new segment belongs. When this
tool is used with our traces, we quickly run out of memory on our processing machines (which have 1.5 GB of RAM).
This occurs even when we use tcptrace’s real-time processing mode, which is supposed to be highly optimized. We
believe it is possible to perform our analysis without the sorting step, but it is certainly much more difficult to develop a
memory-efficient implementation.

63

connection suffers from reordering of the first observed segments. In this case the subtraction would

start in the wrong place, i.e., from the sequence number of the first segment seen, which is not the

lowest sequence number due to the reordering. One solution is to use backtracking, which complicates

the processing of traces.

A related problem is that representing sequence numbers as 32-bit integers is not sufficient for con-

nections that carry more than 232 bytes of data (4 GB). The simplest way to address this measurement

problem is to encode sequence numbers using more than 32 bits in the ordered segments data struc-

ture. In our implementation we use 64 bits to represent sequence numbers, and rely on the following

algorithm9 to accurately convert 32 bit sequence numbers to 64-bit integers even in the presence of

wraparounds. The algorithm makes use of a wraparound counter and a pair of flags for each direction

of the connection. The obvious idea is to increment the counter each time a transition from a high

sequence number to a low sequence number is seen. However, due to reordering, the counter could

be incorrectly incremented more than once. For example, we could observe four segments with se-

quence numbers 232 − 1000, 1000, 232 − 500, and 2000. Wraparound processing should convert them into

232 − 1000, 232 + 1000, 232 − 500, and 232 + 2000. However, if the wraparound counter is incremented

every time a transition from a high sequence number to a low sequence number is seen, the counter

would be incremented once for the segment with the sequence number 1000 and again for the segment

with sequence number 2000. In this case, the wraparound processing would result in four segments with

sequence numbers 232 − 1000, 232 + 1000, 232 − 500, and 232 + 232 + 2000. The second increment of the

counter would be incorrect.

The solution is to use a flag that is set after a “low” sequence number is seen, so the counter is

incremented only once after each “crossing” of 232. This opens up the question of when to unset this flag

so that the next true crossing increments the counter. This can be solved by keeping track of the crossing

of the middle sequence number. In our implementation, we use two flags, low seqno and high seqno,

which are set independently. If the next segment has a sequence number in the first quarter of 232

(i.e., in the range between 0 and 230 − 1), the flag low seqno is set to true. If the next segment has

a sequence number in the fourth quarter of 232 (i.e., in the range between 231 and 232 − 1), the other

flaghigh seqno is set to true. These flags are unset, and the counter incremented, when both flags are

true and the next segment is not in the first or the fourth quarter of 232. Sequence numbers in the

first quarter are incremented to 232 times the counter plus 1. The rest are incremented by 232 plus the

9We have not addressed the extra complexity that TCP window scaling for Long-Fat-Networks (RFC 1323 [JBB92])
introduces. It is often the case that TCP options are not available in the traces, so the use of window scaling and TCP
timestamps has to be inferred from the standard TCP header. This is a daunting task. If the options are available, it is
straightforward to combine regular sequence numbers and timestamps to handle this case.

64

counter. This handles the pathological reordering case in which the sequence number of the first segment

in a connection is very close to zero, and the next segment is very close to 232. In this case the low

sequence number would be incremented by 232. This algorithm requires no backtracking, and runs in

O(s) time. In our implementation, the sequence number conversion algorithm has been integrated into

the same pass as the insertion step of the ADU analysis.

Our data acquisition techniques have been implemented in the analysis program tcp2cvec. The

program also handles a number of other difficulties that arise when processing real traces, such as TCP

implementations that behave in non-standard ways. In addition, it also implements the analysis of

network-level parameters described in the next chapter.

3.4 Validation using Synthetic Applications

The data analysis techniques described in the previous section are based on a number of properties

of TCP that are expected to hold for the vast majority of connections recorded. For example, the logical

data order property should always hold, since TCP would fail to deliver data to applications otherwise.

There are, however, a number of possible sources of uncertainty in the accuracy of the data acquisition

method, and this section studies them using testbed experiments.

The concept of an ADU provides a useful abstraction for describing the demands of applications for

sending and receiving data using a TCP connection. However, the ADU concept is not really part of

the interface between applications and TCP. In practice, each TCP connection results from the use of

a programming abstraction, called a socket, that receives requests from the applications to send and

receive data. These requests are made using a pair of socket system calls, send() (application’s write)

and recv() (application’s read). These calls pass a pointer to a memory buffer where the operating

system can read the data to be sent or write the data received. The size of the buffer is not fixed, so

applications are free to decide how much data to send or receive with each call and can even use different

sizes for different calls. As a result, applications may use more than one send system call per ADU, and

there may be significant delays between successive calls belonging to the same ADU. These operations

can further interact with mechanisms in the lower layers (e.g., delayed acknowledgment, TCP windowing,

IP buffering, etc.) creating even longer delays between segments carrying ADUs. Such delays distort the

relationship between application-layer quiet times and segment dynamics, complicating the detection of

ADU boundaries due to quiet times.

65

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Application Data-Unit Size in Bytes

A Input
A Measured

B Input
B Measured

Figure 3.12: Distributions of ADU sizes for
the testbed experiments with synthetic appli-
cations.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Relative Error

TA No Delays
TA Client Delays
TB Client Delays

TA Server Delays

Figure 3.13: Distributions of quiet time du-
rations for the testbed experiments with syn-
thetic applications.

To test the accuracy of our data acquisition techniques, we constructed a suite of test applications

that exercise TCP in a systematic manner. The basic logic of each test application is to establish a

TCP connection and send a sequence of ADUs with a random size, and with random delays between

each pair of ADUs. In the a-b-t model notation, this means creating connections with random ai, bi, tai

and tbi. As the test application runs, it logs ADU sizes and various time intervals as measured by the

application. In addition, the test application can set the socket send and receive calls to random I/O

sizes, and can introduce random delays between successive send or receive calls within a single ADU. In

our experiments, the test application was run between two real hosts, and traces of the segment headers

were collected and analyzed using our measurement tool. Our validation compared the result of this

analysis and the correct values logged by the applications.

We conducted an extensive suite of tests, but limit our report to only some of the results. Specifically

we only show the results with the most significant deviations from the correct values for ADU sizes or

quiet time durations. Figure 3.12 shows the relative error, defined as

value − approximation

value

, in measuring the randomly generated ADU sizes when random send/receive sizes and random delays

between socket operations were used in the test applications. The distribution of sizes of a-type ADUs as

logged by the application is labeled “A Input”, while the distribution of sizes of a-type ADU measured

from segment headers is labeled “A Measured”. There is virtually no difference between the correct and

inferred values. Figure 3.12 also shows the same data for the b-type distributions which appear equally

accurate. This means that our analysis will correctly infer ADU sizes even though send/receive sizes

66

and socket operation delays are variable.

In general, we found only two cases that expose limitations in the data acquisition method when

analyzing sequential connections. While random application-level send and receive sizes, and random

delays between successive send operations within a data unit do not have a significant effect, random

delays between successive receive operations produce errors in estimating some quiet time durations. In

this case, the application inflates the duration of a quiet time by not reading data that may already be

buffered at the receiving endpoint. The consequence is a difference between the quiet time as observed

at the application level and the quiet time observed at the segment level. The quiet time observed

by the application is the time between the last read used to receive the ADU ai (or bi) and the first

write used to send the next ADU bi (ai+1). The quiet time observed at the segment level is the time

between the arrival of the last segment of ai (bi) and the departure of the first segment of bi (ai+1). If

the application reads the first ADU slowly, using read calls with significant delays between them, it will

finish reading ai (bi) well after the last segment has reached the endpoint. In this case, the quiet time

appears significantly shorter at the application level than at the segment level.

For example, a data unit of 1,000 bytes may reach the receiving endpoint in a single segment and be

stored in the corresponding TCP window buffer. The receiving application at this endpoint could read

the ADU using 10 recv() system calls with a size of only 100 bytes, and with delays between them of 100

milliseconds. The reading of this ADU would therefore take 900 milliseconds, and hence the application

would start measuring the subsequent quiet time 900 milliseconds after the arrival of the data segment.

Our measurement of quiet time from segment arrivals can never see this delay in application reads, and

would therefore add 900 milliseconds to the quiet time. For most applications we claim there is no good

reason to delay read operation more than a few milliseconds. Therefore, the inaccuracy demonstrated

here should be very infrequent. Nonetheless we have no direct means of assessing this type of error in

our traces.

Figure 3.13 shows the relative error in the measurement of quiet time duration when there are random

delays between successive read operations. The worst error is found when measuring quiet times between

ai and bi (i.e., within an epoch) when random read delays occur on the connection acceptor (receiver

of ai and bi). Even in this case, 70% of values have less than 20% error in an experiment with what we

considered severe conditions of delays between read operations for a single ADU (random delays between

10 and 100 milliseconds).

We also studied the impact of segment losses on the accuracy of the measurements. In general,

67

0

0.2

0.4

0.6

0.8

1

0 500000 1e+06 1.5e+06 2e+06

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Application Data-Unit Size in Bytes

Input
Measured with 250 ms Threshold
Measured with 500 ms Threshold

Figure 3.14: Distributions of ADU sizes for
the testbed experiments with synthetic appli-
cations.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Times in Seconds

Input
Measured with 250 ms Threshold
Measured with 500 ms Threshold

Figure 3.15: Distributions of quiet time du-
rations for the testbed experiments with syn-
thetic applications.

the algorithm performs well, but the analysis helped us to identify one troublesome case. If the last

segment of an ADU is lost, the receiver side does not acknowledge the last sequence number of the ADU.

After a few hundred milliseconds the sender side times out and resends the last segment. If the loss of

the segment occurs before the monitoring point, no retransmission is observed for this last segment. If

the time between this last segment and its predecessor is long enough (due to the TCP timeout), the

ADU is incorrectly divided into two ADUs. Other types of segment loss do not have an effect on the

measurement, since the algorithm can use the observation of retransmission and/or reordering to identify

quiet times not caused by source-level behavior. The troublesome case is so infrequent that we did not

try to address it. However, we note that it seems possible to develop a heuristic to detect this type of

problem. The idea would be to estimate the duration of the TCP retransmission timeout, and ignore

gaps between segments that are close to this estimate. The implementation of this heuristic would be

complicated by the need to take into account differences in the resolution of the TCP retransmission

timers, round-trip time variability and the possibility of consecutive losses.

Measuring the size of ADUs in concurrent connections is generally more difficult. This is because

a change in the directionality of sequence number increases does not constitute an ADU boundary and

thus we have to rely instead on quiet times to split data into ADUs. Figure 3.14 compares the input

distribution of ADU sizes (from both a-type and b-type ADUs) and the measured sizes when the sizes

of socket reads/writes and the delays between them are random. The measurement is generally very

accurate, although some ADUs that were sent with small quiet times between them are mistakenly joined

into the same measured ADU. This creates a longer tail in the measured distributions. Reducing the

quiet time threshold from 500 to 250 milliseconds does little to reduce the measurement inaccuracy.

68

The measured quiet times are also quite close to those at the application level, as shown in Figure

3.15. The small inaccuracy comes again from ADUs that are joined together when their inter-ADU times

are short. This inaccuracy biases the measured distribution of quiet times against small values (notice

that the measured distributions start at a higher value). Reducing the minimum quiet time threshold

to 250 milliseconds makes the measured distribution closer to the actual distribution.

3.5 Analysis Results

The a-b-t model provides a novel way of describing the workload that applications create on TCP

connections. Thanks to the efficiency of the analysis method presented in Section 3.3, we are able to

process large packet header traces from several Internet links. This section presents our results. The

analysis of the a-b-t connection vectors extracted from disparate traces reveals that certain distribu-

tional properties remain surprisingly homogeneous across links and times-of-day, while others change

substantially. To the best of our knowledge, this is the first characterization of the behavior of sources

driving TCP connections that considers the entire mix of application traffic rather than just one or a

few applications.

Our results come from the five traces shown in Table 3.1. This table reports statistics that compare

the number of connections that are determined to be sequential and those that are determined to be

concurrent according to the analysis algorithm described in section 3.3. The main lesson from Table 3.1

is the very different view of aggregate source-level behavior that counting connections or counting bytes

provide. In terms of the number of connections, concurrent connections appear insignificant, accounting

for a mere 3.6% of the connections in the Leipzig-II trace. The picture is completely different, however,

when we consider the total number of bytes carried in those concurrent connections. In this case,

concurrent connections account for 21.7% of the Leipzig-II workload, clearly suggesting that concurrency

is frequently associated with TCP connections that carry large amounts of data. Abilene-I provides an

Sequential Connections Concurrent Connections
Trace Count % GB % Count % GB %

Abilene-I 2,335,428 98.4 400.36 68.1 39,260 1.7 187.95 31.9
Leipzig-II 1,836,553 96.4 46.08 78.3 68,857 3.6 12.77 21.7
UNC 1 AM 529,381 98.5 90.35 82.4 8,345 1.6 19.34 17.6
UNC 1 PM 2,124,431 99.1 189.75 87.9 18,855 0.9 26.11 12.1
UNC 7:30 PM 808,857 98.7 102.04 76.8 10,542 1.3 30.83 23.2

Table 3.1: Breakdown of the TCP connections found in five traces.

69

even more striking illustration, where 31.9% of the bytes were carried by concurrent connections, which

only accounted for 1.7% of the total number of connections in the trace. This is not surprising given that

one of the motivations for the use of data exchange concurrency is to increase throughput. Applications

with a substantial amount of data to send can greatly benefit from higher throughput, and this justifies

the increase in complexity that implementing concurrency requires. On the contrary, applications which

generally transfer small amounts of data have less incentive to complicate their application protocols in

order to support concurrency. In this fashion, interactive traffic (e.g., telnet, SSH, IRC), which tends to

be associated with large numbers of small ADUs, does not usually profit from concurrency.

It is important to note that two types of TCP connections are not included in the statistics in

Table 3.1: unidirectional connections and connections that carried no application data (i.e., no segment

carried a payload). Unidirectional connections are those for which the trace contains only segments

flowing in one direction (either data or ACK segments). There are two major causes for these types of

connections10. First, attempts to contact a nonexistent or unavailable host may not receive any response

segments. In this case, the trace would show only one or a few SYN segments flowing in one direction,

and no communication of application data between the two hosts. Attempts to connect to firewalled

hosts also result in similar unidirectional connections. Second, routing asymmetries, that are known to

be frequent in the Internet backbone, may result in connections that traverse the measured link only

in one direction. Among our traces, routing asymmetries are only possible for the Abilene-I trace. The

UNC and Leipzig-II traces were collected from border links that carry all of the network traffic to and

from these two institutions. Two other possible causes of unidirectionality, that we believe have a much

smaller impact on the count of unidirectional connections, are the effects of trace boundaries, which can

limit the tracing to only a few segments flowing in one direction; and misconfigurations, where incorrect

or spoofed source addresses are used.

In the UNC and Leipzig-II traces, the number of unidirectional connections was relatively high.

We found between 249,923 (Leipzig-II) and 1,963,511 (UNC 1 AM) unidirectional connections. Since

these are traces without any routing asymmetry, it is clear that a substantial number of attempts to

establish a TCP connection failed. For example, the UNC 1 AM trace has approximately one million

more unidirectional connections than the other two UNC traces. These connections are likely related to

10It is very unlikely that any of these connections was measured as unidirectional due to measurement losses. The traces
studied in this section were collected using a high-performance monitoring device, a DAG card [Pro], that did not report
any losses during data acquisition.

70

some traffic anomaly, such as malicious network scanning11 and port scanning12. We have not studied

this phenomenon further, but it is clearly important to filter out unidirectional connections to produce

the results in Table 3.1. Otherwise, the percentages would be misleading, since this table is about

connections that exchanged one or more ADUs during TCP application communication, and unidirec-

tional connections did not engage in any kind of useful communication. Furthermore, unidirectional

connections accounted for less than 0.15% of the bytes in the Leipzig-II and UNC traces.

The number of unidirectional connections in the Abilene-I trace was even larger: 2.6 millions in the

Indianapolis to Cleveland direction and 22.3 millions in the opposite direction. Unlike the UNC and

Leipzig-II traces, these connections accounted for a significant fraction of the bytes in each direction

(1.63% and 14.42%). This fact, and a closer examination of the connections13, confirmed that rout-

ing asymmetry is present in the Abilene-I trace. Asymmetric connections can carry application data,

and therefore should be considered in source-level studies. However, our concurrency test requires bidi-

rectional measurements, so the type of breakdown shown in Table 3.1 cannot be performed with the

unidirectional connections in the Abilene-I trace.

Our traces also include a significant number of connections that did not carry any application data

(i.e., TCP connections that were established and terminated without transmitting a single data seg-

ment14). The number of connections without any data units varied between 75,522 in the UNC 1 AM

trace and 400,853 in the Abilene-I trace. These “dataless” connections can again be due to network and

port scanning, and also to failed attempts to establish TCP connections. These failures can come from

attempts to contact endpoint port numbers on which no application is listening15. They can also come

from aborted connections which are due to high loss rates, excessive round-trip times, or implementation

problems. While the number of connections without application data is relatively high when compared

with the number of connections in Table 3.1, these connections accounted for less than 0.11% of the

bytes.

11Network scanning is a technique for discovering the hosts attached to a network by probing each possible IP address in
a network domain. The basic technique is to send a packet which generally requires a response from the host that received
it (e.g., an ICMP echo request, a TCP SYN segment). Malicious users often scan remote networks to find hosts before
trying to break into them. Network scanning with TCP segments is available in many popular tools, e.g., nmap.

12Port scanning is similar to network scanning, but it involves probing a range of port numbers (for a single IP address)
rather than probing a range of IP addresses. The goal of port scanning is to discover active services, which could potentially
have vulnerabilities. Port scanning is performed using any TCP segment (or UDP datagram) that elicits a response from
the victim (e.g., a SYN segment requires a SYN-ACK in response, a malformed segment requires a RST segment in
response).

13We found numerous connections that had data segments with increasing sequence numbers.
14In some cases, these connections showed some data segments with a sequence number above that of the FIN segments.

These cases seemed to be caused by TCP implementation errors.
15In this case the destination endpoint responds with a TCP reset segment, and no application-level communication

takes place.

71

The rest of this section examines the distributional properties of the connection vectors derived from

the traces. Connection vectors constitute a rich data set that can be explored along different axes. We

have chosen to first compare traces collected at different sites. This helps us study variability in source-

level behavior originating from differences in the populations of users and services. The second part of

the section studies the three traces from UNC, analyzing the changes in source-level behavior due to

the strong time-of-day effects that most Internet links exhibit. At the same time, this section illustrates

the significant difference between TCP connections initiated from one side of the link (by clients inside

UNC) and those initiated from the other side (by clients outside UNC that contacted servers inside

UNC).

Note that the analysis below reports only on those connection vectors derived from TCP connections

that were fully captured , i.e., those for which we believe that every segment was observed. In practice, we

consider that a connection was fully captured when we observe both the start of the connection, marked

by SYN and SYN-ACK segments, and the end of the connection, marked by FIN or RST segments.

This does not necessarily mean that we observed every single segment of the connection16, but it does

imply that the full source-level behavior of the connection is observed. Another reason to work only with

fully captured connections is that the absence of connection establishment segments prevents us from

identifying the connection initiator. It is often the case that the acceptor is listening on a reserved port

number (< 1024), which provides a way to address this difficulty. However, there is still a large fraction

of the connections that use dynamic port numbers, and for which the initiator cannot be identified with

certainty.

3.5.1 Variability Across Sites

Sequential Connections

We start our statistical analysis with the characterization of sequential connections from different

sites. Figure 3.16 examines the distributions of the sizes of the ADUs for three traces: Abilene-I,

Leipzig-II and UNC 1 PM. We use the letter “A” to refer to a distribution of a-type ADU sizes, and the

letter “B” to refer to a distribution of b-type ADU sizes. The distributions in this figure only include

samples from sequential connection vectors. We can distinguish two regions in this plot. For sizes of

ADUs above 250 bytes, the shape of the A distributions is remarkably similar for all three traces, and

16In some (rare) cases, we may miss some segments before connection establishment (e.g., we miss the first SYN
segment but observe its retransmission), or we may miss some segments after connection establishment (e.g., we miss the
retransmission of the final FIN segment and its acknowledgment).

72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

UNC A
Abilene-I A
Leipzig-II A

UNC B
Abilene-I B
Leipzig-II B

Figure 3.16: Bodies of the A and B distribu-
tions for Abilene-I, Leipzig-II and UNC 1 PM.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

UNC A
Abilene-I A
Leipzig-II A

UNC B
Abilene-I B
Leipzig-II B

Figure 3.17: Tails of the A and B distributions
for Abilene-I, Leipzig-II and UNC 1 PM.

quite different from the shapes of the B distributions. The vast majority of the ADUs sent from the

connection initiator (92%) had a size below 1,000 bytes. This is consistent with the idea that a-type

ADUs mostly carry small requests and control messages. Most a-type ADUs can therefore be carried

in a single standard-size segment of 1960 bytes. The shape of the B distributions is also consistent

with our intuition, although the Leipzig-II distribution is significantly lighter than the others. The B

distributions are heavier than the A distributions. Between 38% and 27% of the b-type ADUs are larger

than 1460 bytes, so they require two or more segments to be transported from the connection acceptor

to the connection initiator. Only 8% to 12% of the b-type ADUs carried 10,000 bytes or more. We also

note that for ADU sizes below 250 bytes, the plot shows less similarity among distributions of the same

type. However, the logarithmic scale on the x-axis can be misleading. The large separation between the

curves corresponds to only a few tens of bytes, and this has little impact on TCP performance. ADUs

as small as 250 bytes can always be transported in a single (small) segment.

Figure 3.17 shows the tails of the A and B distributions using complementary cumulative distribution

functions. It shows that even a-type ADUs can be quite large, and that the distributions are consistent

with heavy-tailness (i.e., exhibits linear decay in the log-log CCDF). For this reason, Pareto or Lognormal

models could provide a good foundation for analytical modeling of the distributions17. Interestingly,

when we compare A and B distributions for the same trace, we find that B distributions are only

slightly heavier than A distributions, especially for Abilene-I and Leipzig-II. This implies that there

are protocols in which the initiator sends large ADUs to the acceptor. For example, web browsers are

often used to upload files and email attachments for web-based email accounts. It is also interesting to

17The tail of a Pareto distribution is always linear in a CCDF, and the tail of a Lognormal distribution can be linear for
an arbitrary number of orders of magnitude.

73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

Size of ADU in Bytes

UNC A
Abilene-I A
Leipzig-II A

UNC B
Abilene-I B
Leipzig-II B

Figure 3.18: Bodies of the A and B distribu-
tions with per-byte probabilities for Abilene-I,
Leipzig-II and UNC 1 PM

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

UNC E
Abilene-I E
Leipzig-II E

Figure 3.19: Bodies of the E distributions for
Abilene-I, Leipzig-II and UNC 1 PM.

note that Abilene-I’s A distribution is heavier than UNC’s and Leipzig-II’s B distributions, and that

UNC’s B distribution is significantly heavier than Leipzig-II’s B distribution. We believe this reflects

the type of network measured and/or the population of users. Transferring large ADUs is more feasible

in higher capacity networks, and this fosters the use of more data-intensive applications and more data-

intensive uses of applications. Abilene is a well-provisioned backbone network that carries traffic between

well-connected American universities, so it seems more likely to exhibit connections with larger ADUs.

The small probabilities of finding large ADUs shown in Figures 3.16 and 3.17 can give the false

impression that only small ADUs are important. Figure 3.18 corrects this view by plotting the probability

that a byte is carried in an ADU of a given size. The figure shows that the majority of the bytes in the

network were carried in large ADUs. For example, the probability that a byte was carried in an ADU

of 100,000 bytes or more was as high as 0.9 for Abilene-I. This is in stark contrast to the corresponding

Abilene-I distribution in Figure 3.16, where the probability of an ADU of 100,000 bytes or more is as

low as 0.01 for the three traces.

The three networks show remarkably different distributions in Figure 3.18. This is in part due to the

impact of sampling on this type of analysis, which is rather sensitive to the number of samples in the tail

of the distribution. Adding a single very large sample can shift the entire distribution downward, since

the probability of finding a byte in the rest of the ADU sizes decreases significantly. However, we can

still make interesting observations about the bodies of these distributions based on their shapes (which

are not affected by sampling artifacts). The distributions for UNC and Leipzig-II show two striking

crossover points, the first one around 10 KB and the second one around 10 MB. The curves before the

first crossover point show that the ADUs carrying 20% of the a-type bytes tended to be much smaller

74

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 o

f
T

o
ta

l B
yt

es

Number of Epochs

UNC
Abilene-I
Leipzig-II

Figure 3.20: Bodies of the E distributions with
per-byte probabilities for Abilene-I, Leipzig-II
and UNC 1 PM.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Epochs

UNC E
Abilene-I E
Leipzig-II E

Figure 3.21: Tails of the E distributions for
Abilene-I, Leipzig-II and UNC 1 PM.

than those carrying 20% of the b-type bytes. The curves between the two crossover points show the

opposite for larger ADUs. Here 50% of the a-type bytes are carried in ADUs that tended to be much

larger than those ADUs carrying b-type bytes. The situation reverses again after the second crossover

point. This shows that the A distributions are strongly bimodal: objects are either much smaller or

much larger than the average b-type ADU. The same phenomenon is found in the Abilene-I distributions

between 10 KB and 1 MB, but the difference in probability is much smaller here (and could be explained

by tail sampling artifacts). In addition, there is a third crossover point in the Abilene-I distributions,

which defines a new region between 15 and 250 MB.

The distribution of the number of epochs E in each set of connection vectors is shown in Figure

3.19. Between 58% and 66% of the connection vectors have a single epoch. This includes a significant

number of connections with a single half-epoch that come from FTP-DATA connections. Only 5% of

the connections have more than 10 epochs. This does not mean that connections with a large number of

epochs are unimportant. As Figure 3.20 shows, connections with a large number of epochs are responsible

for a large fraction of the bytes. For example, connections with 10 epochs or more, which represent 3%

of the connections, carried between 30% and 50% of the total bytes, depending on the trace.

Figure 3.20 shows that UNC’s E distribution is substantially heavier than the ones for the other

two traces when probability is computed over the total number of bytes. This suggests that the type of

traffic in the UNC trace includes applications that make more use of multi-epoch connections. This also

provides evidence that connections with moderate numbers of epochs can fit within the shorter duration

(1 hour) of this trace. Otherwise, the Abilene-I trace (2 hours long) and the Leipzig-II traces(2 hours

and 45 minutes long) would show heavier bodies. On the contrary, the tails of the E distributions shown

75

1000

10000

100000

1e+06

1e+07

1e+08

10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
E

p
o

ch
 S

iz
e

in
 B

yt
es

Number of Epochs

UNC
Abilene-I
Leipzig-II

Figure 3.22: Average size aj + bj of the epochs
in each connection vector as a function of the
number of epochs, for UNC 1 PM, Abilene-I
and Leipzig-II

100

1000

10000

100000

1e+06

20 40 60 80 100 120 140

A
ve

ra
g

e
S

iz
e

o
f

A
D

U
 in

 B
yt

es

Number of Epochs

UNC Median A
UNC Median B

Figure 3.23: Average of the median size of the
ADUs in each connection vector as a function
of the number of epochs, for UNC 1 PM.

in Figure 3.21 are significantly heavier for Abilene-I and Leipzig-II than for UNC. This perhaps suggests

that 1-hour traces are too short to observe connections with thousands of epochs. The sharp change in

the slope of the tail of UNC’s E distribution could be explained by a common application that has a

fixed limit on the number of epochs (perhaps 110). However, we know of no such application.

One interesting modeling question is whether there is any dependency between the size of the ADU

in one epoch and the number of epochs in the connection. If these are independent, it would be

straightforward to generate synthetic connection vectors simply by first sampling a number of epochs

E and then assigning ADU sizes by sampling from A and B. Figure 3.22 shows that this independence

does not exist. The average size of an epoch (i.e., aj + bj) increases very quickly for connections up to

30 epochs (notice the logarithmic y-axis). Connections with more epochs show high variability in the

average size of their epochs. UNC and Abilene-I have quite similar averages that are much larger than

those found in Leipzig-II (but note the sharp increase in average sizes for connections with 60 to 80

epochs).

Figures 3.24-3.26 provide further evidence against the independence of ADU sizes and number of

epochs, and illustrate some remarkable complexity and site dependence. The plots illustrate how the

number of epochs changes the size of the typical ADU, where ”typical” is defined as the median of the

sizes of the ADUs in each connection vector. Since a large number of connection vectors have the same

number of epochs, we summarized these data by plotting the average of the median sizes vs. the number

of epochs. Unlike the data in Figure 3.22, we analyzed median ADU sizes for a-type and b-type ADUs

separately.

76

100

1000

10000

100000

1e+06

20 40 60 80 100 120 140

A
ve

ra
g

e
S

iz
e

o
f

A
D

U
 in

 B
yt

es

Number of Epochs

Leipzig-II Median A
Leipzig-II Median B

Figure 3.24: Average of the median size of the
ADUs in each connection vector as a function
of the number of epochs, for Leipzig-II.

100

1000

10000

100000

1e+06

20 40 60 80 100 120 140

A
ve

ra
g

e
S

iz
e

o
f

A
D

U
 in

 B
yt

es

Number of Epochs

Abilene-I Median A
Abilene-I Median B

Figure 3.25: Average of the median size of the
ADUs in each connection vector as a function
of the number of epochs for Abilene-I.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

UNC TA
Abilene-I TA
Leipzig-II TA

UNC TB
Abilene-I TB
Leipzig-II TB

Figure 3.26: Bodies of the TA and TB distribu-
tions for Abilene-I, Leipzig-II and UNC 1 PM.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

UNC TA
Abilene-I TA
Leipzig-II TA

UNC TB
Abilene-I TB
Leipzig-II TB

Figure 3.27: Tails of the TA and TB distribu-
tions for Abilene-I, Leipzig-II and UNC 1 PM.

The two distributions for UNC trace in Figure 3.23 are completely different (the median sizes for

b-type ADU are much larger). There are, however, some epochs sizes between 25 and 50 for which

a-type data units can be as large as b-type data units. Leipzig-II shows a completely different structure

in Figure 3.24, where a-type ADUs are shown to be as large as b-type ADUs, and both are larger than

UNC’s a-type ADUs, and smaller than UNC’s b-type ADUs. Abilene-I’s distribution of b-type ADUs

is similar to that of UNC. On the contrary, Abilene-I’s distribution of a-type ADUs shows extreme

variability for 60 epochs or more, and this phenomenon is completely absent in UNC’s distribution. The

conclusion of these four plots is clear: it is quite unrealistic to generate synthetic connection vectors

using a simple model that assumes independence between ADU sizes and number of epochs.

Figure 3.26 examines the distributions of quiet times between ADUs. Shown are the distributions TA

for taj and TB for tbj . Note that the quiet times between the last ADU and connection termination,

77

i.e., tbj for the last epoch, are not included in TB. The plot shows that, as the durations of the

quiet times increase, the bodies of the TA distributions become increasingly lighter than those of the

TB distributions. This is consistent with our understanding of client/server applications. Inter-epoch

quiet times (TB) are usually user-driven, while intra-epoch quiet times (TA) are usually due to server

processing delays. Server processing delays should generally be far shorter than user think times. For

UNC and Abilene-I, most of the probability mass of TA is below 100 milliseconds, while that of TB

is spread more widely. This is a strong indication that quiet times on the order of a few hundred

milliseconds mostly reflect source-level quiet times. Observing TA being significantly lighter than TB is

explained by the presence of user think times. Neither network delays nor the location of the monitor can

provide an alternative explanation of the difference, since both factors have exactly the same impact on

both distributions. The bodies Leipzig-II’s TA and TB distributions are substantially heavier than the

corresponding bodies of the other two traces. This could be due in part to network-level components of

these distributions. Since Leipzig is in Europe, clients in the Leipzig-I trace suffer far longer round-trip

times to US servers than clients found in the UNC and Abilene-I traces.

Unlike the bodies, the tails of the distributions shown in Figure 3.27 do not show the same difference

between Leipzig-II and the other traces. This is consistent with the expectation that these longer quiet

times are completely dominated by source-level behavior, and not by the impact of network location

(i.e., Europe vs. U.S.A.). We observe that Abilene-I’s and UNC’s TB are both substantially heavier

than Leipzig-II’s TB. Also, Leipzig-II’s TA becomes lighter than Abilene-I’s TA for quiet times above

11 seconds. Interestingly, we also find a similar shape for the two heaviest tails, Abilene-I’s and UNC’s

TB, which came from traces of very different durations (2 hours vs. 1 hour). This provides strong

evidence that trace boundaries are not introducing artifacts in our characterization of inter-ADU quiet

times, despite the hard upper limit that trace duration imposes on quiet time duration.

Figure 3.28 shows the distribution of extra quiet times between the last ADU in a connection and

TCP’s connection termination. In the UNC and Abilene-I traces, 84% of the connections had extra quiet

times below 1 second. The extra quiet time is actually zero for 83% of the cases, where the last segment

of the last ADU had the FIN flag enabled. Leipzig-II showed an even higher percentage, 65%, of long

quiet times after the last ADU. In all cases, we find large jumps in the probability for some values (e.g.,

7, 11 and 15 seconds). Moreover, the tails are surprisingly long. Since most connections transfer small

amounts of data, this high frequency of extra quiet times has an important impact on the lifetimes of

TCP connections observed from real links, and play an important role in realistic traffic generation.

78

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Duration of Quiet Time in Seconds

UNC
Abilene-I
Leipzig-II

Figure 3.28: Distribution of the durations of the quiet times between the final ADU and connection
termination.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

UNC A
Abilene-I A
Leipzig-II A

UNC B
Abilene-I B
Leipzig-II B

Figure 3.29: Bodies of the A and B distribu-
tions for the concurrent connections in Abilene-
I, Leipzig-II and UNC 1 PM.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

100000 1e+06 1e+07 1e+08 1e+09 1e+10

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

UNC A
Abilene-I A
Leipzig-II A

UNC B
Abilene-I B
Leipzig-II B

Figure 3.30: Tails of the A and B distribu-
tions for the concurrent connections in Abilene-
I, Leipzig-II and UNC 1 PM.

Concurrent Connections

Concurrent connections exhibit substantially different distributions. Figure 3.16 showed distributions

of a-type ADU sizes with bodies that were clearly lighter than those of b-type ADU sizes. In contrast,

Figure 3.29 shows that concurrent connections made use of larger a-type ADUs, and that the shapes of

A and B are not consistent across sites. Abilene-I does not show any significant difference between A

and B, while Leipzig-II and UNC distributions do show a heavier B. The tails of these distributions

shown in Figure 3.30 are as heavy as those for sequential connections, with the same three distributions

(Abilene-I’s A and B and UNC’s B) having much longer tails that the other three. This phenomenon is

far more striking for concurrent connections.

The distributions of quiet time durations shown in Figure 3.31 reveal that concurrent connections do

79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

UNC TA
Abilene-I TA
Leipzig-II TA

UNC TB
Abilene-I TB
Leipzig-II TB

Figure 3.31: Bodies of the TA and TB distribu-
tions for the concurrent connections in Abilene-
I, Leipzig-II and UNC 1 PM.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

UNC TA
Abilene-I TA
Leipzig-II TA

UNC TB
Abilene-I TB
Leipzig-II TB

Figure 3.32: Tails of the TA and TB distribu-
tions for the concurrent connections in Abilene-
I, Leipzig-II and UNC 1 PM.

not exhibit the clear separation between TA and TB that was observed for the sequential connections

in Figure 3.26. This is consistent with the motivations for using concurrent data exchanges given in

section 3.2. Connections that use concurrency to improve throughput by keeping the pipeline full do so

to reduce the impact of user delays and client processing, thereby making TB lighter. Connections used

by applications that are naturally concurrent should not exhibit any systematic difference between TA

and TB distributions. Note that the minimum quiet time was 500 milliseconds, which was the duration

of our threshold separating ADUs in concurrent connections.

The TA distribution for concurrent connections is significantly heavier for UNC. This suggests the

presence of a concurrent application at UNC that is rather asymmetric and that is not so common in

Abilene-I and Leipzig-II. The tails of the TA and TB distributions for concurrent connections shown in

Figure 3.32 exhibit similar shapes and lengths to those found for sequential connections.

3.5.2 Time-of-Day Variability and Workload Directionality

The previous analysis illustrated the variability of the a-b-t distributions when several sites are

compared. It also pointed out a number of features that are consistent with the communication patterns

that motivate our models. TCP workloads at the same site can also exhibit significant differences, as

the set of dominant applications changes throughout the day. For example, we expect to find substantial

traffic from applications that are used for study and work activities (e.g., e-business, research digital

libraries) from 8 AM to 5 PM in the academic environment. In contrast, our guess is that traffic from

gaming and other leisure time applications should be more common after 5 PM, mostly coming from

80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of Data Unit in Bytes

UNC Initiated 1 AM
UNC Initiated 1 PM

UNC Initiated 7:30 PM
Inet Initiated 1 AM
Inet Initiated 1 PM

Inet Initiated 7:30 PM

Figure 3.33: Bodies of the A distributions for
UNC 1 AM, UNC 1 PM and UNC 7:30 PM.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of Data Unit in Bytes

UNC Initiated 1 AM
UNC Initiated 1 PM

UNC Initiated 7:30 PM
Inet Initiated 1 AM
Inet Initiated 1 PM

Inet Initiated 7:30 PM

Figure 3.34: Bodies of the B distributions for
UNC 1 AM, UNC 1 PM and UNC 7:30 PM.

the dorms where students live. This change in the mix of applications should have an impact on the

source-level properties of the traffic.

Another important dimension of traffic variability that was not considered in the previous section was

the fact that traffic may be asymmetric. For example, traffic created by UNC clients is representative

of the network activity of a large population of users (30,000) that can access any kind of service on

the Internet. On the contrary, traffic created by clients from outside UNC is representative of the type

of services that an academic institution offers to the rest of the Internet. This dichotomy should have

an impact on the source-level properties of the traffic, as traffic from UNC’s connection initiators is

expected to be driven by a rather different mix of applications than that of UNC’s connection acceptors.

Figure 3.33 provides a first illustration of the impact of these two kinds of variability on source-

level properties. The plot shows A distributions for sequential connections observed at UNC during

three different intervals (1 to 2 AM, 1 to 2 PM, and 7:30 to 8:30 PM). The plots separate data from

connections initiated by UNC clients (labeled “UNC Initiated”) and data from connections initiated

by clients outside UNC (labeled “Inet Initiated”). The significant difference between A distributions

for UNC initiators is in sharp contrast with the quite similar A distributions for UNC acceptors. This

shows that time-of-day variation is substantial for connections initiated at UNC, but not for connections

initiated outside UNC. This is consistent with the observation that UNC services, such as the large

software repository ibiblio.org, are available 24 hours a day, and they serve clients from different

parts of the world throughout the entire day. On the contrary, the activities of UNC clients are a

function of campus activity and its evolution along a diurnal cycle. The distributions of b-type ADU

sizes in Figure 3.34 also reflect this dichotomy. The B distributions on UNC initiated connections for

81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

UNC Initiated 1 AM
UNC Initiated 1 PM

UNC Initiated 7:30 PM
Inet Initiated 1 AM
Inet Initiated 1 PM

Inet Initiated 7:30 PM

Figure 3.35: Bodies of the TB distributions for
UNC 1 AM, UNC 1 PM and UNC 7:30 PM.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

UNC Initiated 1 AM
UNC Initiated 1 PM

UNC Initiated 7:30 PM
Inet Initiated 1 AM
Inet Initiated 1 PM

Inet Initiated 7:30 PM

Figure 3.36: Tails of the TB distributions for
UNC 1 AM, UNC 1 PM and UNC 7:30 PM.

the 1 AM and 1 PM traces form an envelope around the other distributions, while the three distributions

for non-UNC initiators are remarkably similar.

Figure 3.35 serves to illustrate the impact of monitor location on the measurement of quiet times.

UNC traces were collected on the border link between UNC and the rest of the Internet. This means

that the monitoring occurred very close, in terms of delay, to UNC clients and UNC servers. Going

back to the diagram in Figure 3.10, this means that connections initiated from UNC are seen from the

first monitoring point (very close to the client), while those initiated from outside UNC are seen from

the second monitoring point (very far from the client). As a consequence, TB distributions from UNC

clients, which measure the time between the end of a response bj and the beginning of a new request

aj+1, are observed much closer to the clients, and are characterized very accurately. TB distributions

from non-UNC clients are measured much further from the client, so they tend to overestimate true

quiet times. As discussed before, this type of inaccuracy is a function of round trip time. This is clearly

shown in Figure 3.35, where TB distributions from UNC initiators are much lighter than those for non-

UNC initiators for quiet times below 1 second. As quiet times get larger and larger, the inaccuracy due

to the placement of the monitoring point becomes less and less significant. The crossing points of the

distributions between 500 milliseconds and 1 second suggest that the characteristics of applications and

user behavior start to dominate measured quiet times above a few hundred milliseconds.

The same observations regarding the impact of the monitoring point also holds for the TA distribu-

tions in Figures 3.37 and 3.38. Here the effect of the monitoring point is reversed: taj is observed far

from the client for UNC initiated connections, and close to the client for non-UNC initiated connections).

Time-of-day effects are less clear in Figure 3.35. If we look at quiet times above 1 second (the relevant

82

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

UNC Initiated 1 AM
UNC Initiated 1 PM

UNC Initiated 7:30 PM
Inet Initiated 1 AM
Inet Initiated 1 PM

Inet Initiated 7:30 PM

Figure 3.37: Bodies of the TA distributions for
UNC 1 AM, UNC 1 PM and UNC 7:30 PM.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

UNC Initiated 1 AM
UNC Initiated 1 PM

UNC Initiated 7:30 PM
Inet Initiated 1 AM
Inet Initiated 1 PM

Inet Initiated 7:30 PM

Figure 3.38: Tails of the TA distributions for
UNC 1 AM, UNC 1 PM and UNC 7:30 PM.

ones), we can see that the distributions for 1 PM and 7:30 PM are quite similar for both directions,

while those for 1 AM are lighter and not consistent with each other (especially for UNC acceptors). This

is also true for the tails of these distributions shown in Figure 3.36 for quiet times below 500 seconds.

The tails of the TA distributions in Figure 3.38 do not show any consistent pattern (i.e., no grouping

based on time-of-day or directionality). They are also somewhat lighter than the TB distributions.

3.6 Summary

This chapter presented our method for describing source-level behavior in an abstract manner using

the a-b-t model . The basic observation behind this model is that the job of a TCP connection is to

transfer one or more application data units (ADUs) between two network endpoints. TCP is sensitive

to the sizes of these ADUs, which determine the number of segments required to transfer them, but it

is insensitive to the actual semantics of each ADU. Consequently, we proposed to describe the source-

level workload of TCP connections in terms of ADUs, characterizing their number, order, and sizes.

Additionally, we also observed that applications may remain inactive during long periods of time (e.g.,

during user think times), which often results in TCP connections that last far longer than required to

transfer their ADUs. This motivated us to also incorporate quiet times into our generic descriptions

of source-level behavior. We formulated these ideas into the a-b-t model, which describes source-level

behavior in abstract terms common to all applications. The model distinguishes a-type ADUs, sent from

the connection initiator to the connection acceptor, and b-type ADUs, sent in the opposite direction the

connection. It also distinguishes between quiet times due to inactivity on the initiator endpoint and due

to inactivity on the acceptor endpoint.

83

Our analysis of TCP connections observed on real Internet links revealed two types of source-level

behavior, which motivated us to develop two different versions of our a-b-t model. Most TCP connections

exchange ADUs in a sequential, alternating manner, where a-type ADUs usually play the role of request

from client and b-type ADUs usually play the role of responses from servers. We describe this first type

of source-level behavior using the sequential version of our a-b-t model, which consists of a sequence

of epochs, where each epoch captures one exchange of ADUs (i.e., one a-type ADU and one b-type

ADU). The rest of the TCP connections exhibit data exchange concurrency , where their endpoints send

at least one pair of ADUs simultaneously. We describe this second type of source-level behavior using

the concurrent version of our a-b-t model, where the ADUs and the quiet times from each endpoint are

described independently. The examples from real applications examined in this chapter demonstrated

the ability of the a-b-t model to provide a detailed description of source-level behavior for both sequential

and concurrent data-exchanges. This means that our approach is able to characterize the source-level

behavior of entire traffic mixes without any need to understand the specific semantics of each individual

application present in the mix.

A fundamental strength of abstract source-level modeling is the possibility of acquiring data from

packet header traces in an efficient manner. This is critical to make the approach widely applicable.

Packet header traces do not contain any application-level payload, so they are easy to anonymize simply

by replacing IP addresses. As a consequence, many organizations have made packet header traces of

their Internet links public [nlab]. We proposed a data analysis algorithm that can transform the set

of segment headers observed for each connection in a trace into an a-b-t connection vector. The cost

of this algorithm is O(sW), where s is the number of segments and W the maximum window size.

The algorithm relies on the concept of logical data order (i.e., the order of data as understood by the

application layer) to robustly handle segment reordering and retransmission. This approach enables us

to measure the real size of ADUs at the application level, to distinguish between source-level quiet times

and quiet times due to losses, and to identify data exchange concurrency without false positives. We

validated this algorithm using synthetic applications, studying the impact of the sizes of socket reads

and writes, delays between socket operations and packet loss. The results demonstrated that our data

acquisition algorithm is very accurate. Our validation also studied the accuracy of our data acquisition

when our basic algorithm is extended with a quiet time threshold to separate consecutive ADUs flowing

in the same direction. Even in this case, we only uncovered minor inaccuracies in the measured inter-

ADU quiet times when arbitrary delays between socket reads are used and when connections suffered

from packet loss.

84

We concluded the chapter with a statistical analysis of the a-b-t connection vectors in five packet

header traces. Three of these traces came from our own data collection effort at the University of North

Carolina at Chapel Hill, and the other two traces, Leipzig-II and Abilene-I, came from NLANR’s public

repository of packet header trace. Before we presented the analysis, we pointed out the need to filter

out the following two types TCP connections:

• Connections for which no observed segment carried application data, and therefore had no ADUs.

They corresponded to failed attempts to establish a TCP connection (e.g., due to closed ports),

denial-of-service attacks (e.g., SYN attacks), and port scanning activity. These connections were

very numerous, but they carried an insignificant fraction of the total traffic in each trace. Properly

characterizing these “ADU-less” connections is outside the scope of this dissertation.

• Connections for which segments are observed in only one direction. We found a significant number

of unidirectional connections only in the case of Abilene-I, since this trace was collected traffic in

a backbone network where asymmetric routing was common. Distinguishing between sequential

and concurrent connections require to observe both directions of a connection, so we ignored

unidirectional connections in our later analysis and traffic generation.

In addition, our statistical analysis of the traces considered only fully-captured TCP connections, those

for which we observed both the segment performing connection establishment and connection termi-

nation. We therefore ignored partially-captured connections, which contained only partial information

about source-level behavior. Our results considered sequential and concurrent connections separately.

We can highlight the following observations from these results:

• Every trace showed a small fraction of concurrent connections, at most 3.6%, but they account

for a far more substantial fraction of the total bytes, between 18% and 32%. This is consistent

with our observation that concurrency can increase throughput, so it is often implemented in bulk

applications that transfer large amounts of data.

• Regarding the bodies of distributions of ADU sizes, sequential connections showed a substantial

difference between a-type and b-type ADUs. The sizes of 90% of the a-type ADUs were at most

1,000 bytes, while the sizes of 90% of the b-type ADUs were at most 10,000 bytes. The observed

differences across sites paled in comparison to this phenomenon. On the contrary, the tails of the

distributions appeared similar for a-type and b-type ADUs, being consistent with heavy-tailness

in both cases. Concurrent connections did not show a systematic difference between a-type and

85

b-type ADUs, but their size distributions varied widely for the three sites and also exhibited heavy-

tailness. Another interesting observation is that between 80% and 90% of the bytes were carried

in ADUs whose size was above 10,000 bytes.

• Regarding the distribution of the number of epochs, we found a large fraction of connections,

between 57% and 65%, with only one epoch. However, these connections accounted for a far

smaller fraction of the total bytes, between 22% and 38%. Most of the remaining connections had

a moderate number of epochs, between 2 and 10. Connections with tens or hundreds of epochs

represented only 5% of the connections, but they carried 30% to 50% of the bytes.

• Our joint analysis of ADU size and number of epoch revealed a complex inter-dependency. The

average amount of data in an epoch and the median size of ADUs showed substantial variability

for different values of the number of epochs in a connection, without any apparent pattern. In

addition, the results of the joint analysis are very different across sites. It does not seem possible

to develop a simple parametric model for these data.

• Regarding the bodies of the distributions of quiet times, sequential connections showed a larger

fraction of durations above 1 second for quiet times on the client side, between a b-type ADU and

the a-type ADU that follows it. Quiet times on the server side, between an a-type ADU and the

following ADU, were less substantial but also significant. This motivated us to incorporate server-

side quiet times on our model. Both distributions showed substantial tails. The difference between

the two distributions of quiet time durations appear less significant for concurrent connections.

• A significant percentage of connections, between 65% and 83%, showed a quiet time between the

last ADU and TCP’s connection termination with a duration above 1 second. This quiet time often

increased the duration of the connection dramatically, since connections with little data completed

their data transfer very quickly, but remained idle waiting to be closed. This finding justified the

addition of a final quiet time duration to our a-b-t model.

• Our comparison of the distributions from the three UNC traces, which were collected at three

different times of the day, revealed clear differences in the data. These differences are however less

dramatic than those observed when traces from three different sites are compared.

86

CHAPTER 4

Network-Level Parameters and Metrics

If you are distressed by anything external, the pain is not due to the thing itself, but to
your estimate of it; and this you have the power to revoke at any moment.

— Marcus Aurelius (121–180)

Reality continues to ruin my life.

— Bill Watterson (1958–), Calvin and Hobbes

The workload of TCP connections represents the demands of applications for sending and receiving

data in a reliable, ordered, and congestion-responsive manner. How well TCP can satisfy these demands

depends on the conditions of the network path between the two endpoints of each TCP connection, and

the way TCP reacts to these conditions. An obvious example of a network condition that affects TCP

is congestion that leads to segment loss. When a data segment is lost, TCP must retransmit it, and this

implies some reduction in performance (e.g., throughput) as the same data segment (rather than a new

one) has to be sent again. In addition, TCP considers loss as an indication of network congestion, and

reacts by reducing its sending rate. Different versions of TCP implement different ways of adjusting this

sending rate. This means that the characteristics of the set of segments in a TCP connection are not

just a function of the source-level behavior of the endpoints. This fact will have profound implications

for the validation of our approach to synthetic traffic generation.

Intuitively, demonstrating that synthetic traffic is “realistic” must be based on a comparison of the

statistical properties of real and synthetic traffic. If these properties are reasonably approximated, we can

argue with confidence that the traffic generation method and its underlying statistical model provide

an adequate foundation for experimental networking research. The comparison can be performed at

two levels. First, we can compare source-level properties using the a-b-t modeling approach (see for

example section 3.5). Second, we can compare network-level properties, i.e., properties of the actual

segments that make up individual connections in real and generated traffic. The material in this chapter

is concerned with developing methods for making this latter comparison meaningful.

Since network conditions have an important impact on TCP connections, comparing real and syn-

thetic traffic at the network-level is difficult if network conditions are not incorporated to some extent

into the traffic generation system. For example, if we generate traffic that is intended to resemble that

of some real link, and connections on this link experience substantial loss rates, the characteristics of the

synthetic traffic would be rather different if the synthetic traffic did not experience comparable loss rates.

Otherwise, the synthetic traffic would experience higher transfer rates, shorter durations, etc. The first

part of this chapter considers methods for characterizing three important, and perhaps the dominant,

network-level properties of TCP connections: round-trip times, receiver window sizes, and loss rates.

These three properties will be incorporated in our traffic generation method as input parameters, and

will make synthetic traffic more comparable to real traffic. Additionally, we also examine the properties

of a number of real traces to illustrate the wide range of network conditions in which TCP operates, and

how this range changes from one network link to another.

The second part of the chapter considers the actual problem of comparing traffic at the network-level.

The research literature has identified a number of statistical properties of traffic that can serve as metrics

for assessing the realism of synthetic traffic. We describe these properties and consider their application

in the context of comparing traffic traces. We also examine a number of real traces in light of these

metrics. Our analysis reveals important differences between the traces, and uncovers some dependencies

between network-level metrics and types of source-level behavior.

4.1 Network-level Parameters

4.1.1 Round-Trip Time

The Round-Trip Time (RTT) between two network hosts is defined as the time required to send

a packet from one host to another plus the time required to send a packet in the reverse direction.

These two times are often very similar, but may sometimes vary considerably (e.g., in the presence of

asymmetric routing). In general, round-trip times are not constant, since queuing delays, switching

fabric contention, route lookup times, etc., vary over the lifetime of a connection.

88

Impact of Round-Trip Time

Round-trip times play a very important role in TCP connections. As indicated in Chapter 3, the

exchange of a request ADU and its response ADU (i.e., an epoch) in a TCP connection requires at least

one round-trip time. This is independent of the amount of data exchanged. In addition, the speed at

which data can be delivered (known as throughput1), is also a function of the round-trip time of the

TCP connection.

The minimum time between the sending of a data segment and the arrival of its corresponding

acknowledgment is exactly one round-trip time. Without TCP’s window mechanism, TCP would only

be able to send one segment per round-trip time, since it would have to wait for the acknowledgment

before sending the next data segment. Therefore, peak throughput would be given by the maximum

segment size S divided by the round-trip time R. This would imply that the longer the round-trip

time, the lower the throughput S/R of the connection would be. In order to increase performance, a

TCP endpoint can send a limited number of segments, a window , to the other endpoint before receiving

an acknowledgment for the first segment. The number of segments W in the window gives the peak

throughput of a TCP connection, W∗S
R

. This peak throughput can be lower if the path between the

two endpoints has a capacity C that is lower than W∗S
R

, so the peak throughput of a TCP connection is

given by min(W∗S
R

, C). This implies that if W is not large enough to fill the available capacity C, R is

the limiting factor in the peak throughput of a TCP connection.

A new TCP connection is not allowed to reach its peak throughput until it completes a “ramp-up”

period known as slow start [Pos81]. The throughput of TCP during slow-start is also highly dependent

on round-trip time. At the start of each connection, TCP does not make use of the entire window to

send data, but rather probes the capacity of the network path between the two endpoints by sending

an exponentially increasing number of segments during each round-trip time. This normally means that

TCP sends only 1 segment in the first round-trip time, 2 in the second one, 4 in the third one, and so

on, doubling the number of segments after each round-trip time until this number reaches a maximum

of W segments. The throughput of the slow-start phase is therefore a function of round-trip time and

maximum segment size, but it depends little on receiver window size and capacity. For example, an

ADU that fits in 4 segments, requires 3 round-trip times to be transferred in the slow-start phase (one

segment is sent in the first round-trip time, two in the second one, and one more in the final one), so

1More precisely, throughput is the rate of transfer taking into account not only application data but also control headers
added by TCP and lower network layers. A related concept, goodput, is the rate of transfer of application data, i.e., TCP
payload. This distinction is important, but in the discussion above, throughput and goodput are affected similarly by
round-trip times, so we simply talk about throughput.

89

the throughput of the connection is 4S
3R

. For common values of R and S, S = 1460 bytes and R = 100

milliseconds, the throughput would be 156 Kbps. This same ADU sent later in the connection using

a single window would achieve a much higher throughput (e.g., the four segments could be sent back

to back, so they would reach the destination after only one half the round-trip time, R
2 , achieving a

throughput of 8S
R

= 934 Kbps).

Passive Estimation of Round-Trip Times

The dependency between TCP throughput and round-trip time implies that the distribution of round-

trip times of the TCP connections found on a link has a substantial impact on the characteristics of a

trace. If we intend to compare the throughputs of connections in traces from real links with those in

synthetic traces, traffic generation must employ similar round-trip times. This requires us to be able

to extract RTTs from a trace by analyzing packet dynamics. Extracting round-trip times from packet

traces has received only limited attention in the literature [JD02, AKSJ03]. Nonetheless we can refine

some of the existing ideas to obtain the distribution of round-trip times of connections in a trace in a

manner that is useful for traffic generation.

Before we describe several methods for characterizing round-trip times, it is important to point out

that the round-trip time of a TCP connection is not a fixed quantity. The time required for a segment to

travel from one endpoint to another has several components. Transmission and propagation delays are

more or less constant for a given segment size, but queuing delays, medium access contention, and router

and endpoint processing, introduce variable amounts of extra delay. The TCP segments observed in our

traces are exposed to these delays, whose variability is not always negligible, as our later measurement

results illustrate. In summary, the segments of a TCP connection are exposed to a distribution of

round-trip times, rather than to a fixed round-trip time.

We can think about the segments of a TCP connection as probes that sample the dynamic network

conditions along their path, experiencing variable delays. As shown in the previous chapter, most TCP

connections carry a small amount of data, providing only a few samples of these underlying conditions.

This makes it very difficult to fully characterize the distribution of round-trip times experienced by an

individual connection using only passive measurement methods (i.e., only by looking at packet headers).

In addition to the low number of samples per connection, TCP’s delayed acknowledgment mechanism

adds extra delays to some samples. This introduces even more variability, this time unrelated to the

path of the connection. As we discuss below, the presence of delayed acknowledgments makes statistics

90

���������
s1

�
	���
����������R

Monitoring
P oint 1

Monitoring
P oint 2

��������� R

Initiator
Endpoint

Acceptor
Endpoint

� �! �"$#

%'&)(+*), s2 -
.
/ *�, s1

0)132 � �
s2

Figure 4.1: A set of TCP segments illustrating RTT estimation from connection establishment.

(such as the mean and standard deviation) computed from RTT samples, grossly overestimate the true

mean and standard deviation of the underlying distribution of round-trip times. In our work, we favor

more robust statistics, such as the median, or the minimum, which provide a good way of characterizing

the non-variable component of a connection’s round-trip time. For simplicity, our traffic generation will

simulate the minimum round-trip time observed for each connection.

The SYN Estimator

The simplest way of estimating the round-trip time of a connection from its segment header is to

examine the segments sent by the initiator endpoint during connection establishment. The use of this

SYN estimator is illustrated in Figure 4.1. The initial SYN segment sent from the initiator to the

acceptor is supposed to be immediately acknowledged by a SYN-ACK segment sent in the opposite

direction. The initiator endpoint would then respond to the SYN-ACK segment2 with an ACK segment.

The initiator may or may not piggy-back data on this segment, but this does not affect RTT estimation

significantly. The time between the arrival of the SYN segment and the arrival of the ACK segment is the

round-trip time R of the connection (more precisely, a sample of the round-trip time). Measuring R using

the departure times of the SYN and the ACK segments from the initiator endpoint gives approximately

the same result as measuring R using the arrivals of these segments at either the monitoring point or the

connection acceptor. In general, the SYN estimator is a good indicator of the minimum round-trip time,

i.e., total transmission and propagation delay. This is because TCP endpoints respond immediately3

to connection establishment segments, and also because the small packets used by the SYN estimator

are less likely to encounter queuing delays that the larger ones found later in the connection. The SYN

2For simplicity, our illustrations use acknowledgment numbers that refer to the cumulative sequence number accepted
by the endpoint, which is one unit below the actual acknowledgment number stored in the TCP header [Pos81].

3Endpoints are not required to behave in this manner by any RFC, but it makes little sense to delay the acknowledging
of SYN segments. On the contrary, delaying the acknowledging of data segments gives the endpoints a chance to receive
a second data segment and acknowledge both data segments using a single acknowledgment.

91

Monitoring
P oint 1

Monitoring
P oint 2

Initiator
Endpoint

Acceptor
Endpoint

R
R

���������
s1

	�
���
�������������������

 !�#"%$'&

(*)�+�,�- s2 .�/ 0 ,1- s1

2�354 � �
s2

������� �
s1

6�� " $'&

Monitoring
P oint 1

Monitoring
P oint 2

Initiator
Endpoint

Acceptor
Endpoint

R

R

7*8!9;:=<
s1

>�?A@;BDC�EGFDH
I

J�KML�N�O

PRQ�SUT'V

W*X*Y=Z5[s2 \
]_^5`1a s1

ackno s2

b*c�d=e5f
s1

g�h�iUj'k

Figure 4.2: Two sets of TCP segments illustrating RTT estimation ambiguities in the presence of
loss (left) and early retransmission (right) in connection establishment.

estimator has been a popular means of estimated round-trip times [AKSJ03, CCG+04].

The SYN estimator has a number of shortcomings. First, the estimator provides a single sample of

the round-trip time, which may be a poor representative of the average round-trip time of the connection.

Second, partially-captured connections in a trace may not include connection establishment segments,

so the SYN estimator cannot be used to determine their round-trip times. Third, the round-trip time

of a connection with a retransmission of the SYN segment (or of the SYN-ACK segment), cannot be

estimated with confidence, since the coupling of the SYN and the ACK segments becomes ambiguous.

The problem is that the monitor may see two instances of the SYN segment, and either one could be

coupled with the ACK for the purpose of computing the RTT. This difficulty is illustrated in Figure

4.2. The left side of the figure shows an example of connection establishment in which the first SYN

segment is lost. In this case R is the time between the arrival of the second SYN segment and the

arrival of the ACK segment, and not the time between the first SYN segment and the arrival of the

ACK segment. However, it is not always correct to couple the last retransmission of the SYN with the

ACK, and this is illustrated in the right side of the figure. The diagram shows a connection with such

a large R that the initiator endpoint times out before the receipt of the SYN-ACK and sends an early

(i.e., unnecessary) retransmission of the SYN before the SYN-ACK reaches the initiator. In this case, R

should be computed as the difference between the arrival times of the first SYN and the ACK, and not

between the arrival times of the second SYN and the ACK. Note that standard TCP implementations

time out and retransmit SYN segments after 3 seconds without receiving an acknowledgment [APS99].

The two cases result in exactly the same sequence of segments observed at the monitoring point, so

it is not generally possible to accurately choose the right SYN to couple with the corresponding ACK

92

Monitoring
P oint 1

Monitoring
P oint 2

Initiator
Endpoint

Acceptor
Endpoint

R1

R2

R′1

R′2

���������
s1

	�

����� � ����� � �
s2� ����� �

s3

�

����� � ����� � �
s2

��������� ��
!�"�# s3

$ �&% �(' �)�*�+ " # s4 ��
!�"�# s3

� ����� �
s5

,-
 ����� � ����� � �
s4

Figure 4.3: A set of TCP segments illustrating RTT estimation using the sum of two OSTTs.

segment by looking only at the sequence of segments [KP88a, Ste94].

The early retransmission of SYN segments when the RTT is greater than 3 seconds implies that the

simple SYN estimator, at least in this basic form, cannot be used to study the tail of the round-trip time

distribution (this issue has been overlooked in the literature). In theory, one could disambiguate the

case of a timed-out SYN-ACK using the observation that SYN segments are retransmitted only after 3

seconds without receiving the SYN-ACK [Bra89]. However, our empirical observations show that this

heuristic is unreliable as the timing of arrivals is imprecise, and not all TCP implementations seem to

use the 3-second timeout properly. Detection of an unexpected retransmission of the SYN-ACK (or the

ACK) can also be used to develop a heuristic, but cases with multiple losses can be very complicated to

disambiguate.

The OSTT Estimator

A second technique for estimating round-trip times is illustrated in Figure 4.3. The location of the

monitor divides the path of a connection into two sides, and we can estimate the One-Side Transit Time

(OSTT) independently for each side. The sum of the two OSTTs gives an estimate of the round-trip

time of the connection. The idea is that the arrival times of a data segment and its acknowledgment

segment at the monitor provides an estimation of the OSTT from the measurement point to one of the

endpoints. Round-trip time estimation using the OSTT method requires the collection of one or more

samples of the OSTT between the initiator and the monitoring point, and one or more samples of the

OSTT between the acceptor and the monitoring point. In Figure 4.3, a sample R1 of the OSTT for

the right side of the path (i.e., OSTT between the acceptor and the monitoring point) is given by the

difference in the arrival times of segments 2 and 3. A sample R2 of the OSTT for the left side of the

93

path (i.e., between the initiator and the monitoring point) is given by the difference in the arrival times

of segments 4 and 5. Thus, a sample of the full round-trip time R is given by R1 + R2. One way of

seeing this graphically is to do the mental exercise of shifting the monitoring point toward the initiator.

As we do this, the R1 increases, while R2 decreases. When the monitoring point reaches the initiator

endpoint, R1 is exactly the round-trip time of the connection, and R2 is zero.

The OSTT-based estimation of the RTT is independent of the location of the monitoring point. For

example, the arrival of segments at the second monitoring point in Figure 4.3 provides a sample R′
1 +R′

2

which is equal to R1 +R2. This is a substantial improvement over existing methods, since it implies that

we can perform RTT estimation for connections observed at any point on their path. Previous work,

such as Aikat et al. [AKSJ03], constrained itself to traces collected very close the edge of the path, so

they could assume that the delay between the monitoring point and local networks was minimal. This

results in an estimate in which only R1 is computed under the assumption that R2 is very small. The

use of the sum of the OSTTs is more flexible, since it makes it possible to extract RTTs from any trace,

and not just edge traces. This allowed us to analyze a backbone trace like Abilene-I, making our traffic

analysis and generation technique more widely applicable.

There are, however, a number of difficulties with OSTT-based round-trip time estimation. A first

problem is that each pair of segments provides a different estimation of the OSTT (due to differences in

queuing delay and other sources of delay variability), so we have to decide how to combine the OSTT

samples from one side of the connection with those from the other side. In other words, each connection

provides a set of OSTT samples for one side, {R11, R12, . . . , R1n}, and another set of OSTT samples for

the other side, {R21, R22, . . . , R2m}, where n ≥ 0 and m ≥ 0 are not necessarily equal. The question is

then how to combine these samples into a single estimate of R, which we will call R̂. If we assume low

variability, we could simply sum the means of the two sets of estimates,

R̂ =

∑n
i=1 R1i

n
+

∑m
i=1 R2i

m
. (4.1)

However, as we discuss in the next section, the sum of means can introduce substantial inaccuracy due

to TCP’s delayed acknowledgment mechanism.

A second problem is that the sum of OSTT samples requires at least one sequence number/acknowledgment

number pair for each side of the connection. Otherwise, one of the sets of OSTT samples is empty, and

we have no information about the delay on one side of the connection. This prevents us from using the

sum of OSTTs estimator for connections that send data only in one direction.

94

Monitoring
P oint 1

Monitoring
P oint 2

Initiator
Endpoint

Acceptor
Endpoint

R1+0.2

R2 R′2

0.2R′1+0.2

���������
s1

�
	���
��
 ����� ���
s2

��������� ���
 �!�" s1

��$ �&% � '�(�) ! " s4 � �
 ! " s1

��� � ���
s3

*�	��
 �
 � ��� � �
s4

Figure 4.4: A set of TCP segments illustrating the impact of delayed acknowledgments on OSTTs.

Finally, we must note that the time between the arrival of a data segment and its first acknowledgment

is not always a good estimator of the OSTT. This is mostly due to two causes: retransmission ambiguity

and delayed acknowledgments. Retransmissions may create ambiguous cases in which we cannot match

the pair of data and ACK segments. This is the well-known retransmission ambiguity problem, which

was first discussed by Karn and Partridge [KP88b] in the context of estimation of TCP’s retransmission

timeout. Whenever a data segment is retransmitted, it is not possible to decide whether to compute

the OSTT using the first or the second instance of the data segment. These data segments cannot

therefore be used to obtain a new OSTT sample. This retransmission ambiguity is similar to the SYN

retransmission problem shown in Figure 4.2.

Delayed acknowledgments can add up to 500 milliseconds4 [Bra89] of extra delay in the OSTT

estimates, whenever a segment is not acknowledged immediately. Figure 4.4 illustrates this problem.

The right side OSTT is 200 milliseconds larger than it should be due to the delayed sending of the

acknowledgment in segment 2. The distortion of OSTT samples caused by delayed acknowledgments is

pervasive, since the number of segments in a window is often an odd number, and TCP implementations

are allowed to keep (at most) one unacknowledged segment. An odd number of segments in a window

means that the last segment does not trigger an immediate acknowledgment, which adds an extra delay

to its corresponding sample. Furthermore, performance enhancement heuristics implemented in modern

TCP stacks often add PUSH flags to TCP segments carrying data in the middle of an ADU, and

this flag forces the other endpoint to immediately send an acknowledgment [Pos81]. This creates even

more cases in which the last segment of the window has to be acknowledged separately using a delayed

acknowledgment. The empirical results presented below illustrate the impact of this problem.

4Typical values are between 100-200 milliseconds.

95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Real Distribution
SYN Estimator

Sum-of-Minima Estimator
Sum-of-Medians Estimator

Sum-of-Means Estimator
Sum-of-Maxima Estimator

Figure 4.5: Comparison of RTT estimators for
a synthetic trace: no loss and enabled delayed
acknowledgments.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Real Distribution
SYN Estimator

Sum-of-Minima Estimator
Sum-of-Medians Estimator

Sum-of-Means Estimator
Sum-of-Maxima Estimator

Figure 4.6: Comparison of RTT estimators for
a synthetic trace: no loss and disabled delayed
acknowledgments.

Validation of Round-Trip Time Estimators

We evaluated the round-trip time estimation techniques proposed above using synthetic traffic in a

testbed where RTTs could be controlled precisely. Figure 4.5 shows the results of a first experiment,

in which a uniform distribution of round-trip times between 10 and 500 milliseconds was simulated

using a modified version of dummynet [Riz97]. Each connection had exactly the same round-trip time

throughout its lifetime, so every one of its segments was artificially delayed by the same amount. During

the experiment, a large number of single epoch connections was created. The sizes of a1 and b1 for each

connection were randomly sampled from a uniform distribution with values between 10,000 and 50,000

bytes. We collected a segment header trace of the traffic and applied the round-trip time estimation

techniques described above. Figures 4.5 and 4.6 compare the results. As shown in Figure 4.5 the SYN

estimator can measure the distribution of round-trip times flawlessly in this experiment. The input

distribution of RTTs (marked with white squares) exactly matches the distribution computed using the

SYN estimator (marked with white triangles).

Figure 4.5 also studies the accuracy of several OSTT-based estimators. As discussed in the pre-

vious section, the analysis of the OSTTs in a TCP connection results in two sets of estimations,

{R11, R12, . . . , R1n} and {R21, R22, . . . , R2m}, for the initiator-to-monitor side and for the acceptor-

to-monitor side respectively. For each connection, the estimated round-trip time R̂ has to be derived

from these collections of numbers. The figure shows the result of computing the distribution of round-

trip times using four different methods of deriving R̂. The first method is the sum-of-minima, where R̂

is the sum of the minimum value in {R11, R12, . . . , R1n} and the minimum value in {R21, R22, . . . , R2m}.

96

In the figure, the sum-of-minima estimation of the distribution of round-trip times (marked with white

circles) is exactly on top of the input distribution, so this estimator is exact. The same is also true when

the sum of medians is used. This shows that there is no significant variability between the minimum

and the median of each set of OSTTs, which is expected in our uncongested experimental environment.

Figure 4.5 shows another two distributions derived from OSTT samples that are less accurate char-

acterizations of the real RTT distribution in the testbed experiment. The distribution (marked with

black triangles) of round-trip times obtained using the sum of the mean of the OSTTs, i.e., Equation

4.1, is slightly heavier that the real distribution of round-trip times. This is due to the presence of a

few OSTT samples that are above the real OSTT of the connection, which skew the mean but not the

median or the minimum. The magnitude of these larger samples is strikingly illustrated by the curve

corresponding to the sum of the maximum OSTTs (marked with back circles). This curve is far heavier

than the previous one, and certainly a poor representative of the original distribution of round-trip times.

The use of the maximum makes this last estimator focus on the largest OSTTs, which are shown to be

quite far from the true values of the OSTT. The exact cause of this inaccuracy is the use of delayed

acknowledgments in TCP, which was illustrated in Figure 4.4. Delayed acknowledgments make some

OSTT samples include extra delays due to the behavior of the TCP stack and not the path between the

endpoints. In particular, the distribution computed using the sum-of-maxima is 200 milliseconds heavier

than the input distribution for most of its values. This is consistent with the default value of FreeBSD’s

delayed acknowledgment mechanism, which is 100 milliseconds. Connections where both the initiator-

to-monitor and theR1 acceptor-to-monitor sets of OSTTs have values from delayed acknowledgments

result in values of R̂ equal to R + 100 + 100 milliseconds.

To confirm this hypothesis, we conducted a second experiment, with exactly the same setup, al-

though this time TCP’s delayed acknowledgment mechanism was completely disabled. The results of

estimating the distribution of round-trip times in this second experiment are shown in Figure 4.6. Every

estimation method is accurate in this case, which proves our hypothesis about the impact of delayed ac-

knowledgments. The conclusion is that the first three estimators are preferable, since they are robust to

the inaccuracy that delayed acknowledgments introduce when measuring round-trip times from segment

header traces. Interestingly, the impact of delayed acknowledgment on passive RTT estimation has been

overlooked in the literature [Ost, AKSJ03, JD02].

The discussion of the RTT estimation methods in the previous section pointed out the need to filter

out samples from retransmissions. The previous two experiments were run in an uncongested testbed,

97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Real Distribution
SYN Estimator

Sum-of-Minima Estimator
Sum-of-Medians Estimator

Sum-of-Means Estimator
Sum-of-Maxima Estimator

Figure 4.7: Comparison of RTT estimators for
a synthetic trace: fixed loss rate of 1% for all
connections.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Real Distribution
SYN Estimator

Sum-of-Minima Estimator
Sum-of-Medians Estimator

Sum-of-Means Estimator
Sum-of-Maxima Estimator

Figure 4.8: Comparison of RTT estimators for
a synthetic trace: loss rates uniformly dis-
tributed between 0% and 10%.

Monitoring
P oint

���������
s1

	�

����� � ����� � �
s2

��������� ��
!�"�# s3

Initiator
Endpoint

Acceptor
Endpoint

Ri

����� ���
s3

$%
 ����� � ����� � �
s2

����� � �
s1

&�

����� � � � � ���
s2

Figure 4.9: A set of TCP segments illustrating an invalid OSTT sample due to the interaction
between loss and cumulative acknowledgments.

where no losses were expected. Since loss is common in the real traces that we study in this dissertation,

we further validated these methods using experiments where dummynet was used to introduce artificial

loss rates under our control. Figure 4.7 compares the six distributions obtained using the six RTT

estimators in an experiment with a fixed loss rate of 1%. Once again the first three estimators measure

the distribution of physical round-trip times accurately, while the sum-of-means and the sum-of-maxima

overestimate the true distribution. The overestimation is even more pronounced in another experiment

in which loss rates were uniformly distributed between 0% and 10%. The estimated RTT distributions

are shown in Figures 4.8 and 4.10. The first figure uses the same range in the x-axis as Figure 4.7,

while the second figure uses a broader range in the x-axis, between 0 and 5 seconds. The first three

estimators are not affected by losses, but the RTT distribution computed by the sum-of-means estimator

is substantially heavier than the original. Similarly, the distribution computed by the sum-of-maxima is

several times larger than the real distribution.

98

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Real Distribution
SYN Estimator

Sum-of-Minima Estimator
Sum-of-Medians Estimator

Sum-of-Means Estimator
Sum-of-Maxima Estimator

Figure 4.10: Comparison of RTT estimators
for a synthetic trace: loss rates uniformly dis-
tributed between 0% and 10%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Real Distribution
SYN Estimator

Sum-of-Minima Estimator
Sum-of-Medians Estimator

Sum-of-Means Estimator
Sum-of-Maxima Estimator

Figure 4.11: Comparison of RTT estimators
for synthetic traces: fixed loss rate of 1%; real
RTTs up to 4 seconds.

The cause of the additional inaccuracy in the sum-of-means estimator is the interaction between losses

and TCP’s cumulative acknowledgment mechanism, which prevent us from disambiguating samples from

retransmissions. This problem is illustrated in Figure 4.9. Segments 1 and 2 with sequence numbers s1

and s2 respectively are sent from the initiator to the acceptor, but segment 1 is lost before the monitor.

Since TCP’s acknowledgments are cumulative, this means that the acceptor endpoint cannot acknowledge

segment 2 alone5. Some time later, after the initiator times out, another segment with sequence number

s1 is sent from initiator to acceptor. Upon its arrival, the acceptor can send a cumulative acknowledgment

with sequence number s2. Using the timestamps of segments 2 and 4, we could compute an OSTT Ri.

However, Ri is clearly not a good representative of the OSTT between the monitor and the acceptor,

and therefore this sample is incorrect. The true value of the OSTT would be the difference between the

timestamps of segments 3 and 4, which is much smaller than Ri. In this example, filtering samples from

retransmitted sequence numbers does not help, since no retransmission was observed for s2. In general,

it is important to either filter out any sample associated with reordering (e.g., segment 3 which has a

lower sequence number than segment 2), or use an estimator, such as the sum-of-medians, that is robust

to the distortion created by samples like Ri. Otherwise, OSTTs can be substantially overestimated, as

illustrated in Figure 4.8.

Figure 4.11 reports on another experiment in which round-trip times were distributed between 10

and 4,000 milliseconds, and the underlying loss rate was 1%. Unlike the previous experiments, the

SYN estimator results in a lighter distribution of round-trip times than the original one. This is due

to the SYN retransmission timeout, which is set to 3 seconds [Bra89]. Connections with a round-trip

5Some implementations send an ACK whenever an out-of-order data segment is received, like Segment 2 in this case,
but this behavior is not mandated by Internet standards. RFC 2581 [APS99] only recommends it.

99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

UNC 1 AM
UNC 1 PM

UNC 7:30 PM
Leipzig-II
Abilene-I

Figure 4.12: Bodies of the RTT distributions
for the five traces.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

Round-Trip Time in Seconds

UNC 1 AM
UNC 1 PM

UNC 7:30 PM
Leipzig-II
Abilene-I

Figure 4.13: Bodies of the RTT distributions
with per-byte probabilities for the five traces.

time above 3 seconds always retransmit their SYN segment, and therefore make their SYN estimator

invalid. Therefore, these connections provide no samples when the SYN estimator is used, resulting

in a distribution of RTTs limited to a maximum of 3 seconds. However, in these cases, the sum-of-

minima and the sum-of-medians estimator were again able to estimate the distribution of round-trip

times accurately.

Measurement Results

Figure 4.12 shows the distributions of round-trip times computed using the sum-of-minima estimator

for the five traces listed in Table 3.1. The first observation is that the distribution of round-trip times is

significantly variable across sites and for different times of the day at the same site. While the majority

of round-trip times are between 7 milliseconds and 1 second for UNC and Leipzig, they are distributed

in a far narrower range, between 20 milliseconds and 400 milliseconds, for Abilene-I. This is probably

due to the fact that the Abilene-I trace was collected in the middle of a backbone network that mostly

carries traffic between US universities and research centers so intercontinental round-trip times are very

uncommon in this trace. This is also a lightly loaded network, so extra delays due to queuing are very

uncommon. Note also that the distributions for UNC become lighter as we consider busier times of the

day. The cause for this is an open question. The distribution for Leipzig-II does not exactly match any

of the ones for UNC, but its body fluctuates within the envelope formed by the UNC distributions.

Figure 4.13 shows the same distributions but the probability of each round-trip time is computed

for each byte rather than for each connection. A probability of 0.5 in this plot means that 50% of the

bytes were carried in connections with a round-trip time of a given value or less. For example, for the

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

SYN Estimator
Sum-of-Minima Estimator
Sum-of-Median Estimator

Figure 4.14: Comparison of the sum-of-minima
and sum-of-medians RTT estimators for UNC
1 PM.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

SYN Estimator
Sum-of-Minima Estimator
Sum-of-Median Estimator

Figure 4.15: Comparison of the sum-of-
minima and sum-of-medians RTT estimators
for Leipzig-II.

UNC 1 AM trace, 50% of the bytes were carried in connections that experienced round-trip times of 110

milliseconds or less. Previously (e.g., Figure 4.12) a probability of 0.5 meant that 50% of the connections

experienced round-trip times of a given value or less. In general, we observe that the smallest round-trip

times are somewhat less significant in terms of bytes than they are in terms of connections. Interestingly,

Abilene-I does not differ much from the other distributions in this case. Another interesting observation

is that a substantial number of bytes in the Leipzig-II traces were carried in connections with round-

trip times between 300 milliseconds and 3 seconds, and this phenomenon is not observed for the other

distributions. This could be explained by the location of this link in Europe, and the fact that it may

carry a significant amount of traffic to distant US servers.

Figures 4.14 and 4.15 compare the variability in the results when different estimators are used for

the same trace. In the UNC 1 PM trace and the Leipzig-II trace, the sum-of-medians estimator results

in a somewhat heavier distribution of round-trip times but maintains more or less the same shape of

the distribution. Given that these estimators were shown to be robust to losses and TCP artifacts in

the previous section, the difference between the sum-of-minima and the sum-of-medians seems due to

true round-trip time variability. While we are not implementing RTT variability within individual TCP

connections in our experiments, it seems possible to reproduce this variability during traffic generation.

This could be achieved by combining the distributions from the sum-of-minima and the sum-of-medians

to give connections more variable round-trip times. For example, given a connection with a sum-of-

minima estimate of R̂min and sum-of-medians estimate of R̂median, let δ = R̂median − R̂min. During

traffic generation, the segments of this connection could be delayed by a random quantity between

R̂median − δ and R̂median + δ, or some variation of this scheme. Note that this basic method needs to

101

be refined to eliminate segment reordering, which would occur frequently with the described approach.

4.1.2 Receiver Window Size

When a segment is received by a TCP endpoint, its payload is stored in an operating system buffer

until the application uses a system call to receive the data. In order to avoid overflowing this buffer,

TCP endpoints use a field in the TCP header to tell each other about the amount of free space in this

buffer, and they never send more data than can possibly fit in this buffer. This mechanism, known as

flow control , imposes a limit on the maximum throughput of a TCP connection. A sender can never

send more data than the amount of free buffer space at the receiver. We refer to this free space as the

receiver window size. The TCP header of each segment includes the size of the receiver window on the

sender endpoint at the time the segment was sent. This value is often called the “advertised” window

size, and defined as a “receiver-side limit on the amount of outstanding (i.e., unacknowledged) data” by

RFC 2581 [APS99]. The size of the advertised window shrinks as new data reach the endpoint (since

data are placed in the TCP buffer), and grows when the application using the TCP connection consumes

these data (which are removed from the TCP buffer).

A TCP connection with a maximum receiver window of W segments6, a maximum segment size of

S bytes, and a round-trip time of R seconds, can at most send data at W∗S
R

bytes per second. This

peak throughput can be further constrained by the capacity of the path C, so peak throughput is

min(W∗S
R

, C). As we will show, connections often use small receiver window sizes that significantly

constrain performance, i.e., W∗S
R

<< C, and this should be taken into account during traffic generation.

We can measure the distribution of receiver window sizes by examining segment headers. As pointed

out in [CHC+04b], some TCP implementations (e.g., Microsoft Windows) do not report their maximum

receiver window size in their first segment (i.e., the SYN or SYN-ACK) as one would expect, but do it in

their first data segment. This is because some implementations allocate a small amount of buffering (e.g.,

4 KB) to new TCP connections, but increase this amount after connection establishment is successfully

completed (e.g., increasing it to 32 KB). In our work, we compute the maximum receiver window sizes

as the maximum value of the advertised window size observed in the segments of each TCP connection.

This gives us two maximum receiver window sizes per connection, one for each endpoint. There is no

reason why the two endpoints must use receiver windows of equal size.

6The advertised receiver window size is given in bytes in the TCP header. We describe it here and in section 4.1.1 in
terms of segments for convenience when considering the impact of round-trip times.

102

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Receiver Window Size in Bytes

UNC 1 AM
UNC 1 PM

UNC 7:30 PM
Leipzig-II
Abilene-I

Figure 4.16: Bodies of the distributions of max-
imum receiver window sizes for the five traces.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

Receiver Window Size in Bytes

UNC 1 AM
UNC 1 PM

UNC 7:30 PM
Leipzig-II
Abilene-I

Figure 4.17: Bodies of the distributions of
maximum receiver window sizes with per-byte
probabilities for the five traces.

Figure 4.16 shows the distribution of maximum receiver window sizes in five traces. In general,

window sizes are a multiple of the maximum segment size (usually 1,460 bytes), so we observe numerous

jumps in the cumulative distribution function. Notice for example the jumps at 12 segments, 1, 460∗12 =

17, 520 bytes (approximately 16 KB), and 44 segments, 1, 460 ∗ 44 = 64, 240 bytes (approximately 64

KB). The field in the TCP header that specifies the receiver window size is 16 bits long, so the maximum

receiver window size is 65,535 bytes7.

We can make two interesting observations from Figure 4.16. First, a significant fraction of the

connections used small receiver window sizes in all traces. For example, between 45% and 65% of the

connections had window sizes below 20,000 bytes. Second, we observe a surprising difference between the

UNC distributions and those from Leipzig-II and Abilene-I. We see a much larger fraction of the largest

windows at UNC, suggesting a different distribution of endpoint TCP implementations, or widespread

tuning of the servers located on the UNC campus. This is in sharp contrast to the results for round-trip

times, where Leipzig-II and UNC were alike and quite different from Abilene-I.

Figure 4.17 shows an alternative view of the distributions of maximum receiver window sizes by

computing the probability that each byte in the traces was carried in a connection with certain maximum

receiver window size. The plot shows that connections with the largest window sizes carry many more

bytes than those with small sizes. This is likely to be explained by tuning of the TCP endpoint parameters

7Some implementations support the window scaling option described in [JBB92], which enables larger windows. These
larger windows are specified as the product of the receiver window size encoded in a 16-bit field in the TCP header, and
a multiplier encoded in a TCP option (almost always 64 KB). We have not studied this feature in our work. The use of
the window scaling is negotiated by the endpoints using a TCP header option, and TCP options are often not included
in segment header traces, making the analysis difficult. It would however be possible to study the maximum amount of
unacknowledged data in each connection, which would allow us to identify violations of the advertised window. For these
cases, we could estimate the scaled window size by multiplying the advertised window by 64 KB.

103

by administrators and server vendors in environments with large data transfers.

4.1.3 Loss Rate

TCP reacts to loss by retransmitting segments, which makes TCP a reliable transport protocol, and

reducing its sending rate, a mechanism known as congestion control . The reduction in sending rate is

implemented using a TCP variable known as the congestion window size G, which further limits the

maximum number of packets that can be sent by one endpoint. Throughout the lifetime of a TCP connec-

tion, TCP endpoints are only allowed to have a maximum of min(G,W) outstanding (unacknowledged)

segments in the network. This limits peak throughput to min(min(G,W)∗S

R
, C).

The size of the congestion window is reduced every time TCP detects loss, so lossy connections

have lower throughput than lossless ones. Numerous papers have developed analytical expressions that

consider the impact of loss on average throughput. These papers make use of different analysis techniques

and consider different models of TCP behavior and loss patterns. However, the simple relationship

between loss and rate given in [MSM97] is enough to illustrate the basic impact of loss. In general, the

average throughput of a TCP connection is S∗K
R
√

p
, where S is the maximum segment size, K is a constant

equal to
√

3
2 , R is the round-trip time and p is the loss rate. Therefore, average throughput is inversely

proportional to the square root of the loss rate p, and it decreases very quickly as p increases. Note that

the maximum window size is not part of this equation, but peak throughput is still limited by W (and

by round-trip time), as mentioned above.

We define the loss rate of a TCP connection as the number of lost segments divided by the total

number of segments sent, l/s. Assuming segments have an equal probability of loss, the loss rate is equal

to the probability of losing an individual segment. Measuring the exact loss rate experienced by a TCP

connection depends on our ability to count all segments, including those that may be lost before the

monitoring point, and detecting all losses, which may occur before or after the monitoring point. The

exact calculation of the loss rate of a connection is a very difficult task. In our work, we make use of two

heuristics that should provide a good approximation of a connection’s loss rate. We make no attempt

to address the most difficult and ambiguous cases of loss detection, which our experience leads us to

believe are uncommon.

Our measurement of loss rate from traces of segment headers relies on detecting retransmissions and

making use of the same indications of loss that TCP employs. For each connection, we compute the total

104

number of segments transmitted s as the total number of data segments in the connection. In addition,

we compute the total number of lost segments l using the number of retransmitted data segments r,

and the number of triple duplicate acknowledgment events d. We need both numbers r and d, since

they provide complementary information. Triple duplicates can tell us about losses that occur before

the monitoring point, which do not create observable retransmissions. Retransmissions can tell us about

losses recovered using the retransmission timer, which do not create triple duplicates.

Estimating the loss rate p of a TCP connection simply as (r + d)/s tends to overestimate loss rate

when the monitoring point is located after the point of loss. In the most common situation, when the loss

of a segment in one direction happens before the monitoring point, the trace collected at the monitoring

point includes no retransmission and sends three duplicate acknowledgments in the opposite direction.

These acknowledgments share the same sequence number, which corresponds to the sequence number

of the segment that preceded (according to TCP’s logical data order) the lost segment. However, when

the loss happens after the monitoring point, the trace includes both a retransmission, in the direction

in which the loss occurred, and a triple duplicate acknowledgment event, in the opposite direction. We

can therefore compute a better estimate of loss rate by ignoring the triple duplicate events whenever a

corresponding retransmission is observed. Doing so means that triple duplicates are used to estimate

loss before the monitoring point, while retransmissions are used to estimate loss after the monitoring

point. Applying this idea, the estimate of loss rate that we use in our work is therefore (r +d′)/s, where

d′ includes only triple duplicate events not associated with observed retransmissions.

Note also that our computation of the loss rate considers only losses of data segments, and not

losses of pure acknowledgments. Losses of acknowledgments can also reduce the size of the congestion

window G, but measuring acknowledgment loss rate is even harder given the cumulative nature of the

acknowledgment numbers and the fact that endpoints may acknowledge every data segment received, or

every other data segment. We are not overly concerned by this simplification. This is because under the

assumption that losses are caused by congestion, pure acknowledgments are far less likely to be dropped

given their much smaller size.

In order to study the accuracy of our estimation of loss rates, we conduct a number of controlled

experiments similar to those used to evaluate the different round-trip time estimation techniques. Figure

4.18 shows the results of two laboratory experiments in which an artificial loss rate of 1% was imposed

on connections carrying a single epoch with a1 = b1 = 10, 000, 000 bytes. Transferring ADUs of this size

requires a minimum of 6,850 data segments. Losses were created using dummynet , so each connection

105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Loss Rate in Percentage

1% Loss
Bidir. Loss Experiment

Unidir. Loss Experiment
Numerical Simulation

Figure 4.18: Measured loss rates from experiments with 1% loss rates applied only on one direction
or on both directions of the TCP connections.

in the experiment had a drop probability equal to 0.01. The figure illustrates several points about our

loss rate computation. We first compare the measured loss rates for two scenarios: one where a segment

loss probability of 0.01 was applied by dummynet only to one direction of the connections, and another

one where it was applied to both directions. In Figure 4.18, the first scenario is labeled “unidirectional

loss experiment” and the second is labeled “bidirectional loss experiment”. The mean value of the data

segment loss rate in the unidirectional loss experiment (marked with white triangles) was 1%, exactly the

intended value. We also observe that 90% of the connections experienced loss rates between 0.5% and

1.5%. The bidirectional loss experiment (results marked with white squares) illustrates the dependency

between the two directions of a TCP connection. The mean of the CDF is substantially higher for

this experiment, and the distribution shows a fixed positive offset of 20%. This is because losses of

acknowledgments in one direction also triggered retransmissions in the other, increasing the measured

(data segment) loss rate. In other words, loss of acknowledgments inflated the estimated loss rates, since

data was not really lost.

Our second observation about Figure 4.18 is that the range of the two distributions is quite wide,

showing substantial variability around the target loss rate of 1%. This is partly explained by the

random sampling in dummynet ’s implementation of per-flow loss rates. Dummynet drops segments in

an independent manner, by generating a random number between 0 and 1 for each segment, and only

dropping a segment if its corresponding random number is between 0 and 0.01. This means that even

with large ADUs, the drop probability rate experienced by the connection in the testbed experiments

was not exactly 0.01.

In order to study the impact of this random sampling, we conduct a numerical simulation, and the

106

result is illustrated using the third CDF in Figure 4.18. This distribution comes from simulating each

connection by sampling a uniform distribution (with a range between 0 and 1) 6,850 times (the number

of data segments in 10 MB). Each sample is meant to simulate one segment that may or may not be

lost. If the value of the sample is equal to or greater than 0.01, the segment is not counted as a loss. If

the sampled value is less than 0.01, the segment is counted as a loss. In this case, we continue to sample

the uniform distribution until the value obtained is equal to or greater than 0.01. These extra samples

are used to simulate the possibility of losing retransmissions, which can also be dropped by dummynet

with the same probability. The result of this sampling process is two counts:

• the total number of segments s∗ in the simulated connection, which is the number of times that

the uniform distribution was sampled, and

• the total number of loss events l∗, which is the number of times that the samples from the uniform

distribution were less than 0.01.

The ratio l∗/s∗ is the simulated loss rate p∗ for one connection. We repeated this process 4,200 times,

which was the number of connections in the testbed experiments, and constructed a CDF of the resulting

loss rates which is shown in Figure 4.18. The CDF exhibits substantial variability around 1%. Therefore,

sampling variability partially explains the variability observed in the loss rates that we measured from the

testbed experiments. Note that the variability in our lab experiments and in the numerical simulation is

tied to the size of the ADU (10 MB in a minimum of 6,850 segments). Increasing this size would reduce

the variability of the measured loss rates in proportion to the square root of the number of segments (a

basic probability result for sample means). However, our illustration of the sampling variability using 10

MB ADUs is already conservative, since most TCP connections carry far less data and therefore need

fewer segments.

The CDF from the numerical simulation provides us with a gold standard for our measurements, since

our loss rate estimates should reflect the actual drop rates that dummynet imposed to the connections

in the testbed. Still, further work is need to explain the remaining difference, and possibly refine our

measurement technique. In any case, the experiments serve to confirm that our loss rate estimate is

reasonably close to the true loss.

The distributions of loss rates in our collection of real traces is shown in Figure 4.19. Between

92.5% and 96.2% of the connections did not experience any losses, while the remaining connections did

experience quite significant loss rates. This is consistent across all measured sites. The result is quite

107

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 2 4 6 8 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Loss Rate in Percentage

UNC 1 AM
UNC 1 PM

UNC 7:30 PM
Leipzig-II
Abilene-I

Figure 4.19: Bodies of the distributions of loss
rates for the five traces.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

Loss Rate in Percentage

UNC 1 AM
UNC 1 PM

UNC 7:30 PM
Leipzig-II
Abilene-I

Figure 4.20: Bodies of the distributions of loss
rates with per-byte probabilities for the five
traces.

different when the probability is computed in terms of bytes rather than in terms of connections, as

shown in Figure 4.20. Most bytes were carried in connections that experience at least some loss. We can

also observe that Abilene-I’s connections were substantially less affected by loss than the connections

in the other traces, since Abilene-I’s CDF shows higher cumulative probabilities. For example, the

distribution for the Abilene-I trace shows that only 8% of the bytes were carried in connections with 1%

loss or more. The distributions for the rest of the traces show that between 20% and 34% of the bytes

were carried in connections with 1% loss or more. Loss is specially significant at UNC, where 34% of the

bytes were carried by connections with loss rates above 1% (a high loss rate). Interestingly, the UNC

trace with the highest load (UNC 1 PM) had a lighter distribution of per-byte loss rates.

4.2 Network-level Metrics

The previous section considered methods for characterizing network-level properties of traffic that

can be incorporated into traffic generators as input parameters. Here we consider other network-level

properties that can be used to compare traces, providing a way to assess the realism of synthetic traffic.

In order to make the distinction between these two types of network-level properties clearer, we apply

the term network-level parameter to those properties that are part of the input of the traffic generation

method, and the term network-level metric to those properties that are not part of the input but are still

useful for characterizing the output (i.e., the synthetic traffic). The key idea, demonstrated in Chapter

6, is that synthetic traffic can closely approximate real traffic in terms of these network-level metrics, as

long as source-level and network-level parameters are incorporated into the traffic generation method.

108

The success of this approach confirms that the parameters we have incorporated in our approach are

significant, and that the data acquisition methods we propose are sufficiently accurate to achieve high

realism in traffic generation.

4.2.1 Aggregate Throughput Time Series

A basic property of the performance of a network link is the number of bytes and packets8 that

traverse the link per unit time. We will call this property aggregate throughput, since it is the result

of multiplexing the throughputs of the individual connections that form the traffic carried by a network

link. Accurately reproducing aggregate throughput will be an important part of our evaluation.

Aggregate throughput is generally very variable, so researchers (and practitioners) usually study the

time series of aggregate throughputs in order to understand the dynamics of network traffic. Formally,

an aggregate throughput time series at scale t is defined as a vector X t = (Xt
1, X

t
2, . . . , X

t
n) where Xt

i

is the number of bytes (or packets) observed at a measurement point between time t(i − 1) and time ti

for some constant interval t. This constant integral t is called the scale of the time series. Xi is often

referred to as the i -th bin of the time series, which is sometimes called a time series of bin counts.

We consider three ways of studying aggregate throughput time series in this dissertation. First, we

make use of plots of aggregate throughput against time, “throughput plots”, which provide a simple yet

informative visualization of the dynamics of the traffic throughout the entire trace. Second, we examine

the marginal distribution of the time series using a CDF, which enables us to study the fine scale

characteristics of the throughput process. These two methods are described in more detail below. While

they are useful, they are sensitive to the scale t at which the time series is analyzed (e.g., throughput per

minute is much smoother than throughput per millisecond). For this reason, we complement our analysis

with a third method, wavelet analysis. Wavelet analysis is a multi-resolution method particularly suitable

to study how the statistical nature of X t changes as a function of t. This type of study, often known as

“traffic scaling”, is specially important for Internet traffic, which exhibits strong long-range dependence.

We employ both plots of the wavelet spectrum of a throughput time series, and wavelet-based estimates

of Hurst parameters with confidence intervals.

When it comes time to validate synthetic traffic generation methods, an important aspect of the

8In this section, we will often use the term packet rather than segment. In the context of TCP traffic, a time series of
packets per unit time and a time series of segments per unit time are the same thing. However, the traffic measurement
literature generally talks about packet throughput (not segment throughput), often using the unit Kilo packet per second
(Kpps).

109

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.21: Breakdown of the byte through-
put time series for Leipzig-II inbound.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Figure 4.22: Breakdown of the packet through-
put time series for Leipzig-II inbound.

validation will be a qualitative comparison of plots of throughput time series and plots of their marginal

distributions and wavelet spectra. Here we describe the use of these visualizations to understand the

nature of throughput on the links we have measured.

Throughput Plots

Figure 4.21 shows a breakdown of the aggregate byte throughput of the Leipzig-II trace in the

inbound direction (i.e., TCP traffic coming into the University of Leipzig). The scale of the time series

(the bin size) is one minute. The time series of all byte arrivals has been partitioned into six time

series according to the type of abstract source-level behavior (sequential, concurrent or no payload9),

depending on whether the start and the end of the connection were observed (fully or partially captured

connections), and whether the connection was observed only in one direction of the link (unidirectional

connections) or in both. The analysis of abstract source-level behavior described in Section 3.5 was

used to classify connections into these categories, and then the original segment header traces were

partitioned according to this classification. This type of analysis complements the one performed at

the source-level in Section 3.5, giving us a sense of the relative importance of sequential and concurrent

connections. Also, our traffic generation will only make use of connections that were fully captured,

i.e., fully characterized, so it is important to understand the importance of the traffic in the rest of the

connections (so we know what we are missing).

Figure 4.21 shows that sequential connections that were fully captured account for the vast majority

of the bytes to Leipzig-II inbound. Since connections observed near the boundaries of the trace are more

9A connection without any useful TCP payloads has an empty connection vector since no ADU is sent.

110

likely to be observed only partially, the time series shows a much smaller number of bytes in the first

and in the last ten minutes of the trace. On the contrary, the time series of partially-captured sequential

connections has a much larger number of bytes in the first and the last ten minutes. This is because the

probability of observing only part of a connection increases as we get closer to the trace boundaries. For

this reason, in the first ten minutes we see many more connections that started before the start of the

trace, and in the last ten minutes we see many more connections that ended after the end of the trace.

We will refer to this increased likelihood of finding partially-captured connections near trace boundaries

as the connection sampling bias.

The solid line with white squares in Figure 4.21 shows the time series of fully-captured sequential

connection. When we examine the stable region of this time series (i.e., ignoring the first and last 10

minutes), we can see substantial variability between the minimum of 22 Mbps and the maximum of 38

Mbps. The rest of the time series in this plot are far less “bursty”. The average throughput of the

time series for concurrent connections is much smaller, and partially-captured connections only account

for a tiny fraction of the bytes. The number of bytes in connections without any useful data payload

is insignificant, as one would expect in a properly working network in which little malicious activity is

taking place10.

Figure 4.22 shows the time series of packet arrivals for the inbound direction of the Leipzig-II trace.

As in the previous figure, fully-captured sequential connections account for the majority of the packets,

and the time series exhibits substantial variability. Notice however that the number of packets in

fully-captured concurrent connections is more significant in terms of packets than in terms of bytes (the

percentage of packets was higher than the percentage of bytes). The time series of the number of packets

in “no payload” connections and in unidirectional connections is also more significant. Notice the large

spikes at the end of the time series of unidirectional connections. These spikes could be related to some

malicious activity, like network or port scanning11, or connection attempts to a popular server that is

temporarily offline12. This feature was not present in the corresponding time series of byte arrivals.

The same time series for the reverse direction of the Leipzig link are shown in Figures 4.23 and 4.24.

The magnitude of the throughput time series is significantly smaller in this case, suggesting that the

10The “no payload” time series would have been much more significant if, for example, a denial-of-service attack using
SYN segments had taken place. These segments, and the likely SYN-ACK segments sent in response by the victim, would
have not carried any (useful) payloads (no application-level communication would have taken place), and would have been
classified as “no payload” traffic.

11This type of activity creates unidirectional traffic whenever the target host is firewalled, or otherwise unreachable, or
the target IP does not exist. The location of these spikes at the end of the trace is purely accidental.

12In this case, clients would try to open a connection by sending a SYN segment (and several retransmissions), which
will receive no response since the destination server is not online. These types of connection attempts to offline hosts show
up as unidirectional connections in segment header traces.

111

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.23: Breakdown of the byte through-
put time series for Leipzig-II outbound.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Figure 4.24: Breakdown of the packet through-
put time series for Leipzig-II outbound.

0

5

10

15

20

25

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.25: Breakdown of the byte through-
put time series for Leipzig-II outbound.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Figure 4.26: Breakdown of the packet through-
put time series for Leipzig-II outbound.

University of Leipzig is mostly a consumer of content from the rest of the Internet. Sequential connections

that were fully captured exhibit some sharp spikes in three short time intervals. A closer look revealed

that only a few large connections with small round-trip times (in particular, three connections in the first

spike in minute 78) created this sudden increase in throughput. As in the inbound direction, partially-

captured sequential connections are only significant for the first and the last few minutes of the trace.

Concurrent connections also show the same pattern, but partially-captured connections exhibit a steady

increase for the last 50 minutes of the trace. Interestingly, the separation between the time series for fully

and partially captured sequential connections is much larger for packets than for bytes. This suggests

that the packets in this direction are very small, and mostly consist of acknowledgment segments that

do not have a payload. This is another confirmation of the content-consumer nature of the university of

Leipzig.

Figures 4.25 and 4.26 illustrate the impact of scale on the throughput time series for the Leipzig-

112

0

50

100

150

200

250

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.27: Breakdown of the byte through-
put time series for Abilene-I Ipls/Clev.

0

5

10

15

20

25

30

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Figure 4.28: Breakdown of the packet through-
put time series for Abilene-I Ipls/Clev.

II outbound trace. These plots have a scale of 5 seconds, and only the first 60 minutes (rather than

entire 166 minutes) are shown to reduce the amount of over-plotting. Both byte and packet throughputs

are clearly more bursty at this scale. The largest spikes of time series for fully-captured sequential

connections are even larger (and therefore narrower) than those in the 1-minute time series. For example,

the spike in the eleventh minute reaches 17 Mbps in the 5-second scale, while the corresponding region

in the 1-minute scale plot in Figure 4.23 did not go above 9 Mbps. Decreasing the scale provides a better

picture of the burstiness of traffic, but it increases over-plotting, and does not change the overall view

(i.e., the relative magnitude of the different time series). The same lesson holds for packet arrivals, but

notice that the largest byte throughput spikes do not appear to have corresponding packet throughput

spikes. This shows that a relatively small number of full packets sent in short periods created the

observed throughput spikes (and not a large number of small packets).

The structure of the throughput time series for the Abilene-I trace is remarkably different. Figure 4.27

shows the time series of byte arrivals at a 1-minute scale for the Abilene-I traffic sent from Indianapolis

to Cleveland. As in the Leipzig-II case, fully-captured sequential connections account for the largest

percentage of the traffic. However, bytes from partially-captured sequential connections are much more

significant here, with a mean throughput that is roughly half of the mean throughput for fully-captured

sequential connections. While we still observe much larger throughputs in the first and last few minutes

of the time series, the middle part still accounts for a very large number of bytes. This is in sharp

contrast to the Leipzig-II trace, and cannot be explained by the duration of the trace, which is almost as

long (2 hours vs. 2 hours and 46 minutes). Note also that the partially-captured connection time series

is almost as bursty as the time series for fully-captured connections.

113

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.29: Breakdown of the byte through-
put time series for Abilene-I Clev/Ipls.

0

5

10

15

20

25

30

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Figure 4.30: Breakdown of the packet through-
put time series for Abilene-I Clev/Ipls.

Concurrent connections in this direction of the Abilene-I trace show a surprising structure. The

number of bytes in concurrent connections that were partially-captured was much larger than the number

of bytes in connections that were fully-captured. This suggests that concurrent connections in this trace

tend to have extremely long durations. Both time series are much smoother than those for sequential

connections, and trace boundaries have very little impact on them. Connections with no payload carried

an insignificant number of bytes, but, unlike the Leipzig-II trace, unidirectional traffic is non-negligible.

Rather than some malfunction or malicious activity, this is explained by asymmetric routing in the

Abilene backbone. Only one direction of these connections goes through the measured link, and hence

these connections appear in our trace as unidirectional. We also observe two major throughput spikes at

the 6th and the 38th minutes that could also be explained by transient routing changes, but malicious

traffic cannot be ruled out without further analysis. Both spikes reach throughputs as high as 350 Mbps

when the time series is examined at the 5-second scale.

The packet throughput time series for the Abilene-I trace shown in Figure 4.28 has a similar structure,

in which partially-captured connections also account for a large percentage of the trace. It is interesting

to note that fully-captured concurrent connections carry a larger percentage of packets than bytes, so

packets in these connections are likely to be small. We also observe a third spike in the time series for

unidirectional connections that did not show up in the byte throughput time series, and a smaller spike

in the “no payload” time series.

The reverse direction, Cleveland to Indianapolis, of the Abilene-I trace offers a rather different

view in Figure 4.29. Partially-captured sequential connections are much less significant in this case,

although this time series still exhibits remarkable variability. Similarly, the number of bytes in partially-

114

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.31: Breakdown of the byte through-
put time series for UNC 1 PM inbound.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.32: Breakdown of the packet through-
put time series for UNC 1 PM inbound.

captured concurrent connections is much lower in relative terms, and quite close to the number of bytes

in fully-captured concurrent connections. The most striking feature of this plot is the time series of

unidirectional connections. The byte throughput of these connections shows enormous variability, and

even reaches the magnitude of fully-captured sequential connections. This is either a strong indication

of substantial instability in the routing of the Abilene backbone, or the existence of flows with extremely

high throughput that only show up in one direction of the measured link. In any case, byte throughput

is always above 50 Mbps, so part of the traffic that is routed asymmetrically did not experience any

major routing changes.

The packet throughput time series from Cleveland to Indianapolis shown in Figure 4.30 offer yet

another pattern in the breakdown of traffic per connection type. The sharp changes in the throughput

of the time series of unidirectional traffic have a smaller magnitude, suggesting that large packets dom-

inate traffic in this direction of the Abilene-I trace. Partially-captured concurrent connections carried

significantly more packets than fully-captured connections. This is the opposite of the phenomenon

in Figure 4.28 and can be explained by an asymmetry in the sizes of the ADUs of the connections.

This asymmetry results from connections with a majority of data segments in the same direction and a

majority of acknowledgments in the other direction.

The byte throughput time series for the UNC 1 PM trace in the inbound direction resembles that

of Leipzig-II (which is also an edge trace). Figure 4.31 shows that fully-captured sequential connections

carry the vast majority of the bytes, although the relative percentage of bytes in partially captured

connections is larger. This is can be explained by the shorter duration of this trace (1 hour). The

most significant difference, however, is in the time series for partially-captured concurrent connections.

115

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.33: Breakdown of the byte through-
put time series for UNC 1 PM outbound.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Seq (Full)
Seq (Partial)
No Payload
Conc (Full)

Conc (Partial)
Unidirectional

Figure 4.34: Breakdown of the packet through-
put time series for UNC 1 PM outbound.

In this case, we find a very stable throughput of 20 Mbps without any clear boundary effects. This

is similar to the type of concurrent traffic found in Abilene-I. Fully-captured concurrent connections

show an interesting jump between the 37th and the 39th minutes, and a couple of spikes around the

45th minute. This could be explained by a single connection with significant throughput (10 Mbps).

Packet throughput time series are similar, but we observe a significantly higher percentage of packets in

partially-captured sequential connections. As the analysis of the other direction will suggest, this is due

to the presence of many pure acknowledgment segments.

The byte throughput time series for the outbound direction of UNC 1 PM are shown in Figure 4.33.

They are remarkably different from those of the Leipzig-II trace, where throughput on the inbound

direction (created by local users downloading content from the Internet) was much higher than the

throughput in the outbound direction. We observe the opposite here. The mean overall utilization in

the outbound direction is much higher than the inbound direction, 325 Mbps versus 100 Mbps. Also,

partially-captured sequential connections are much more significant. The obvious explanation is the

presence at UNC of ibiblio.org, a popular repository of software and other content. Hosts outside

UNC retrieve large amounts of data from the ibiblio.org servers, making the load in the outbound

direction of the UNC link much higher than the load on the inbound link. Furthermore, ibiblio.org

clients often download large objects, and this requires long connections that are more likely to be only

partially captured. This provides a good explanation for the extreme boundary effects in the first and

last 10 minutes of the throughput time series. The high throughput in the stable region of this time

series could be due to long connections that carry large amounts of data, although further analysis is

needed to verify this claim.

116

0

50

100

150

200

250

10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

1 PM Outb
7:30 PM Outb

1 AM Outb
1 PM Inb

7:30 PM Inb
1 AM Inb

Figure 4.35: Breakdown of the byte through-
put time series for the three UNC traces.

5

10

15

20

25

30

35

40

10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

1 PM Outb
7:30 PM Outb

1 AM Outb
1 PM Inb

7:30 PM Inb
1 AM Inb

Figure 4.36: Breakdown of the packet through-
put time series for the three UNC traces.

Concurrent traffic in the outbound direction appears similar to the inbound direction, showing re-

markable load symmetry for partially-captured concurrent connections. We do not observe much vari-

ation in the time series for packet throughput (shown in Figure 4.34). Partially-captured sequential

connections carried a smaller number of packets than bytes, and this agrees with the idea that large

numbers of bytes are downloaded from ibiblio.org. These downloads show up as large data packets

in the outbound direction and small acknowledgment packets in the inbound direction. In the most

common case, a full TCP segment has a size of 1500 bytes, while an empty one (no payload) is only 40

bytes. This means that the ratio of bytes in a connection carrying a large file is 1500:40. Furthermore,

since most TCP implementations acknowledge only every other data segment, we have a ratio of 3000:40

for bytes and a ratio of 2:1 for packets. A link that is dominated by large file downloads should show

similar byte and packet ratios. If large file downloads from ibiblio.org were the only cause of the

large fraction of bytes in partially captured connection, then we would expect similar ratios between

the two directions of the UNC link. However, this is not so clear in Figures 4.31 to 4.34, suggesting

that phenomena other than ibiblio.org also contribute to making UNC a source rather than a sink

of content. As an example, file-sharing activity from campus dorms could also play a significant role.

Since file-sharing implies both uploading and downloading, it usually tends to make the byte and packet

ratios more balanced.

Network activity usually follows a cyclic daily pattern, in which traffic increases throughout the

morning and decreases in the evening, being at its lowest during night hours. This diurnal pattern in

the time series for the UNC traces is evident in Figures 4.35 and 4.36. These time series correspond to

fully-captured sequential connections. Byte throughputs for the 1 PM traces are much higher in both

directions and we observe that even the 1 AM trace has a large throughput in the outbound direction.

117

This suggests that content from UNC is downloaded throughout the day, although a diurnal pattern is

still present. On the contrary, UNC clients are much less active later in the day. A similar plot (not

shown) for partially-captured concurrent connections shows little reduction in throughput between the 1

PM and the 7:30 PM traces, and a reduction of only 15 Mbps in the 1 AM trace. The packet throughput

time series illustrate again the dichotomy between the large data segments in the outbound direction,

carrying UNC content, and the small segments in the inbound direction, carrying acknowledgments. The

difference is substantially less significant later in the day.

4.2.2 Throughput Marginals

Plots of throughput time series provide a good overview of the coarse-scale characteristics of the

traffic trace. However, they are not very practical for studying finer-scale features. Our traces are long

enough that any plot at a scale of 1 second or below is dominated by over-plotting, and does not provide

any useful information. This is specially true when the goal of the plot is to compare two time series that

are already rather similar. Finer-scale differences can be of great importance for certain experiments.

For example, two traces could have exactly the same average throughput, and appear identical at the

1-minute scale, but be completely different at the 1-second scale. One of them could show a sequence of

sharp spikes and ditches, while the other one could remain completely smooth. If we were to expose a

router queue to these two traces, we could obtain two completely different distributions of router queue

length (and therefore of packet delay through the router). This would for example be the case if the

spikes exceed the output rate of the queue (creating a backlog), while the smooth trace always remains

below output rate. In the first case, packets would experience variable queuing delay, while in the second

case no queuing delay would occur.

There are several ways in which we can compare traces at finer time scales. The most obvious one is

to examine throughput for a limited period. While this approach is useful in some situations, it does not

scale for comparing entire traces, especially as we decrease the scale and the number of possible periods

to examine grows. In this dissertation, we will make use of two alternative methods for studying the

throughput of our traces at finer granularities. Our first method is to examine the marginal distributions

of throughput time series at a rather fine time scale, 10 milliseconds. Plots of the bodies of marginal

distributions help us to understand the most common fine-scale throughputs in a trace, while plots of

the tails of marginal distributions explore the episodes of highest throughput in a trace. We describe

this type of analysis in the rest of this section. Our second method is to study the way throughput

118

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

Leipzig-II Inbound
Original Marginal

Normal(39.24, 15.13)
Poisson(39.24)

Normal(39.24, 6.25)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

Leipzig-II Inbound
Original Marginal

Normal(39.24, 15.13)
Poisson(39.24)

Normal(39.24, 6.25)

Figure 4.37: Byte throughput marginals of Leipzig-II inbound, its normal distribution fit, the
marginal distribution of its Poisson arrival fit, and the normal distribution fit of this Poisson
arrival fit.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

Leipzig-II Inbound
Original Marginal

Normal(49.03, 13.21)
Poisson(49.03)

Normal(49.03, 7.01)

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

Leipzig-II Inbound
Original Marginal

Normal(49.03, 13.21)
Poisson(49.03)

Normal(49.03, 7.01)

Figure 4.38: Packet throughput marginals of Leipzig-II inbound, its normal distribution fit, the
marginal distribution of its Poisson arrival fit, and the normal distribution fit of this Poisson
arrival fit.

variance changes with scale, which we will approach using the concepts of self-similarity and long-range

dependence. We discuss this type of analysis in the next section.

Our analysis of throughput marginals examines the time series of throughput at the 10-millisecond

time-scale, constructing the empirical distribution of the values of the time series. This empirical distri-

bution assigns a certain probability to each observed value of the time series equal to the fraction that

this value represents of the total set of values in the time series. As in previous cases, we will study the

bodies of the marginal distributions using plots of CDFs and the tails using plots of CCDFs. For ex-

ample, Figures 4.37 and 4.38 show respectively the marginal distribution of byte and packet throughput

for the inbound direction of the Leipzig-II trace (depicted using solid lines marked by white squares).

The CDF in the left plot provides a good overview of the body of the marginal distribution using linear

axes. The CCDF in the right plot shows the tail of the distribution using a logarithmic y-axis. These

119

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

UNC 1 PM Outbound
Original Marginal

Normal(231.34, 58.02)
Poisson(231.34)

Normal(231.34, 15.17)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

200 300 400 500 600 700

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

UNC 1 PM Outbound
Original Marginal

Normal(231.34, 58.02)
Poisson(231.34)

Normal(231.34, 15.17)

Figure 4.39: Byte throughput marginals of UNC 1 PM outbound, its normal distribution fit,
the marginal distribution of its Poisson arrival fit, and the normal distribution fit of this Poisson
arrival fit.

visualizations of the marginals are particularly useful for comparing multiple distributions, and we will

use them extensively in Chapter 6.

As stated before, our goal with the analysis of marginal distributions is to understand fine-scale

characteristics of throughput. We will use this type of analysis to determine whether our proposed traffic

generation method results in synthetic traffic whose distribution of fine-scale throughputs is “realistic”.

By construction, and as explained in Chapter 5, the determination of this realism is accomplished by

directly comparing the marginal distributions of an original trace and its synthetic version. This non-

parametric analysis is consistent with other methods used in this dissertation.

We have also considered doing some parametric analysis of the marginal distributions of throughput

time series. When modeling an arrival process, the first approach that comes to mind is the Poisson

modeling framework. Poisson arrivals are very convenient from an analytical perspective, and concisely

describe an arrival process using a single parameter. As pointed out by Floyd and Paxson [PF95],

empirical studies do not support the use of this model, primarily because Poisson arrivals are far less

“bursty” than Internet packet and byte arrivals. This important issue is discussed in the next section.

In addition, we show here that Poisson arrivals have marginal distributions that are very far from the

ones in our traces.

Given a throughput time series, we can fit a Poisson arrival model simply by computing the mean of

the time series and using it as the rate of the Poisson model. From this fitted model, we can easily obtain

a marginal distribution using Monte Carlo simulation. Figure 4.37 shows the marginal distribution of

byte throughput in the inbound direction of the Leipzig-II trace, and the marginal distribution of the

Poisson fit of this throughput process (depicted using a dashed line with white triangles). Both marginal

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

UNC 1 PM Outbound
Original Marginal

Normal(240.87, 46.51)
Poisson(240.87)

Normal(240.87, 15.49)

1e-05

0.0001

0.001

0.01

0.1

1

150 200 250 300 350 400 450 500 550 600

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

UNC 1 PM Outbound
Original Marginal

Normal(240.87, 46.51)
Poisson(240.87)

Normal(240.87, 15.49)

Figure 4.40: Packet throughput marginals of UNC 1 PM outbound, its normal distribution fit,
the marginal distribution of its Poisson arrival fit, and the normal distribution fit of this Poisson
arrival fit.

distributions have the same mean, 39.24 Kilobytes per 10-millisecond interval. As shown in the figure,

the two marginals are very different, with the Poisson fit exhibiting a far narrower body. The standard

deviation of the Poisson model is only 6.25, while the one for the real marginal distribution is 15.13,

more than twice as large. In addition, the tail of the marginal distribution from Poisson arrivals is far

lighter than the one from the trace. Intuitively, this means that the real traffic is far more aggressive on

the network, consistently reaching far higher throughput values. Poisson arrivals are equally inadequate

for modeling packet arrivals, at least in terms of their marginal distributions, as shown in Figure 4.38.

Figures 4.39 and 4.40 repeat the same analysis for the outbound direction of UNC 1 PM. The plots

confirm the poor fit from the Poisson arrival model, even for a trace with a throughput that is eight

times higher. The same is true for every other trace examined in this dissertation.

The empirical results in Fraleigh et al. [FTD03] and the analysis in Appenzeller et al. [AKM04]

support the idea that throughput values are normally distributed in Internet traffic, as long as sufficient

traffic aggregation exists. If this were true, studying (and comparing) marginal distributions of through-

put could easily be accomplished by looking at means and variances. Our analysis of the throughput

marginals in our traces shows that they do resemble a normal distribution, but that this model is not

completely satisfactory.

We can easily fit a normal model to the marginal distributions from our traces by computing their

means and standard deviations. Figures 4.37, 4.38, 4.39 and 4.40 compare the real marginals and their

fits, consistently showing the following two differences:

• The bodies of the marginal distributions from the real traces appear somewhat narrower. The

121

0 5 10 15

x 104

0

5

10

15

x 104 leip.inb 10ms

Gaussian, Q

B
yt

es
, 1

0−
m

s
bi

ns
, Q

µ = 39238.3106

σ = 15133.1271
K−S H

0
 = 1

2 4 6 8 10 12

x 105

2

4

6

8

10

12

x 105 leip.inb 100ms

Gaussian, Q

B
yt

es
, 1

00
−

m
s

bi
ns

, Q

µ = 392382.8383

σ = 90675.0578
K−S H

0
 = 1

2 4 6 8

x 106

2

3

4

5

6

7

8

9
x 106 leip.inb 1s

Gaussian, Q

B
yt

es
, 1

−
s

bi
ns

, Q

µ = 3923772.3581

σ = 726353.1012
K−S H

0
 = 1

3 4 5 6

x 107

3

4

5

6

x 107 leip.inb 10s

Gaussian, Q

B
yt

es
, 1

0−
s

bi
ns

, Q

µ = 39233236.7631

σ = 5828520.6132
K−S H

0
 = 1

0 100 200 300 400
0

100

200

300

400
leip.inb 10ms

Gaussian, Q

P
ac

ke
ts

, 1
0−

m
s

bi
ns

, Q

µ = 49.0298

σ = 13.2073
K−S H

0
 = 1

200 400 600 800 1000 1200

200

400

600

800

1000

1200

leip.inb 100ms

Gaussian, Q

P
ac

ke
ts

, 1
00

−
m

s
bi

ns
, Q

µ = 490.2972

σ = 80.9711
K−S H

0
 = 1

3000 4000 5000 6000 7000 8000

3000

4000

5000

6000

7000

8000

leip.inb 1s

Gaussian, Q

P
ac

ke
ts

, 1
−

s
bi

ns
, Q

µ = 4902.9063

σ = 664.8503
K−S H

0
 = 1

4 5 6

x 104

3.5

4

4.5

5

5.5

6

6.5

x 104 leip.inb 10s

Gaussian, Q

P
ac

ke
ts

, 1
0−

s
bi

ns
, Q

µ = 49023.3512

σ = 5493.3407
K−S H

0
 = 1

Figure 4.41: Quantile-quantile plots with simulation envelops for the marginal distribution of
Leipzig-II inbound. The top four plots show byte throughput, while the four bottom plots show
packet throughput.

122

0 2 4 6

x 105

0

1

2

3

4

5

6

x 105 unc04−aug3−1pm.outb 10ms

Gaussian, Q

B
yt

es
, 1

0−
m

s
bi

ns
, Q

µ = 231341.7432

σ = 58016.8968
K−S H

0
 = 1

1.5 2 2.5 3 3.5

x 106

1.5

2

2.5

3

3.5

x 106 unc04−aug3−1pm.outb 100ms

Gaussian, Q

B
yt

es
, 1

00
−

m
s

bi
ns

, Q

µ = 2313409.053

σ = 290224.0123
K−S H

0
 = 1

1.5 2 2.5 3 3.5

x 107

1.5

2

2.5

3

3.5

x 107 unc04−aug3−1pm.outb 1s

Gaussian, Q

B
yt

es
, 1

−
s

bi
ns

, Q

µ = 23133277.5683

σ = 2292976.1295
K−S H

0
 = 1

1.8 2 2.2 2.4 2.6 2.8

x 108

1.8

2

2.2

2.4

2.6

2.8

x 108 unc04−aug3−1pm.outb 10s

Gaussian, Q

B
yt

es
, 1

0−
s

bi
ns

, Q

µ = 231247419.8458

σ = 20376530.446
K−S H

0
 = 0

100 200 300 400 500 600

100

200

300

400

500

600

unc04−aug3−1pm.outb 10ms

Gaussian, Q

P
ac

ke
ts

, 1
0−

m
s

bi
ns

, Q

µ = 240.8693

σ = 46.5127
K−S H

0
 = 1

2000 3000 4000
1500

2000

2500

3000

3500

4000

4500

unc04−aug3−1pm.outb 100ms

Gaussian, Q

P
ac

ke
ts

, 1
00

−
m

s
bi

ns
, Q

µ = 2408.6826

σ = 254.8292
K−S H

0
 = 1

2 2.5 3 3.5 4 4.5

x 104

2

2.5

3

3.5

4

4.5
x 104 unc04−aug3−1pm.outb 1s

Gaussian, Q

P
ac

ke
ts

, 1
−

s
bi

ns
, Q

µ = 24085.8963

σ = 2075.0542
K−S H

0
 = 1

2 2.2 2.4 2.6 2.8 3

x 105

2

2.2

2.4

2.6

2.8

3

x 105 unc04−aug3−1pm.outb 10s

Gaussian, Q

P
ac

ke
ts

, 1
0−

s
bi

ns
, Q

µ = 240762.45

σ = 17701.9434
K−S H

0
 = 0

Figure 4.42: Quantile-quantile plots with simulation envelops for the marginal distribution of
UNC 1 PM outbound. The top four plots show byte throughput, while the four bottom plots
show packet throughput.

123

difference is slightly larger for packet throughput in the Leipzig-II trace.

• The tails of the marginal distributions from the real traces are substantially heavier. The largest

values for the Leipzig-II traces are 75% larger, while those for the UNC 1 PM trace are 20-25%

larger.

These deviations are present in every one of our traces, showing that throughput marginal distributions

deviate from the normal distribution systematically.

The deviation from normality of the empirical marginal distributions is statistically significant. First,

every marginal distribution from the traces fails the Kolmogorov-Smirnov test of normality [NIS06].

Second, every Quantile-Quantile (Q-Q) plot [NIS06] shows a clear departure from normality. This is

true not only for the 10-millisecond time-scale, but also for the 100-millisecond, the 1-second time series,

and even for the 10-second time series in some cases. We illustrate this type of analysis again using the

throughput marginals of Leipzig-II inbound and UNC 1 PM outbound. The plots in Figures 4.41 and

4.42 show Q-Q plots for different time-scales, where the quantiles of the data and the theoretical normal

distribution are compared using a thick line with white dots. If the data were normally distributed,

the Q-Q line would closely follow the the dashed 45 degree line. This is clearly not the case, but

the Q-Q plot does not provide any sense of statistical significance. To address this deficiency, the

plots also show simulation envelopes, depicted using thin, dark-gray lines, following the methodology

in Hernández-Campos et al. [HCMSS04]. They are easiest to see in the 10-second time series, the

ones with the least over-plotting. Each line in the envelope corresponds to a distribution constructed

by sampling the theoretical normal distribution as many times as values were present in the empirical

marginal distribution. The envelope therefore captures the natural variability of the normal distribution

for the given sample size. If the Q-Q line comparing the empirical marginal and the theoretical normal

distribution is outside this envelope, the deviation from normality is considered statistically significant.

This is clearly the case for every marginal distribution in the plots, except the ones at the 10-second

scale of Leipzig-II inbound.

The plots in Figures 4.41 and 4.42 also show the results of the Kolmogorov-Smirnov test (K-S), a

formal test of normality. The third line in the inside legend, below the sample mean µ and the standard

deviation ρ, shows the result of the formal test. The null hypothesis (non-normality) can only be rejected

for the marginals of the Leipzig-II throughput at the 10-second time-scale. The plots show a H0 = 0

when the null hypothesis can be rejected, and a H0 = 1 when it cannot be rejected. Given these

results, assuming normality to study the marginals of our traces (and those of their synthetic versions)

124

is of dubious value. We will restrict ourselves to comparative plots of CDFs and CCDFs for comparing

throughput marginals.

Note that we are not arguing that our finding of pervasive deviations from normality invalidates

earlier studies based on the assumption of normality in throughput marginals. From our analysis, the

bodies of the marginals are close enough to the normal distribution that assuming normality can provide

a useful simplification. As long as significant deviations from normality in the tails have little or no effect

on the reasoning, assuming normality makes analytical studies more treatable and even more intuitive.

Our finding of non-normality in our traces is consistent with the observation by Sarvotham et al.

[SRB01]. These authors demonstrated that deviations of the throughput marginal from normality can

be explained by the presence of an alpha component in Internet traffic. Alpha traffic is composed of

connection with high throughputs that transfer large amounts of data. In contrast, connections with

moderate or low throughputs and connections with moderate or small amounts of data to transfer

are considered beta traffic, whose throughput marginal is normally distributed. Intuitively, a traffic

generation method should be able to reproduce both the alpha and the beta components of Internet

traffic. Sarvotham et al. also proposed to consider traffic bursty when its throughput marginal deviates

from normality. This is an alternative (and complementary) view of traffic burstiness, which is more

commonly associated with long-range dependence in the arrival process, as we will discuss next.

4.2.3 Throughput Self-Similarity and Long-Range Dependence

A remarkable characteristic of Internet traffic is its high variability in throughput across a wide range

of time scales, and how that variability changes as scale increases. If we plot the number of packets or

bytes that arrive at a network link, say every 1 or 10 milliseconds, we observe a highly variable process

where the number of arrivals is constantly changing. If we plot these arrivals at a coarser scale, say every

100 milliseconds or 1 second, this high variability does not decrease significantly. In contrast, Poisson

arrivals exhibit a rapid decrease in variability as we increase the scale of the time series. For this reason,

it is often said that Internet traffic has a “very bursty” arrival process, far more variable than that of call

arrivals in a phone network. Starting with the work of Leland et al. [LTWW93], traffic burstiness has

usually been characterized using the theoretical framework of statistically self-similar processes. This

framework provides some powerful methods to study traffic burstiness and quantify its strength.

The motivation behind the study of traffic burstiness is the observation that an increase in the

125

burstiness of traffic results in a more demanding network workload. For example, Erramilli et al.

[ENW96] demonstrated that router queues exhibit dramatically heavier distributions of queue lengths

as the burstiness of the input packet arrival process increases. Numerous measurement studies, e.g.,

[WTSW97, ZRMD03, PHCMS05, PHCL+], have examined Internet traffic and consistently observed

highly bursty arrivals that appear self-similar for scales between a few milliseconds and tens of seconds.

It is therefore expected that representative synthetic traffic reproduces this high burstiness. In this dis-

sertation, we employ well-known methods to assess the self-similarity of real and synthetic traffic, and

verify that our traffic generation methods can reproduce the level of burstiness in Internet traffic.

The term self-similarity comes from the study of fractal objects. Fractals are geometrical constructs

that appear similar a different scales. The most famous example of fractal is the Mandelbrot set, whose

cardioid shape repeats itself as we zoom into the set. In this fashion, a second-order self-similar time

series shows a similar pattern of variation at different time-scales. For this reason, self-similarity is also

known as scale-invariance. Some authors talk about “traffic scaling” or simply “scaling” to refer to the

observed self-similarity in network traffic.

Quantitatively, the change in the arrival variance for a self-similar time series of bin counts X t is

proportional to t2H−2, where t ≥ 1 represents scale as the aggregation of arrival counts, and H is known

as the Hurst parameter. For example, the variance in bin counts in a Poisson process is proportional

to 1
H

= t2(
1

2
)−2. That is, a Poisson arrival process has H = 0.5. A stationary, long-range dependent

process has 0.5 < H < 1. The closer the value of the Hurst parameter is to 1, the slower the variance

decays as scale (t) increases, and the traffic is said to be increasingly more bursty (than Poisson arrivals).

The slow decay of the arrival variance in self-similar traffic, as scale increases, is in sharp contrast to

the mathematical framework provided by Poisson modeling, in which the variance of the arrivals process

decays as the square root of the scale (see [LTWW93, PF95]). This quantitative characterization of

self-similarity provides us with the right framework to compare real and synthetic traffic, assessing the

validity of the traffic generation process in terms of the burstiness of the packet/byte arrival process.

Self-similarity also manifests itself as Long-Range Dependence13 (LRD) in the time series of arrivals.

This means that there are non-negligible correlations between the arrival counts in bins that are far

apart. A common way of studying these correlations is to compute the autocorrelation ρ(k) of a time

13Long-range dependence is sometimes referred to as long memory.

126

series, where k is the autocorrelation lag. The autocorrelation at lag k,

ρ(k) =

∑n−k
i=1 (Xt

i − X
t
)(Xt

i+k − X
t
)

∑n

i=1(X
t
i − X

t
)2

,

is the correlation between a time series and a shifted version of itself, where the i-th value in the original

time series becomes the i + k-th value in the shifted time series. The autocorrelation function ρ(k) of

a long-range dependent time series decays in proportion to k−β as the lag k tends to infinity, where

0 < β < 1. The Hurst parameter is related to β via H = 1 − β/2, so the closer the value of the Hurst

parameter is to 1, the more slowly the autocorrelation function decays. In contrast, Poisson processes

are short-range dependent, i.e., their autocorrelation decays exponentially as the lag increases.

The concepts and definitions of self-similarity and LRD assume that the time series of arrivals is

second-order stationary (also called weakly stationary). Loosely speaking, this means that the variance

of the time series (and more generally, its covariance structure) does not change over time, and that its

mean is constant (so the time series can always be transformed into a zero-mean stochastic process by

simply subtracting the mean). The intuitive interpretation of this concept is that the time series should

not experience any major change in variance, which would be associated with a fundamental change in

the nature of the studied process. For example, a link usually used by 1,000 hosts that suddenly becomes

used by 10,000 hosts (e.g., due to a “flash crowd”) would show a massive throughput increase, and much

higher variance, which would make it non-stationary. These types of major changes are outside the scope

of LRD analysis. They represent a coarse-scale feature of the time series which should be studied using

other methods (e.g., trend analysis using SiZer [CM99]).

Traffic is certainly not second-order stationary at the scales at which time-of-day effects are important.

For example, a 24-hour trace is usually non-stationary due to the sharp decrease in network utilization

at night. The number of sources at night is far smaller, which decreases variance, violating the second-

order stationarity assumption. Trying to estimate the Hurst parameter of a 24-hour trace that exhibits a

time-of-day effect results in a meaningless number. In our traffic generation work, we will estimate Hurst

parameters (and other measures of self-similarity) for traces that are second-order stationary. Our traces

have moderate durations, between 1 and 4 hours, which greatly diminishes the impact of time-of-day

variations. We also carefully examined the packet and byte arrival time series of our traces and found

no evidence of sharp changes that could be associated with second-order non-stationary.

Estimation of Hurst parameters is not a trivial exercise. Besides ensuring that no significant second-

order non-stationarity is present in the data, common estimation methods are very sensitive to outliers

127

and trends in the data, as pointed out by Park et al. [PHCL+]. These difficulties motivate some prepro-

cessing of the studied time series (e.g., detrending) or to employ robust methods. In this dissertation,

we will make use of wavelet analysis to study the scaling properties of real and synthetic traffic. We will

follow the analysis method of Abry and Veitch [AV98] and make use of their Matlab implementation

of the method. In general, we will compute what is called the wavelet spectrum of the time series of

packet and byte counts in 10 millisecond intervals. This is also referred to as the logscale diagram in

some works14. The wavelet spectrum provides a visualization of the scale-dependent variability in the

data (see Figure 4.43 for an example). Briefly, a logscale diagram plots the logarithm of the (estimated)

variance of the Daubechies wavelet coefficients, the energy , as a function of the logarithm of the scale

j = log2(t), where t is the time scale and j is known as the octave. The Daubechies wavelet coefficients

come from a decomposition of the time series in terms of the Daubechies wavelet basis, which is a collec-

tion of shifted and dilated versions of a mother Daubechies wavelet (a function) [Wal99]. Intuitively, this

decomposition is similar to the Fourier transform, which decomposes a time series in terms of sinusoidal

functions. The wavelet transform also performs a decomposition but it uses a compact support, so it

can represent localized features (sinusoidal functions have infinite support). Besides this property, the

benefit of the wavelet transform is its robustness to trends in the data, which can easily confuse other

types of analysis, such as the variance-time plot [LTWW93]. Wavelet analysis is robust to moderate

non-stationarities.

For processes that are long-range dependent, the wavelet spectrum exhibits an approximately linear

relationship with a positive slope between energy and octave. For Internet traffic, the region where this

linear scale relationship begins is generally on the order of a few hundred milliseconds (4th to 6th octave

for 10-milliseconds time series). An estimate of the Hurst parameter H along with a confidence interval

on the estimate can be obtained from the slope of the wavelet spectrum, H = slope+1
2 . See the book

edited by Park and Willinger [PW00] for a more complete overview of long-range dependence in network

traffic, and papers by Veitch et al. [AV98, HVA02] and Feldmann et al. [FGHW99, Fel00] for more

detail on traffic analysis using wavelets.

Figure 4.43 shows the wavelet spectra of the time series of packet throughputs for fully-captured

sequential connections in the Leipzig-I trace. As explained in Section 4.2.1, this type of connection

is responsible for the overall burstiness of the traffic in our trace15. For comparison, Figure 4.43 also

14The rationale for choosing the term “logscale diagram” can be confusing, since it is applicable to any kind of plot in
which one or more axes show a logarithmic transformation of the data. The term “wavelet spectrum” is more specific and
seems more appropriate and has become the standard in the literature.

15The only exception is the Abilene-I trace in the direction from Cleveland to Indianapolis, where routing asymmetries
are responsible for most of the burstiness.

128

2 4 6 8 10 12 14
4

6

8

10

12

14

16

18

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzip−II Inbound
Poisson Arrivals With Same Mean

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 4.43: Wavelet spectra of the packet
throughput time series for Leipzig-II inbound
and its Poisson arrival fit.

2 4 6 8 10 12 14
10

15

20

25

30

35

40

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzip−II Inbound
Poisson Arrivals With Same Mean

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 4.44: Wavelet spectra of the byte
throughput time series for Leipzig-II inbound
and its Poisson arrival fit.

plots a simulated time series of Poisson arrivals with the same mean (38.94 packets per 10-millisecond

bin16). Note that only the middle 150 minutes of the Leipzig time series were used, eliminating the

non-stationarity created by the boundaries of the trace. The plot shows the variance of the wavelet

coefficient (or energy) as a function of the octave. The first octave comes from the dyadic aggregation

of 10-milliseconds bins, so it represents the energy at the 20-millisecond scale. The second octave comes

from the dyadic aggregation of the bins aggregated in the previous octave, so it represents the energy

at the 40-millisecond scale. The same dyadic aggregation is used for every successive scale, so octave

12 represents the energy at the 10 milliseconds times 212 scale, i.e., at the 40.96-second bins. To make

the plot more readable, we added labels on top of the plot with the scale given in seconds. Due to the

nature of the wavelet basis, the exponential decay of the autocorrelation in a short-range dependent

process results in a wavelet spectrum with a slope of zero. On the contrary, the decay in a long-range

dependent process is slower than exponential, and results in a wavelet spectrum with a positive slope.

The wavelet spectrum of Leipzig-II has a positive slope that indicates long-range dependence, while the

synthetic Poisson time series does not show such a trend (it is short-range dependent). Note also that

the height of the curves is rather different. This is because the overall variance of the Poisson arrivals

is smaller. The standard deviation of the aggregate packet throughput time series was 12.96 while that

of the synthetic Poisson arrivals was 6.23. The estimated Hurst parameters were 0.940 (with confidence

interval [0.931,0.949]) for the Leipzig-II trace and 0.496 (with confidence interval [0.487, 0.505]) for the

synthetic Poisson arrivals.

16Note that the simulated time series had exactly this mean, but the number of packets in each bin was always an integer
number.

129

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Ipls−>Clev
Abilene−I Clev−>Ipls

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 4.45: Wavelet spectra of the packet
throughput time series for Abilene-I.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

44

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Ipls−>Clev
Abilene−I Clev−>Ipls

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 4.46: Wavelet spectra of the byte
throughput time series for Abilene-I.

The same qualitative results hold for byte arrivals, as illustrated in Figure 4.44. Here the mean

number of bytes per 10-millisecond bin for Leipzig was 34,400, and the standard deviation of the trace was

14,000, while the standard deviation of the synthetic Poisson arrivals was only 188. The estimated Hurst

parameters were 0.941 (with confidence interval [0.932,0.950]) for Leipzig-II and 0.496 (with confidence

interval [0.487, 0.505]) for the synthetic Poisson arrivals.

Figure 4.45 shows the wavelet spectrum of the packet throughput time series for Abilene-I (in the

two directions: Indianapolis to Cleveland and Cleveland to Indianapolis). While the overall impression

is similar to that of the previous figures, we find a change in slope after the 11th octave. Note that both

directions exhibit similar long-range dependence. The estimated Hurst parameters were quite high: 1.016

(confidence interval [1.005, 1.027]) for the Indianapolis to Cleveland trace, and 1.009 (confidence interval

[0.998, 1.019]) for the opposite direction. Byte throughput for the same trace shown in Figure 4.46 is

qualitatively similar. The estimated Hurst parameters were 1.169 (confidence interval [1.158, 1.180])

and 1.046 (confidence interval [1.035, 1.057]). Both are significantly above 1, so some non-stationarity

is present in the trace.

Another example of this type of analysis is given in Figures 4.47 and 4.48. For UNC 1 PM, these

diagrams show a large separation between the two directions, that translates into significantly different

Hurst parameters. The entire set of Hurst parameters for the traces considered in this dissertation is

shown in Tables 4.1 and 4.2.

130

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC−1PM Outbound
UNC−1PM Inbound

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 4.47: Wavelet spectra of the packet
throughput time series for UNC 1 PM.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC−1PM Outbound
Inbound

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 4.48: Wavelet spectra of the byte
throughput time series for UNC 1 PM.

Trace Estimated Parameters

Leipzig-I Inbound H=0.940356 C.I.=[0.931459, 0.949254]
Leipzig-I Outbound H=0.968425 C.I.=[0.959527, 0.977322]
Abilene-I Ipls/Clev H=1.016014 C.I.=[1.005242, 1.026786]
Abilene-I Clev/Ipls H=1.008771 C.I.=[0.998000, 1.019543]
UNC 1 PM Outbound H=0.890024 C.I.=[0.872508, 0.907541]
UNC 1 PM Inbound H=0.926588 C.I.=[0.909072, 0.944105]
UNC 1 AM Outbound H=0.906053 C.I.=[0.888537, 0.923569]
UNC 1 AM Inbound H=0.932574 C.I.=[0.915058, 0.950091]
UNC 7:30 PM Outbound H=1.001424 C.I.=[0.983908, 1.018940]
UNC 7:30 PM Inbound H=0.981452 C.I.=[0.963935, 0.998968]

Table 4.1: Estimated Hurst parameters and their confidence intervals for the packet throughput
time series of five traces.

Trace Estimated Parameters

Leipzig-I Inbound H=0.941176 C.I.=[0.932278, 0.950073]
Leipzig-I Outbound H=1.019947 C.I.=[1.011049, 1.028844]
Abilene-I Ipls/Clev H=1.169007 C.I.=[1.158236, 1.179779]
Abilene-I Clev/Ipls H=1.045921 C.I.=[1.035149, 1.056692]
UNC 1 PM Outbound H=0.820944 C.I.=[0.803428, 0.838460]
UNC 1 PM Inbound H=0.925690 C.I.=[0.908174, 0.943206]
UNC 1 AM Outbound H=0.906226 C.I.=[0.888710, 0.923742]
UNC 1 AM Inbound H=0.957370 C.I.=[0.939854, 0.974887]
UNC 7:30 PM Outbound H=0.963306 C.I.=[0.945789, 0.980822]
UNC 7:30 PM Inbound H=0.970991 C.I.=[0.953474, 0.988507]

Table 4.2: Estimated Hurst parameters and their confidence intervals for the byte throughput
time series of five traces.

131

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full)
Seq (Partial)

Conc (Full)
Conc (Partial)

Figure 4.49: Breakdown of the active connec-
tions time series for Leipzig-II.

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full) -- Entire
Seq (Full) -- Data

Conc (Full) -- Entire
Conc (Full) -- Data

Figure 4.50: Impact of the definition of active
connection on Leipzig-II.

4.2.4 Time Series of Active Connections

Another important metric for describing the workload of a network is the number of connections that

are simultaneously active. The feasibility of deploying mechanisms that must maintain some amount of

state for each connection is highly dependent on this metric. For example, stateful firewalls can selectively

admit packets belonging to connections started from a protected network, and not those packets from

connections that originated somewhere else on the Internet. This kind of filtering requires to maintain

state for every connection observed in the recent past. Similarly, network monitoring equipment often

reports on the number of connections and their aggregate characteristics, and tries to identify heavy-

hitters that consume large amounts of bandwidth. This also requires per-connection state. A good

example of this type of monitoring is Cisco’s NetFlow [Cor06]. The performance of other mechanisms,

such as route caching, may also be affected by the number of active connections. Evaluating these types

of mechanisms and their resource consumption requirements can only be accomplished using synthetic

traffic that is realistic in terms of the number of connections that are simultaneously active.

One important difficulty when analyzing the time series of active connections is the way connection

start and end times are defined. The most obvious way to define connection start and end times is to

consider the first and the last segment of a connection as the boundaries of the connection. Figure 4.49

shows the time series of active connections in 1-second intervals using this technique for the Leipzig-II

trace. As in the throughput time series in Figures 4.21 and 4.22, the number of active connections from

fully-captured sequential connections is much larger than the number of active connections for the other

types of connections.

As the focus of our work is on the effect of source-level behavior, we can also use an alternative

132

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full)
Seq (Partial)

Conc (Full)
Conc (Partial)

Figure 4.51: Breakdown of the active connec-
tions time series for Abilene-I.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full) -- Entire
Seq (Full) -- Data

Seq (Partial) -- Entire
Seq (Partial) -- Data

Figure 4.52: Impact of the definition of active
connection on Abilene-I.

definition in which a connection is considered active as soon as it sends the first data segment, and

inactive as soon as it sends the last data segment. Interestingly, these two definitions result in quite

different time series. Figure 4.50 compares the time series for fully-captured sequential and concurrent

connections (the time series for partially-captured connections changed very little). The average number

of active connections is much smaller when only the data exchange portion of TCP connections is con-

sidered. The main cause of this difference is the presence of significant quiet times between the last ADU

and connection termination. Figure 3.28 in the previous chapter showed the distribution of this quiet

time. In some cases, we also observe quiet time between connection establishment and the first ADU.

The duration of connection establishment and connection termination is generally very short (around

two round-trip times), but we have observed numerous cases in which losses and TCP implementation

problems17 lengthened them substantially. We believe the second definition, considering only duration

between data segments, is more useful for studying the realism of synthetic traffic, since connection

establishment and termination create very little network load when compared to the actual exchanges

of data. Furthermore, congestion control plays little role when no data is being exchanged. We will use

this second definition of active connection in the rest of this work.

The breakdown of the active connection time series for Abilene-I is shown in Figure 4.51. Partially-

captured sequential connections are far more significant for this trace, reaching 2/3 of the average number

of fully captured sequential connections. We also note that the time series exhibits surprisingly small

variability except for a few very small spikes in the middle. Finally, and in contrast to the breakdown

of byte throughput for Abilene-I, the number of active connections from partially-captured concurrent

connections is less than half of the number of active connections from partially-captured sequential

17For example, some implementations send several reset segment after a lossy connection termination, and these segments
are often separated by long period of inactivity.

133

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Seq (Full) -- Entire
Seq (Full) -- Data

Seq (Partial) -- Entire
Seq (Partial) -- Data

Conc (Full) -- Entire
Conc (Full) -- Data

Conc (Partial) -- Entire
Conc (Partial) -- Data

Figure 4.53: Breakdown of active connections
time series for UNC 1 PM using both defini-
tions of active connection.

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

Time in Minutes

1 PM Seq Full
7:30 PM Seq Full

1 AM Seq Full

1 PM Seq Part
7:30 PM Seq Part

1 AM Seq Part

Figure 4.54: Impact of the time-of-day on the
active connections time series for the three
UNC traces.

connections.

Figure 4.52 illustrates the impact of the definition of active connection. The time series from both

fully- and partially-captured sequential connections decrease considerably when only the data exchange

part of the connection is considered. Note also that the spikes in the time series of partially-captured

connections are not affected by the change in the definition. This is interesting when we observe that

the magnitude of the variability of the other time series did decrease significantly.

The largest number of active connections was found in UNC 1 PM as shown in Figure 4.53. This is

surprising given that Abilene-I carries more bytes and packets, and should be explained by the differences

in the mix of applications that drives the traffic in these two links. The plots shows that fully- and

partially-captured sequential connections are affected in a very different way by the definitions of active

connections. While the number of active connections for fully-captured sequential connections decreases

very significantly, the number for partially-captured ones is almost the same. This can be explained by

long connections that were active throughout the entire duration of the trace.

Finally, Figure 4.54 studies the impact of the time of the day on the time series of active connections

for sequential connections. The number of fully-captured sequential connections is more sensitive to the

definition of active connection than the number of partially-captured sequential connections.

134

4.3 Summary

The first part of this chapter presented our approach for introducing realistic network-level parameters

in our traffic generation methodology. In particular, we considered how to measure three basic network

parameters that have a major impact on the throughput of a TCP connection: round-trip time, receiver

window size, and loss rate. As in our analysis of source-level behavior, we focused on the efficient analysis

of segment headers for extracting these network parameters, and evaluated the accuracy of our chosen

measurement methods using testbed experiments.

Our discussion on measuring round-trip time considered the classic SYN estimator, and proposed

a novel technique based on computing one-side transit times (OSTTs). Our technique has two main

advantages. First, it is applicable to connections observed both on the edges and on the core of the

network. In either case, it provides us with a way to measure the distance, in terms of network delay,

between the monitoring point and the end hosts taking part in each connection. Second, OSTT-based

estimation provides a number of samples proportional to the number of data segments on a TCP con-

nection, unlike the single sample that can be obtained using the SYN estimator. This provides a better

way to understand the inherent variability in round-trip times. It also served us to study the impact of

delayed acknowledgments on path round-trip time estimation from segment headers. We clearly showed

that delayed acknowledgments substantially inflate estimates of round-trip time that rely on non-robust

statistics like averages and maxima. For this reason, we favor the use of minima or medians to estimate

path round-trip time, which were proved to be highly accurate in our testbed experiments.

We also studied the empirical distributions of round-trip times in our collection of five traces. We can

highlight several observations. The edge traces from UNC and Leipzig showed between 20% and 35%

of connections with very short round-trip times below 20 milliseconds. In contrast, the backbone trace

from Abilene showed less than 1% of connections with these small round-trip times. Our analysis of the

total number of bytes carried in connections with a given round-trip time revealed that Leipzig-II had a

far larger fraction of bytes (10%) carried in connections with round-trip times above 500 milliseconds.

The distributions of round-trip times did not only differ substantially on their range, but also on their

shapes, even among those collected on the same site. For example, the UNC 1 PM trace showed only

15% of connections with round-trip times above 100 milliseconds, while this percentage became 25% and

38% for UNC 7:30 PM and 1 AM respectively.

The second parameter we considered is the maximum size of the receiver window, which, in combi-

135

nation with the round-trip time, puts a hard limit on the maximum throughput of a TCP connection.

This parameter is straight-forward to measure, since each TCP segment contains a field with the size of

the receiver window at the time of its sending. Taking the maximum of the observed receiver windows

provides an accurate way of measuring the largest receiver window supported by an endpoint, even for

connections that grow their limit some time after the connection is opened. We used this technique to

study the distribution of maximum receiver window sizes in our traces, and found a large fraction of

connections with a small maximum. Between 45% and 65% of the connections had maximum receiver

window sizes below 20 KB, which is well below the 64 KB limit.

The last network parameter that we studied was the segment loss rate. Loss has a substantial impact

on TCP connections. First, losses force the endpoints to retransmit segments to maintain a reliable

communication. Second, TCP endpoints use losses as the signal of congestion, and react to them by

lowering their sending rate. For these two reasons, even a small number of losses can have a dramatic

effect on a TCP connection. Measuring loss rates purely from segment headers must necessarily be based

on the same mechanisms used by TCP endpoint to detect losses: retransmissions and duplicate acknowl-

edgments. We proposed a technique to measure the loss rate of data segments using these signals, where

differentiating between losses before the monitoring point, detected using duplicate acknowledgments,

and losses after the monitoring point, detected using retransmissions. Our evaluation using testbed ex-

periments showed that our technique is reasonably accurate. The experiments also illustrate the impact

of lost acknowledgments, which increase data segment loss rates, and variability introduced by simulating

losses using dummynet ’s dropping mechanism. We also studied the loss rates in our traces, and found

that between 92.5% and 96.2% of the TCP connections experienced no losses. However, connections

with one or more losses accounted for 46% (Leipzig-II) to 78% (UNC 1 AM) of the total bytes in traces,

and connections with loss rates above 1% (i.e., moderately high) accounted for 8% (Abilene-I) to 34%

(UNC 1 AM) of the total bytes.

The second part of this chapter described our approach for comparing real and synthetic traffic using

several network-level metrics. The goal of such a comparison is to evaluate how closely synthetic traffic

generated on a closed-loop manner can reproduce the aggregate characteristics of real traffic. This type

of comparison concerns itself with the extrinsic characteristics of the generated traffic, which were not a

direct input to the traffic generators. On the contrary, evaluating how well source-level properties and

network-level parameters are preserved by our traffic generation method and its implementation focuses

on intrinsic characteristic of the generated traffic, which are the input to the traffic generation system.

We first discussed how to study the time series of packet and byte throughputs, using plots of time

136

series at a coarse scale, tens of seconds. This broad view was specially useful to identify major trends

and features in the traffic. We used this approach to study the composition of our traces, finding that

sequential connections are mostly responsible for the features of the time series, being the aggregate

throughput for concurrent connections generally smooth. We further differentiate between traffic from

connections for which we observed every packet between TCP connection establishment and termination,

uncovering substantial boundary effects in the UNC traces and to some extent in the Abilene-I trace.

We also showed that the fraction of the total throughput from unidirectional connections is generally

negligible. The only exception is Abilene-I, where routing asymmetries explain the finding that 1/4

of total Cleveland-to-Indianapolis bytes were carried in connections whose packets appear in only one

direction of the trace.

The second way in which we proposed to examine throughput was to construct the marginal distri-

butions of the time series at a fine-scale (10 milliseconds). While marginals ignore dependency structure,

their interpretation in networking terms is intuitive. Plots of the body of the marginal distribution pro-

vide an overview of the range of fine-scale throughputs in a trace, while plots of the tail of the marginal

distribution make the highest (fine-scale) throughputs stand out. The analysis of our traces showed that

Poisson arrivals cannot be used to model neither packet or byte throughputs. The bodies of the marginal

distributions from our traces are between 2 and 3 times more variable that the ones from Poisson arrivals

with the same mean. We also showed that the marginal distributions from our traces have statistically

significant departures from normality, which are most prominent on the tails. This was demonstrated

using two methods, Q-Q plots with simulation envelopes and the Kolmogorov-Smirnov test of normality.

Both methods were applied to scales of aggregation between 10 milliseconds and 10 seconds. While

the distributions became closer to normality as scale increased, only a few of them were statistically

consistent with the normal distribution at the 10 second scale. For this reason, our analysis of marginal

distribution will rely on CDFs of the bodies and CCDFs of the tails, rather than making assumptions

about the underlying statistical distribution.

Our third type of analysis of throughput focused on the long-range dependence of traffic. We employ

the wavelet analysis for this purpose, which has been shown to be robust and accurate in the literature.

This method provides both an overview of the way in which variability changes with scale using wavelet

spectra plots, and a state-of-the-art estimator of Hurst parameter with confidence intervals. Our dis-

cussion illustrated how clearly wavelet spectra and Hurst parameter estimates differentiate between the

short-range dependence in Poisson arrivals and the long-range dependence in our traces. Our traces

show remarkably high Hurst parameter estimates, well above 0.9 for both packet and byte throughput.

137

Finally, the chapter introduced the plot of the time series of active connections. This type of analysis

is essential to validate the realism of traffic generation for certain experiments where per-connection

state is important. Our analysis considered two definitions of active connections: a connection was

considered active between the arrivals of its first and last segments, or between the arrivals of its first

and last segments that carried application data, i.e., not control segments. We demonstrated that these

two definitions have a dramatic impact on the number of active connections. We will favor the latter

definition (data active connections) for our evaluation in Chapter 6, since the focus of our modeling is

the source-level behavior in terms of useful data exchanges. Our discussion of active connections also

considered the effect of trace boundaries, revealing a large fraction of active connections from partially-

captured connections.

138

CHAPTER 5

Generating Traffic

Today’s scientists have substituted mathematics for experiments, and they wander off
through equation after equation, and eventually build a structure which has no relation
to reality.

— Nikola Tesla (1857–1943)

Reality is merely an illusion, albeit a very persistent one.

— Albert Einstein (1879–1955)

This chapter discusses the use of the data acquisition and modeling methods presented in the two

previous chapters to generate traffic in network experiments. In addition, it discusses the overall method-

ology we have developed for validating our traffic generation approach. We will distinguish between

validating the method itself, and studying how closely the generated traffic approximates real traffic for

properties not directly incorporated in the method. In this chapter, we consider the validation of the

method itself, which means to verify that the source-level properties and network-level parameters of

the traffic are preserved by the traffic generation method. The study of other properties is left for the

next chapter.

5.1 Replaying Traces at the Source-Level

Our approach to traffic generation is illustrated in Figure 5.1. Given a packet header trace Th

collected from some Internet link, we first use the methods described and evaluated in Chapters 3 and

4 to analyze this trace and describe its content. This description is a collection of connection vectors

Tc. Each vector describes the source-level behavior of one of the TCP connections in Th using either

the sequential or the concurrent a-b-t model. In addition, each vector includes the relative start time of

each connection, and its measured round-trip time, TCP receiver window sizes and loss rate. The basic

Tmix Tra f f ic
G enera tors

Tmix Tra f f ic
G enera tors

Tra ce P a rtitioning

TE S TB E D

O rig ina l P a ck et
H ea d er Tra ce

Th

O rig ina l P a ck et
H ea d er Tra ce

Th

O rig ina l
Connection Vectors

Tc

O rig ina l
Connection Vectors

Tc

Trace Analysis

G enera ted P a ck et
H ea d er Tra ce

Th′

G enera ted P a ck et
H ea d er Tra ce

Th′

R ep l a y ed
Connection Vectors

Tc′

R ep l a y ed
Connection Vectors

Tc′
Trace Analysis

Figure 5.1: Overview of Source-level Trace Replay.

approach for generating traffic according to Tc is to replay each connection vector. For each connection

vector, the replay consists of starting a TCP connection, carefully preserving its relative start time, and

reproducing ADUs and inter-ADU quiet times. We call this traffic generation method source-level trace

replay, and we have implemented it in a network testbed. Source-level trace replay in our environment

implies the need to first partition Tc into disjoint subsets and then assign each subset to a pair of traffic

generators. Partitioning is important in our environment, since the high throughput and large number

of simultaneously alive connections in our real traces prevents us from using a single pair of traffic

generators. We provide further details on our partitioning method in 5.1.1.

The goal of the direct source-level trace replay of Tc is to reproduce the source-level characteristics

of the traffic in the original link, generating the traffic in a closed-loop fashion. Closed-loop traffic

generation requires to simulate the behavior of applications, using regular network stacks to actually

translate source-level behavior (the input of the generation) into network traffic (the output of the

generation). In our implementation, described in Section 5.1.2, this is accomplished by relying on the

standard socket interface to reproduce the communication in each connection vector. This is a closed-

loop manner of generating traffic in the sense that it preserves the feedback mechanisms in the TCP

layer, which adapt their behavior to changes in network conditions, such as in congestion. In contrast,

packet-level trace replay, which means to directly reproduce Th, is an open-loop traffic generation method

where TCP and lower layers are not used, and the traffic does not adapt to network conditions.

A new packet header trace T ′
h can be obtained from the source-level trace replay of Tc. Our validation

of the traffic generation method is then based on analyzing this trace using the same methods used to

140

FreeBSD
Router

FreeBSD
Router

tmix +
dummynet

end-systems

1 Gbps

1
Gbps

1
Gbps

100
Mbps

tmix +
dummynet

end-systems

Ethernet
Switch

tcpdump monitor

Ethernet
Switch

100
Mbps

… …

Figure 5.2: Diagram of the network testbed where the experiments of this dissertation were
conducted.

transform Th into Tc. We then compare the resulting set of connection vectors T ′
c with the original Tc.

In principle, they should be identical, since Tc represents the invariant source-level characteristics of Th.

Section 5.2 studies the results from the source-level trace replay of three traces, assessing how closely T ′
c

approximates Tc. T
′

h is necessarily different from Th. Besides the stochastic nature of network traffic, this

is because T ′
h is generated according to Tc, which is a simplified description of the source-level behavior

and network parameters in the original trace Th. It is however important to understand the difference

between Th and T ′
h in order to understand to what extent Tc describes the original traffic. Chapter 6 is

an in-depth study of this question.

5.1.1 Trace Partitioning

The focus of our traffic generation work is the generation of wide-area traffic in a closed-loop manner.

This type of generation process requires to drive a large number of connections by simulating the behavior

of the applications on the endpoints. For example, the experiments presented in the latter part of this

chapter involve several millions of TCP connections, behaving in the manner specified by as many

connection vectors. At any given point in time during the generation, tens of thousands of connections

are active. Given CPU, memory and bus speed limitations, a single pair of traffic generators cannot

handle such loads, so we generate traffic in our experiment in a distributed fashion. Experiments are

conducted in the environment illustrated in Figure 5.2. The goal of the experiment is to generate traffic

on the link between the two routers. Traffic is generated by 42 traffic generators, 21 on each side of the

network. This type of topology is usually known as the “dumbbell” topology.

Each pair of traffic generators (one on each side) is responsible for replaying the source-level behavior

of a (disjoint) subset of the connection vectors in Tc. In our experience, assigning connection vectors to

141

subsets in a round-robin fashion works well. While the resulting subsets are far from being completely

balanced, this simple partitioning technique results in subsets that can be easily handled by a pair of

traffic generators. We carefully collected statistics on CPU and memory utilization from our source-level

trace replay experiments, and found that no pair of traffic generators was ever overloaded. For the

results in this dissertation, CPU utilizations were never above 60%, and usually well below that. The

use of network connections involves allocating and deallocating pieces of memory known as “mbufs” for

buffering purposes. No request for this type of memory was ever denied for the experiments reported in

this dissertation. While larger traces than the ones we use in this dissertation could certainly overload

our specific environment, our approach is fully scalable, in the sense that Tc can be partition into an

arbitrary number of subsets. This means that the number of traffic generators can increase as much as

necessary to handle the replay of any trace without running into resource constraints. This is obviously

true as long as no individual connection requires more resources than those provided by an entire traffic

generator end host.

5.1.2 Conducting Experiments

We have developed a traffic generation tool, tmix , which accurately replays the source-level behavior

of an input set of connection vectors using real TCP sockets in a FreeBSD environment. In addition, we

make use of a modified version of dummynet [Riz97] to apply arbitrary packet delays and packet drop

rates to the segments in each connection1 Our version of dummynet , that we will call usernet in the rest

of this text, implements a user-level interface that can be used by tmix instances to assign per-connection

delays and loss rates read from the input set of connection vectors. Finally, a single program, treplay , is

used to control the setup of the experimental environment, configure and start tmix instances (assigning

them a subset of Tc and a traffic generation peer), and collect the results.

Tmix is a user-level program that receives a collection of connection vectors as input, and generates

traffic according to their source-level behavior. Figure 5.3 illustrates the relationship between tmix and

the network layers in the traffic generation end host in which a tmix instance runs. Tmix instances

rely on the standard socket interface to create a connection, send and receive ADUs, and to close the

connection. The socket interface is an Application Programming Interface (API) that enables user-level

programs, such as tmix , to communicate with other end host using a programming abstraction similar

to a file. Calls to the socket interface are translated by the kernel into requests to use the process-to-

1We thank the members of the FreeBSD project in general, and in particular the creator of dummynet , Luigi Rizzo,
for their outstanding work. Our empirical work would not have been possible without their generous efforts.

142

User-L ev el

Socket LayerK ern el -L ev el

T C P Layer
I P Layer

N et w o rk

U s ern et

op en () cl os e()
s en d () recv ()

i octl (src_port,
rtt, l oss)

op en (src_port) cl os e()
s en d () recv ()

Set of C on n ecti on V ectors

tm i x

Figure 5.3: End-host architecture of the traffic generation system.

process communication service provided by the transport layer (TCP). The transport layer itself uses

the host-to-host communication service provided by the network layer (IP), and the network layer uses

the link layer (Ethernet in our case) to handle the network interface and create physical packets.

Usernet

Our experiments also require a special simulation service, usernet , which is a modified version of

dummynet , that provides a highly scalable way of imposing per-connection round-trip times and loss

rates. These per-connection round-trip times and loss rates are directly controlled from the user level by

tmix instances. This requires a direct communication between the tmix instance and the usernet layer

that is not directly supported by the network stack. In order to overcome this difficulty, we use a covert

communication channel: the source port number of each replayed connection. By having tmix assigning

specific source port numbers to each connection, we can then use ioctl calls to modify a table at the

usernet layer that maps source port numbers to round-trip times and loss rates. When a segment is

received by usernet (from the higher layer), usernet can appropriately use the source port number to

decide which network parameters should be applied. Source port numbers are unique for each active

connection in the same end host, and they are always present in TCP segments2. The user-level program,

i.e., the tmix instance, has therefore to keep track of the (dynamic) source port number that is used for

each new TCP connection it opens. Using this technique, usernet can determine the delay and loss rate

that should be applied to each segment simply by reading an entry in a table indexed by source port

2Fragmentation takes place below the usernet layer. Figure 5.3 can be confusing in this regard, since fragmentation
does take place at the IP layer. Usernet is actually embedded in the IP layer.

143

number, so the lookup time is O(1). The number of source port numbers is small (216), so this table

does not require too much kernel memory (524 KB). No special infrastructure was required to accurately

replay the receiver window sizes measured for each connection. This is because these parameters can be

directly modified by tmix instances using a FreeBSD system call. This approach has worked very well

in our experiments.

An alternative solution using traditional dummynet would be to use the programmable API of ipfw,

which makes it possible to add new dummynet rules from a user-level program. The idea would be to

add a new rule for each connection, again using the source port number to map delay/loss to individual

connections. However, this will mean an O(n) lookup cost for each segment, where n is the number of

rules, since the current implementation of ipfw searches through the rules in a sequential fashion. Given

the large number of connections that each end host handles during the experiments, this per-segment

lookup is unacceptable.

Another way of introducing per-connection round-trip times was used by Le et al. [LAJS03]. This

study used random sampling from a uniform distribution whose parameters were be set at the start

of the experiment. As seen in Section 4.1.1, the uniform distribution is not a good approximation of

real round-trip times. A later refinement enabling sampling from an empirical distribution was rather

inflexible, since it required to modify the dummynet source code and recompile it for each experiment.

The use of usernet , which is fully controllable from the user level, is far more convenient.

Replaying an a-b-t Connection Vector

Two instances of tmix can replay an arbitrary subset of Tc by establishing one TCP connection for

each connection vector in the trace, with one instance of the program playing the role of the connection

initiator and the other instance playing the role of the connection acceptor. To begin, the connection

initiator opens the connection and performs one or more socket writes in order to send exactly the

number of bytes specified in the first ADU a1. The other endpoint accepts the connection and reads

as many bytes as specified in the ADU a1. For efficiency, the size of these read and write operations

was chosen to be a multiple of the MSS in our Ethernet testbed (1,460 bytes). We made no attempt to

actually measure and reproduce the size of the I/O operations in the original connections. The impact

of this simplification is likely to be small, given the results in Section 3.4.

One important issue is how to synchronize the two endpoints (i.e., instances of tmix) of the con-

nection to replay exactly the same connector vector. This is accomplished by having the first ADU

144

unit in each generated connection include a 32-bit connection vector id in the ADU’s first four bytes.

Connection vector ids are assigned to each connection vector prior to the traffic generation, and they

are unique. Since this id is part of the content of the first data unit, the acceptor can unambiguously

identify the connection vector that is to be replayed in this new connection. If a1 is less than 4 bytes

in length, the connection initiator will open the connection using a special port number designated for

connections for which the id is provided by the connection acceptor. This approach guarantees that the

two tmix instances always remain properly synchronized (i.e., they agree on the Ci they replay within

each TCP connection) even if connection establishment segments are lost or reordered. It also makes

it possible to generate traffic without introducing any control traffic into the experiment, i.e., traffic

comes only from the replay of connection vectors, and from any need to manage the behavior of the tmix

instances.

One important design consideration in the implementation of our traffic generation approach is the

assumption of independence among flows. While this is not completely realistic, the level of aggregation

at which we generate traffic makes it a reasonable approach (see Hohn et al. [HVA02] for a related

discussion). This assumption makes traffic generation fully scalable, since Tc can be partitioned into an

arbitrary number of subsets. As long as there are enough traffic generation hosts, we can replay traffic

from arbitrarily large traces.

5.1.3 Data Collection

We obtain two types of data from each experiment. First, we collect a new packet header trace T ′
h,

which can be directly compared with the original packet header trace Th and analyzed with our methods

to extract a new set of connection vectors T ′
c . This new set can be directly compared to Tc. Second, tmix

instances create a number of logs. Some tmix logs can be used to verify that the traffic generation host

did not run out of resources during traffic generation, and they successfully replayed their subset of Tc.

Other tmix logs report on the performance of the TCP connections in the experiments. This includes

connection and epoch response times and the list of uncompleted connections with a description of their

progress by the end of the experiment.

145

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Leipzig-II Seq A
Lossless Replay Leipzig-II Seq A

Lossy Replay Leipzig-II Seq A
Original Leipzig-II Conc A

Lossless Replay Leipzig-II Conc A
Lossy Replay Leipzig-II Conc A

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Leipzig-II Seq A
Lossless Replay Leipzig-II Seq A

Lossy Replay Leipzig-II Seq A
Original Leipzig-II Conc A

Lossless Replay Leipzig-II Conc A
Lossy Replay Leipzig-II Conc A

Figure 5.4: Bodies and tails of the A distributions for Leipzig-II and its source-level trace replays.

5.2 Validation of Source-level Trace Replay

In this section, we consider the source-level trace replay of the three packet header traces: Leipzig-

II, UNC 1 PM, and Abilene-I. The first goal is to study how well the replay experiments preserve the

source-level input, which is the collection of connection vectors Tc extracted from the original trace Th.

In principle, the characterization of source-level behavior using the a-b-t model represents characteristics

of each connection that are invariant to network conditions, so the analysis of the generated trace Th

should result in a collection of connections vectors T ′
c that is identical to Tc. In practice, there are some

practical limitations that make the two sets of connection vectors different. We will discuss the possible

causes in this section, and present a statistical comparison of Tc and T ′
c .

The second goal of this section is to study the impact of introducing packet losses in the generated

process. For this purpose, we conducted two source-level trace replays of each original trace. The lossless

replay reproduced the a-b-t connection vector of each original connection, and gave each connection its

measured round-trip time and TCP receiver window sizes. The lossy replay additionally applied its

measured loss rate to each replayed connection. Differences between the lossless and lossy replays tell us

about the robustness of both our source-level characterization and traffic generation tools in the presence

of losses. These losses are completely absent from our experiments unless they are artificially introduced

using usernet , as in the lossy replay.

5.2.1 Leipzig-II

The plots in Figure 5.4 compare the distributions of a-type ADU sizes, A, for the original set of

connection vectors in Leipzig-II, and for the sets of connection vectors extracted from its lossless and

146

lossy replays. In each plot, the three distributions marked with white symbols correspond to sequential

connection vectors, and the ones marked with black symbols to concurrent connection vectors. The left

plot shows the bodies of the distributions, using CDFs in log-linear axes. The right plot shows the tails

of the distributions, using CCDFs in log-log axes. In general, there is an excellent agreement between

the original distributions and those from the source-level replays.

The bodies of the distributions from sequential connections lie on top of each other, even if per-

connection loss rates are used during the experiments. As discussed in 3.4, our ADU measurement

algorithm can sometimes be inaccurate when one of the last segments of a TCP window is lost before

the monitor. In this case, the loss is recovered after a timeout, which can create a quiet time between

the consecutive segment that is long enough to unnecessarily split an ADU. This means that a sample ai

from one of the a-type data units in Tc becomes two samples a′
i and a′

i+1 in T ′
c , such that a′

i +a′
i+1 = ai.

The validation of the data acquisition methods in Section 3.4 demonstrated that ADU splitting due to

TCP timeouts is possible, although its impact was small even when large data units and aggressive loss

rates were used. The comparison of the Leipzig-II lossless and lossy replays, which represent much more

realistic traffic, shows that ADU splitting due to TCP timeouts has very little impact in practice, at

least for the relatively light distribution of loss rates in Leipzig-II. We can hardly observe any difference

between the bodies of the A distributions when losses are added to the replay. The two bodies from the

replay are also very similar to the body of the original distribution. The same is true for the tails, which

do not show any significant difference. This analysis demonstrates that tmix can accurately reproduce

the sizes of a-type data units in sequential connections, even when ADUs are large and when experiments

are lossy.

There is also a very good match between the A distributions for concurrent connection vectors. In

some regions, we notice somewhat thicker lines that come from small offsets of the curves. The tails

of the A distribution for concurrent connections are also very similar, although the one from the lossy

replay is slightly heavier for values below 5 MB, and slightly lighter for values above that. This could

be explained by the inaccuracy discussed above, or by trace boundaries. In the latter case, losses reduce

throughput, making the replay of lossy connections are slower than the replay of lossless ones. This

means that some a-type ADUs may not have time to complete their transmission before the end of the

experiment.

Figure 5.5 compares the distribution of b-type ADU sizes, B, for the connections vectors extracted

from the original Leipzig-II trace and their lossless and lossy source-level replays. For sequential con-

147

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Leipzig-II Seq B
Lossless Replay Leipzig-II Seq B

Lossy Replay Leipzig-II Seq B
Original Leipzig-II Conc B

Lossless Replay Leipzig-II Conc B
Lossy Replay Leipzig-II Conc B

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07 1e+08

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Leipzig-II Seq B
Lossless Replay Leipzig-II Seq B

Lossy Replay Leipzig-II Seq B
Original Leipzig-II Conc B

Lossless Replay Leipzig-II Conc B
Lossy Replay Leipzig-II Conc B

Figure 5.5: Bodies and tails of the B distributions for Leipzig-II and its source-level trace replays.

nection vectors, both the bodies and the tails are identical. For concurrent connection vectors, the

distributions show slightly different bodies, but identical tails. The differences cannot be explained by

the ADU splitting due to TCP timeouts. If so, we would see a difference between the distributions

from the lossless replay and the ones from the lossy replay, but this is not the case. The source of the

difference is an inherent problem with the replay of concurrent connections, the misclassification of the

replayed concurrent connections. While tmix always replays a concurrent connection vector in the right

way (i.e., decoupling the two directions), the actual set of segments observed at the monitor may simply

not have any pair of data segments that satisfy the concurrency test given in Section 3.3.3. In other

words, the segments of a replayed concurrent connection may exhibit a fortuitous sequential ordering. As

a consequence, the data analysis algorithm classifies as sequential some connections from the replay that

were concurrent in the original trace. The sizes of the b-type ADUs in these misclassified connections

are then absent from the B distribution for replayed concurrent connections. The small difference in the

plot between the original and replayed distributions demonstrates that the number of misclassifications

is relatively small, so the majority of the concurrent connections still exhibit concurrent behavior in the

replays.

It is important to note that the probability of a misclassification decreases as the sizes of the ADUs

increase, since the larger number of data segments makes finding a concurrent pair more likely. There-

fore, misclassifications become less significant for the tails of the distributions, since the connections

whose samples are in the tail have necessarily at least one large ADU (the one we see in the tail), and

are less likely to be misclassified. There is no appreciable difference between the tails of the B distri-

butions from concurrent connections, in agreement with our observation regarding the lower likelihood

of misclassification for connections with large ADUs. Misclassified connections are described using the

sequential a-b-t model, so they result in additional samples for the distributions that characterize se-

148

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original Leipzig-II Seq E
Lossless Replay Leipzig-II Seq E

Lossy Replay Leipzig-II Seq E
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original Leipzig-II Seq E
Lossless Replay Leipzig-II Seq E

Lossy Replay Leipzig-II Seq E

Figure 5.6: Bodies and tails of the E distributions for Leipzig-II and its source-level trace replays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original Leipzig-II Seq TA
Lossless Replay Leipzig-II Seq TA

Lossy Replay Leipzig-II Seq TA
Original Leipzig-II Conc TA

Lossless Replay Leipzig-II Conc TA
Lossy Replay Leipzig-II Conc TA

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original Leipzig-II Seq TA
Lossless Replay Leipzig-II Seq TA

Lossy Replay Leipzig-II Seq TA
Original Leipzig-II Conc TA

Lossless Replay Leipzig-II Conc TA
Lossy Replay Leipzig-II Conc TA

Figure 5.7: Bodies and tails of the TA distributions for Leipzig-II and its source-level trace replays.

quential connection vectors. These extra samples have a much smaller effect on the CDFs, since the

number of samples from sequential connections is far larger anyway.

Figure 5.6 considers the distribution of the number of epochs E extracted from the original and from

the generated packet header traces. The distributions from the replays are very similar to the original

one. The small difference comes again from the small number of misclassified concurrent connections

that were considered sequential. Misclassified connections add extra samples to E which slightly distort

the distributions from the replays. There is a somewhat bigger difference in the far tail, for connection

vectors between 1250 and 1500 epochs. This difference could be explained by misclassification and by

trace boundaries (connections replayed more slowly than in the original that do not replay all of their

epochs). We observe no difference between lossless and lossy replays in this part of the tail.

The next pair of plots, shown in Figure 5.7, examines the distribution TA of the quiet times on

the acceptor side of TCP connections, i.e., between ai and bi. The plot of the bodies shows a very

good match between the original distribution and the ones measured from the replays of sequential

149

connections. The slightly heavier distributions from the replays is due to a small simplification we made

regarding the replay of quiet times. Tmix will replay the exact quiet times specified in each connection

vector. However, as discussed in Section 3.3.1, when these quiet times are extracted from a packet header

trace, the measured quiet time is the sum of two components. The first component comes from the quiet

time q at the end host, and the second component comes from the delay d between the monitor and

the endpoint. When tmix replays a quiet time, it remains quiet for the exact duration of the sum of

these components, q + d. Given that the replay in the testbed uses usernet to reproduce the measured

round-trip time of each connection, there is also a delay between tmix end hosts and monitor, so the

analysis of the generated packet header trace results in quiet times of the form q + 2d. It would have

been possible to eliminate this inaccuracy by subtracting d from the originally measured quiet times.

The value of d is equal to half of the one-side transit time, although delayed acknowledgments and

queuing can affect individual samples. We did not try to incorporate a correction for this quiet time

overestimation problem in our experiments. Besides measurement difficulties, the extra delay becomes

less significant in larger quiet times, for which d is far smaller than q. Larger quiet times are far more

significant, since they are the ones that can increase the duration of TCP connections substantially.

There is also a good agreement in the tails of the TA distributions, although the distributions from

the replays are slightly heavier than the original distributions. This is not explained by the previous

overestimation of quiet times due the location of the monitor, because the magnitude of the quiet times

in the tail is far larger than the magnitude of d. The source of this small mismatch is the misclassification

of some concurrent connections. This is true for both the differences between the tails from sequential

connection vectors and between the tails from concurrent connection vectors. It may seem counter-

intuitive that the misclassifications makes both types of tails heavier, instead of making one type of

tail heavier and the other one lighter. The explanation is that misclassifications move samples from

concurrent connections to sequential connections. These moved samples satisfy at the same time the

following two properties:

• They have a lighter tail than the tail of the samples left in connections correctly classified as

concurrent in the analysis of the generated traffic. The removal of these samples therefore makes

the shown distributions from concurrent connections in the replays heavier than the one in the

original trace.

• They have a heavier tail than the tail of the samples that they joined in connections correctly

classified as sequential in the analysis of the generated traffic. The addition of these samples

150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original Leipzig-II Seq TB
Lossless Replay Leipzig-II Seq TB

Lossy Replay Leipzig-II Seq TB
Original Leipzig-II Conc TB

Lossless Replay Leipzig-II Conc TB
Lossy Replay Leipzig-II Conc TB

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original Leipzig-II Seq TB
Lossless Replay Leipzig-II Seq TB

Lossy Replay Leipzig-II Seq TB
Original Leipzig-II Conc TB

Lossless Replay Leipzig-II Conc TB
Lossy Replay Leipzig-II Conc TB

Figure 5.8: Bodies and tails of the TB distributions for Leipzig-II and its source-level trace replays.

therefore makes the shown distributions from the sequential connections in the replays heavier

than the one in the original trace.

The distribution TB of quiet times on the initiator side of TCP connections, i.e., between bi and

ai+1, is compared for original and replayed traces in Figure 5.8. The bodies of the distributions show the

same kind of mismatch that we discussed for the TA distributions. For values below a few seconds the

TB distribution from the replay of sequential connections appears heavier that the original distribution.

This is due to the overestimation of quiet times, which becomes less significant as the quiet time becomes

larger. We can also observe that the difference in the shortest quiet time is larger for TB than for TA.

The reason is not completely clear, but it is probably related to the absence of samples in TB from

the large subset of connection vectors with only one epoch. The TB distribution from the replay of

concurrent connections appears lighter than the original for values above one second. This is due to

concurrent connection misclassification. The much larger number of samples in the distributions for

sequential connections makes the impact of the misclassification very small.

Besides the replay of the source-level characteristics of the connections in Leipzig-II, our experiments

also involved replaying the network-level parameters measured for each connection in Tc. The left plot in

Figure 5.9 compares the distributions of round-trip times extracted from the original and the generated

packet header traces. The reproduction was very accurate for sequential connection vectors, and the

three distributions exactly lie on top of each other. On the contrary, the distributions for the replayed

concurrent connections show a strange jump in probability at 100 milliseconds. The reason for this

anomaly, which changed the shape of the rest of the distribution, is unclear.

The right plot of Figure 5.9 compares the distributions of receiver window sizes. Note that the

151

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Original Leipzig-II Seq
Lossless Replay Leipzig-II Seq

Lossy Replay Leipzig-II Seq
Original Leipzig-II Conc

Lossless Replay Leipzig-II Conc
Lossy Replay Leipzig-II Conc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
sf

er
re

d

Receiver Window Size in Bytes

Original Leipzig-II Seq
Lossless Replay Leipzig-II Seq

Lossy Replay Leipzig-II Seq
Original Leipzig-II Conc

Lossless Replay Leipzig-II Conc
Lossy Replay Leipzig-II Conc

Figure 5.9: Bodies of the round-trip time and receiver window size distributions for Leipzig-II
and its source-level trace replays.

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Loss Rate in Percentage

Original Leipzig-II Seq
Lossless Replay Leipzig-II Seq

Lossy Replay Leipzig-II Seq
Original Leipzig-II Conc

Lossless Replay Leipzig-II Conc
Lossy Replay Leipzig-II Conc

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
fe

rr
ed

Loss Rate in Percentage

Original Leipzig-II Seq
Lossless Replay Leipzig-II Seq

Lossy Replay Leipzig-II Seq
Original Leipzig-II Conc

Lossless Replay Leipzig-II Conc
Lossy Replay Leipzig-II Conc

Figure 5.10: Bodies the loss rate distributions for Leipzig-II and its source-level trace replays,
with probabilities computed per connection (left) and per byte (right).

probability was computed over the total number of data bytes transferred, to give a better sense of the

amount of data associated with each receiver window size. There is an excellent match between the

distribution obtained from the Leipzig-II trace and those from its two source-level replays.

The final comparison examines the distributions of loss rates. The left plot of Figure 5.10 shows

the distribution of the measured loss rates for the original Leipzig-II trace and its replays. There is a

reasonable match between the original and the lossy replays, especially for sequential connections. This

is a good result given that usernet creates losses by generating random numbers in an independent

manner. The small difference is probably explained by a sample size problem in short connections with

non-zero loss rates, as discussed in Section 4.1.3, and by concurrent connection misclassification.

Note that we measured some non-zero loss rates in the lossless experiment, in which no artificial

losses were introduced. This suggests some problem with the experimental environment, perhaps some

network interfaces that were duplicating segments. Such duplicates confuse the loss rate measurement

152

algorithm, which considers each retransmission a loss event3. If duplication is behind our observations,

the impact on the experiments would be minimal. True loss slows down TCP, but duplication does not.

The right plot of Figure 5.10 shows the distributions of loss rates per byte, rather than per connection

as in the left plot. The CDFs show the probability that each byte had of being carried in a connection

with at most the given loss rate. For example, the CDFs for the original sequential connections shows

that 80% of the bytes were carried in connections with a loss rate of 1% or less. The CDFs in the

right plots are easier to read than those in the left plot, since they are far smoother. They are also more

significant, since they pay more attention to the connections that carry more bytes, which are those than

have a larger impact on the load of the network. There is a good match between loss rate distributions

for the original and the lossy replay. Both the distribution from the replayed sequential connections and

the one from replayed concurrent connections are slightly heavier than those from the original traces.

In general, we always observe heavier loss rates in the replays than in the original data. The ex-

planation is the dropping of pure acknowledgment packets, which was discussed in Section 4.1.3. The

analysis of the original trace considers only the loss rate of data segments, and not the combined loss

rate of data and acknowledgment segments. However, the artificial dropping mechanisms in usernet that

is used to create per-flow losses is applied to all of the packets in the connections. This means that both

data segments and acknowledgment segments are dropped according to the original loss rates of data

segments. The dropping of acknowledgment segments can increase the loss rate of data segments in the

replay, because missing acknowledgments can trigger unnecessary retransmissions. Every retransmission

is considered a loss event, and therefore we have an increase of loss rate in the replays, which makes

the measured distributions of (data segment) loss rates heavier for the replays than for the original.

It is certainly possible to modify usernet to apply the dropping rate to data segments only, but our

experiments did not incorporate this refinement. It is somewhat unrealistic to use a biased dropping

mechanism, so it would be better to refine the data acquisition algorithm to consider both data and pure

acknowledgment losses. Measuring pure acknowledgment loss rates is far more difficult that measuring

data segment loss rates. Endpoints may acknowledge every data segment, or every other data segment,

and they do so using cumulative acknowledgment numbers, rather than individual sequence numbers as

it is done for data segments. It is therefore more difficult to determine when an acknowledgment does

not arrive as expected.

3This approach could certainly be refined using the IP ID field to distinguish duplications from retransmissions.

153

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original UNC Seq A
Lossless Replay UNC Seq A

Lossy Replay UNC Seq A
Original UNC Conc A

Lossless Replay UNC Conc A
Lossy Replay UNC Conc A

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07 1e+08

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original UNC Seq A
Lossless Replay UNC Seq A

Lossy Replay UNC Seq A
Original UNC Conc A

Lossless Replay UNC Conc A
Lossy Replay UNC Conc A

Figure 5.11: Bodies and tails of the A distributions for UNC 1 PM and its source-level trace
replays.

5.2.2 UNC 1 PM

The second trace considered in our validation of the source-level trace replay approach is the UNC

1 PM trace. This trace is shorter than Leipzig-II (1 hour vs. 2 hours and 45 minutes) but it has much

higher throughput, which results in a substantially larger number of samples in the distributions that

we will examine in this section. Figure 5.11 compares the A distributions extracted from the UNC 1 PM

and its lossless and lossy replays. The bodies of the A distributions from sequential connections reveal no

difference between original and generated traces. The tail of the A distribution from the lossy replay is

slightly lighter than the one from the original trace and the one from the lossless replay. This difference

can be attributed to trace boundaries. Losses make the replay of some connections slower, which can

easily result in some connections that do not have time to finish during the replay experiment. This

effect is more important for the largest data units, those in the tail of the distribution, since they are

the ones that require a substantial amount of time to complete their transmission even without losses.

Concurrent connections show a slightly worse match. This is due to the misclassification problem

described in the previous section. As pointed out before, misclassifications are more likely to occur in

concurrent connections with small ADUs. These connections have a small number of packets, making the

observation of concurrent pairs less likely. As a result, the bodies of the distributions from the replays

are slightly heavier, since some fraction of the small ADUs disappeared from the A distribution for

concurrent connections. On the contrary, misclassifications had no visible impact on the A distribution

for sequential connections. This is because the number of a-type ADUs in sequential connection vectors is

much larger than the number of samples from misclassified connections. The tails of the A distributions

for concurrent connections show a good agreement.

154

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original UNC Seq B
Lossless Replay UNC Seq B

Lossy Replay UNC Seq B
Original UNC Conc B

Lossless Replay UNC Conc B
Lossy Replay UNC Conc B

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original UNC Seq B
Lossless Replay UNC Seq B

Lossy Replay UNC Seq B
Original UNC Conc B

Lossless Replay UNC Conc B
Lossy Replay UNC Conc B

Figure 5.12: Bodies and tails of the B distributions for UNC 1 PM and its source-level trace
replays.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original UNC Seq E
Lossless Replay UNC Seq E

Lossy Replay UNC Seq E
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original UNC Seq E
Lossless Replay UNC Seq E

Lossy Replay UNC Seq E

Figure 5.13: Bodies and tails of the E distributions for UNC 1 PM and its source-level trace
replays.

The B distributions from the original UNC 1 PM traces and its replays are even closer, as Figure

5.12 shows. We can barely see any differences in bodies of the distributions from concurrent connections

and no difference for those from sequential connections. The tails are also very similar, and the slight

differences can be explained using the same arguments put forward in the discussion of the A distributions

(i.e., trace boundaries and misclassifications).

Figure 5.13 shows an excellent match between the number of epochs in sequential connection vectors

measured from the UNC 1 PM traces, and those measured from the replays. The bodies of the distri-

butions are identical, and the tails show only a very minor difference. We therefore observe a better

agreement between original and replay for UNC 1 PM than for Leipzig-II (see Figure 5.6).

The plots in Figure 5.14 study the TA distributions. The bodies for sequential connections show an

excellent match between the inter-ADU quiet time measured from the original UNC 1 PM trace, and

those measured from the generated traces. The bodies for concurrent connections are also very similar.

155

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original UNC Seq TA
Lossless Replay UNC Seq TA

Lossy Replay UNC Seq TA
Original UNC Conc TA

Lossless Replay UNC Conc TA
Lossy Replay UNC Conc TA

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original UNC Seq TA
Lossless Replay UNC Seq TA

Lossy Replay UNC Seq TA
Original UNC Conc TA

Lossless Replay UNC Conc TA
Lossy Replay UNC Conc TA

Figure 5.14: Bodies and tails of the TA distributions for UNC 1 PM and its source-level trace
replays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original UNC Seq TB
Lossless Replay UNC Seq TB

Lossy Replay UNC Seq TB
Original UNC Conc TB

Lossless Replay UNC Conc TB
Lossy Replay UNC Conc TB

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original UNC Seq TB
Lossless Replay UNC Seq TB

Lossy Replay UNC Seq TB
Original UNC Conc TB

Lossless Replay UNC Conc TB
Lossy Replay UNC Conc TB

Figure 5.15: Bodies and tails of the TB distributions for UNC 1 PM and its source-level trace
replays.

The small difference for the smallest values requires further investigation. We should not see these

samples here because our only method for detecting inter-ADU quiet times in concurrent connections is

to identify periods of inactivity above 500 milliseconds. We do not observe such a difference for Leipzig-II

and Abilene-I. The tails of the distributions are very similar for sequential and concurrent connections.

As it was also the case in the data from Leipzig-II shown in Figure 5.7, we observe slightly heavier tails

from the replays, which can be explained by misclassifications.

Figure 5.15 shows the bodies and the tails of the TB distributions. Data from sequential connections

shows an excellent match for values above 1 second, and even the far tail is very closely approximated.

For values below 1 second, we observe that the replays have heavier distributions. This is explained by

the quiet time overestimation problem discussed in the analysis of the Leipzig-II results. Concurrent

connections also show an excellent match between original and generated traces. The artifact in the

smallest inter-ADU quiet times that was observed for the TA distributions from concurrent connections

156

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Original UNC Seq
Lossless Replay UNC Seq

Lossy Replay UNC Seq
Original UNC Conc

Lossless Replay UNC Conc
Lossy Replay UNC Conc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
sf

er
re

d

Receiver Window Size in Bytes

Original UNC Seq
Lossless Replay UNC Seq

Lossy Replay UNC Seq
Original UNC Conc

Lossless Replay UNC Conc
Lossy Replay UNC Conc

Figure 5.16: Bodies of the round-trip time and receiver window size distributions for UNC 1 PM
and its source-level trace replays.

is also present in the TB distributions from concurrent connections.

The next four plots study how closely the replays of UNC 1 PM approximated the network-level

parameters observed in the original plot. The left plot of Figure 5.16 shows the distributions of round-

trip times. For sequential connections, there was no difference between the round-trip times obtained

from the original trace and those obtained from its replays. For concurrent connections, there is only

a very small difference, which we can attribute to concurrent connection misclassifications. The large

masses of probability for 100 milliseconds observed in the Leipzig-II replays are not present in the UNC

1 PM replays.

Regarding the distribution of TCP receiver window sizes, the plot on the right in Figure 5.16 shows

a good match between the original data and the one obtained from the analysis of the generated packet

header traces. The tiny difference can again be explained by concurrent connection misclassifications,

but it is clear that the replayed traffic accurately captured the use of TCP receiver window sizes.

Figure 5.17 studies the distributions of loss rates rates obtained from original and replayed traffic.

As indicated in the analysis of the replays of Leipzig-II, matching loss rate is difficult given the use of

independent packet dropping in usernet . Consequently, we can consider the approximation of the loss

rates shown in the left plot of the figure reasonable, especially in the case of sequential connections, for

which many more samples were available. In contrast to these per-connection loss rates, the right plot

of the figure shows a substantially closer approximation when loss rate per bytes are considered. Note

also that difference between distributions of loss rates for sequential and concurrent connections is far

smaller in the case of probabilities per byte.

157

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Loss Rate in Percentage

Original UNC Seq
Lossless Replay UNC Seq

Lossy Replay UNC Seq
Original UNC Conc

Lossless Replay UNC Conc
Lossy Replay UNC Conc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
fe

rr
ed

Loss Rate in Percentage

Original UNC Seq
Lossless Replay UNC Seq

Lossy Replay UNC Seq
Original UNC Conc

Lossless Replay UNC Conc
Lossy Replay UNC Conc

Figure 5.17: Bodies of the loss rate distributions for UNC 1 PM and its source-level trace replays,
with probabilities computed per connection (left) and per byte (right).

5.2.3 Abilene-I

We conclude the validation of our source-level trace replay method by comparing the original Abilene-I

trace and its lossless and lossy replays. This is the trace with the highest average throughput. Figure 5.18

shows that the A distributions measured from the replayed traces are very similar to those measured

from the original trace. Given the completely different A distributions for sequential and concurrent

connections, we would expect that any substantial number of misclassified concurrent connections would

result in distributions from the replays that significantly diverge from the original distributions. The

excellent approximation in this figure, and for the B distributions shown in Figure 5.18, suggest that the

number of misclassifications was very small. We also observe a very good match for the tails where the

only difference is found for the largest values. In some cases, the replay is slower than the original trace,

so some of the largest ADUs may not have had enough time to complete. Adding losses to the replay

experiment did not introduce any noticeable difference in the measured distributions, which confirms

the robustness of the data acquisition and generation methods to the challenge of lossy environments.

The two plots in Figure 5.19 show that the original distribution of b-type ADU sizes is almost identical

to the ones obtained from the lossless and lossy replays. This is true both for the bodies studied in the

plot on the left, and for the tails studied in the plot on the right. It is quite difficult to find any region

where the distributions differ. It is also clear that the addition of losses to the replay did not modify the

sizes of the ADUs in the experiment.

Figure 5.20 shows that the bodies and the tails of the distributions of the numbers of epochs are

closely approximated in the source-level replays. There is only a very slight difference in the far tail of

the distributions. This could be attributed to a few connections that were replayed more slowly than

158

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Abilene-I Seq A
Lossless Replay Abilene-I Seq A

Lossy Replay Abilene-I Seq A
Original Abilene-I Conc A

Lossless Replay Abilene-I Conc A
Lossy Replay Abilene-I Conc A

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Abilene-I Seq A
Lossless Replay Abilene-I Seq A

Lossy Replay Abilene-I Seq A
Original Abilene-I Conc A

Lossless Replay Abilene-I Conc A
Lossy Replay Abilene-I Conc A

Figure 5.18: Bodies and tails of the A distributions for Abilene-I and its source-level trace replays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Size of ADU in Bytes

Original Abilene-I Seq B
Lossless Replay Abilene-I Seq B

Lossy Replay Abilene-I Seq B
Original Abilene-I Conc B

Lossless Replay Abilene-I Conc B
Lossy Replay Abilene-I Conc B

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Size of ADU in Bytes

Original Abilene-I Seq B
Lossless Replay Abilene-I Seq B

Lossy Replay Abilene-I Seq B
Original Abilene-I Conc B

Lossless Replay Abilene-I Conc B
Lossy Replay Abilene-I Conc B

Figure 5.19: Bodies and tails of the B distributions for Abilene-I and its source-level trace replays.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original Abilene-I Seq E
Lossless Replay Abilene-I Seq E

Lossy Replay Abilene-I Seq E
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Epochs

Original Abilene-I Seq E
Lossless Replay Abilene-I Seq E

Lossy Replay Abilene-I Seq E

Figure 5.20: Bodies and tails of the E distributions for Abilene-I and its source-level trace replays.

159

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original Abilene-I Seq TA
Lossless Replay Abilene-I Seq TA

Lossy Replay Abilene-I Seq TA
Original Abilene-I Conc TA

Lossless Replay Abilene-I Conc TA
Lossy Replay Abilene-I Conc TA

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original Abilene-I Seq TA
Lossless Replay Abilene-I Seq TA

Lossy Replay Abilene-I Seq TA
Original Abilene-I Conc TA

Lossless Replay Abilene-I Conc TA
Lossy Replay Abilene-I Conc TA

Figure 5.21: Bodies and tails of the TA distributions for Abilene-I and its source-level trace
replays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Inter-ADU Time in Seconds

Original Abilene-I Seq TB
Lossless Replay Abilene-I Seq TB

Lossy Replay Abilene-I Seq TB
Original Abilene-I Conc TB

Lossless Replay Abilene-I Conc TB
Lossy Replay Abilene-I Conc TB

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Inter-ADU Time in Seconds

Original Abilene-I Seq TB
Lossless Replay Abilene-I Seq TB

Lossy Replay Abilene-I Seq TB
Original Abilene-I Conc TB

Lossless Replay Abilene-I Conc TB
Lossy Replay Abilene-I Conc TB

Figure 5.22: Bodies and tails of the TB distributions for Abilene-I and its source-level trace
replays.

in the original trace, so they did not have time to complete all of their epochs. Another possibility is

that a small number of concurrent connections with a large number of epochs were misclassified. The

probabilities in the tail are so small, that even a few samples can create a visible difference.

The quality of the replay of quiet times between ADUs is studied in the next two figures. Figure

5.21 shows that the TA distributions are accurately approximated in the replays. This is true both

for sequential and concurrent connections. We only observed a small difference in the far tail, where

the replays show slightly heavier values for quiet times above 1000 seconds. As in the case of the E

distributions, both experiment boundaries and concurrent connection misclassification can explain the

difference.

Figure 5.22 examines the distribution TB of quiet times on the initiator side. As shown on the left,

there is an excellent match between the bodies of the distributions from the original trace and those from

the replays. The only difference is found in the distributions from sequential connections for quiet times

160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Round-Trip Time in Seconds

Original Abilene-I Seq
Lossless Replay Abilene-I Seq

Lossy Replay Abilene-I Seq
Original Abilene-I Conc

Lossless Replay Abilene-I Conc
Lossy Replay Abilene-I Conc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000 70000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
sf

er
re

d

Receiver Window Size in Bytes

Original Abilene-I Seq
Lossless Replay Abilene-I Seq

Lossy Replay Abilene-I Seq
Original Abilene-I Conc

Lossless Replay Abilene-I Conc
Lossy Replay Abilene-I Conc

Figure 5.23: Bodies of the round-trip time and receiver window size distributions for Abilene-I
and its source-level trace replays.

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Loss Rate in Percentage

Original Abilene-I Seq
Lossless Replay Abilene-I Seq

Lossy Replay Abilene-I Seq
Original Abilene-I Conc

Lossless Replay Abilene-I Conc
Lossy Replay Abilene-I Conc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 P

er
 B

yt
e

T
ra

n
fe

rr
ed

Loss Rate in Percentage

Original Abilene-I Seq
Lossless Replay Abilene-I Seq

Lossy Replay Abilene-I Seq
Original Abilene-I Conc

Lossless Replay Abilene-I Conc
Lossy Replay Abilene-I Conc

Figure 5.24: Bodies of the loss rate distributions for Abilene-I and its source-level trace replays,
with probabilities computed per connection (left) and per byte (right).

below 1 second. The quiet times measured from the replays became increasingly heavier than those from

the original trace as their magnitude decreased. This finding is consistent with inaccuracies due to the

overestimation of quiet times, since end-host location has a larger impact on the measured quiet time

as the magnitude of the application-level quiet time decreases. The tails of the distributions reveal an

excellent approximation. It is also important to note that the distributions for concurrent connections

do not show the unexpected values below 500 milliseconds that were observed for UNC 1 PM.

The analysis of the round-trip times in Figure 5.23 reveals an excellent match between the original

and the replay distributions of round-trip times. The replay of concurrent connections exhibits the

same artifact at 100 milliseconds encountered in the replays of the Leipzig-II trace, but the magnitude

is far smaller. The distributions of receiver window sizes show very close approximations, with only

a small divergence for concurrent connections, which can be easily explained by a small number of

misclassifications.

161

The distribution of loss rates in the lossy replay is very close to the original distribution, as shown

in Figure 5.24. The CDFs on the left plot show cumulative probabilities computed per connection, and

they reveal a remarkably good match between the original and the lossy replay, both for concurrent and

sequential connections. This is significantly better than in the cases of Leipzig-II and UNC 1 PM, which

were studied in Figures 5.10 and 5.17. The better match is mostly explained by two characteristics of

the original data. First, Abilene-I has the largest fraction of lossy connections, which more than doubles

the one in Leipzig-II. This means a wider y-axis that reduces the distance between the distributions

in the plot. Second, the heavier distribution of connection sizes in the Abilene-I trace means a larger

number of packets, which makes the use of independent drops approximate the intended loss rates more

accurately. The right plot shows a good match when the distributions of the per-byte loss rates are

considered.

5.3 Summary

This chapter presented our traffic generation method, source-level trace replay. The first step in

source-level trace replay is to transform a packet header trace into a set of connection vectors, which

describe its source-level behavior using the sequential or the concurrent version of the a-b-t model.

Connection vectors also include three network-level parameters, round-trip time, TCP receiver window

size and loss rate. The actual traffic generation consists of replaying the characteristics of each connection

vector in an accurate manner. We demonstrated the possibility of this approach using an implementation

in a network testbed, which includes a distributed traffic generator, tmix , that can replay source-level

behavior, and coordinate with a packet manipulation layer, usernet , to impose specific round-trip

times and loss rates to each connection. The approach, and its implementation, was then validated

by comparing the statistical characteristics of three traces and those of their replays. This comparison

focused on how well the replay preserved the original parameters, i.e., the source-level description and

the network-level characteristics.

The validation results showed a good match between original traces and their replays, which confirms

the highly accurate reproduction of source-level properties that can be achieved with our approach. The

differences, which are shown to be small or nonexistent in every case, are due to the following causes:

• There is no guarantee that the replay of a concurrent connection exhibits measurable concurrency,

i.e., that a pair of concurrent data segments can be observed in the generated trace. This results

162

in connections that are replayed as concurrent but classified as sequential in T ′
c , therefore adding

spurious samples to the characterization of sequential connections, and removing samples from the

characterization of concurrent connections. In general, this affects the comparison of concurrent

connections more substantially, since the number of samples from concurrent connections is usually

far smaller. This problem is inherent to the form of the concurrent a-b-t model used in this

dissertation.

• Our measurement of quiet times tended to overestimate their durations, since it did not compensate

for the delay between the end host and the monitor. This difference is only significant for the

smallest quiet times, whose magnitude is similar to that of network delays. A possible refinement

of our measurement method that would eliminate the overestimation of quiet times and make the

replay of quiet times even more accurate, is to subtract the corresponding one-side transit time

from each measured quiet time.

• Usernet uses independent dropping to simulate losses, and this is not completely accurate. Con-

nections often have too few packets to converge to the intended loss rate per connection. If loss

rates per byte are considered, the replay is shown to be very close to the original distribution.

Achieving a close approximation of the original loss rate would involve some form of dependent

dropping.

• Measured drop rates consider only data segments, but the loss rate simulation also drops pure

acknowledgments with the same probability. This makes the distributions of loss rates in the

lossy replays slightly above the intended values. Addressing this inaccuracy requires developing a

measurement algorithm that can determine the loss rate of pure acknowledgments, which seems

rather difficult, or modifying usernet to drop only data segments, which is a somewhat artificial

solution.

The analysis of the validation results also served us to verify the robustness of our data acquisition

and generation method to the introduction of losses with regard to the source-level characteristics. We

found very little difference, if any, between the results from the lossless and lossy replays, which confirms

the accuracy of the analysis even in the face of packet losses and reordering. TCP timeouts, which can

sometimes confuse the heuristic used to split ADUs in the same direction, do not appear to have any

significant effect.

163

CHAPTER 6

Reproducing Traffic

Sometimes the appropriate response to reality is to go insane.

— Philip K. Dick (1928–1982), Valis

Dissertations are not finished; they are abandoned.

— Frederick P. Brooks, Jr. (1931–)

This chapter examines the statistical characteristics of source-level trace replay experiments, com-

paring them to those of their corresponding original traces. As discussed in Chapter 5, and illustrated

in Figure 5.1, a packet header trace Th and its source-level trace replay can be compared at two levels.

The first level is how well the set of connection vectors Tc extracted from Th are preserved by the trace

replay experiments. This means to collect a packet header trace T ′
h from the replay and extract a new

set of connection vectors T ′
c . Section 5.2 presented a comparison of Tc and T ′

c for three traces. It demon-

strated that the characteristics of Th captured by Tc are accurately reproduced by the traffic generation

method and its implementation. The second level at which traces and their replays can be compared is

to directly extract statistics from Th and T ′
h. If these statistics are reasonably close, we can say that the

traffic generation method reproduces the original traffic using closed-loop traffic generation. This is the

type of comparison discussed in this chapter. As we will show, source-level trace replay generally results

in a good approximation of the statistical characteristics of the original traffic, which supports the use

of the a-b-t model as a foundation for realistic traffic generation.

6.1 Beyond Comparing Connection Vectors

The main goal of this dissertation is to improve the state-of-the-art in closed-loop traffic generation

by developing a better approach to source-level modeling. In particular, we presented in Chapter 3 the

sequential and concurrent versions of the a-b-t model, which provide a first method for describing source-

level behavior in an application-independent manner. We also discussed an efficient data acquisition

algorithm for extracting a-b-t connection vectors from the packet headers of TCP connections. The

first way in which we justified our source-level model was by examining connections from different

applications, and demonstrating that their source-level descriptions in terms of a-b-t connection vectors

properly captured their source-level behavior. The second way in which we can justify the model is

to study the traffic generated using this model. If generated traffic is shown to closely approximate

original traffic, this would strongly support the claim that the a-b-t model is a good description of

source behavior. In other words, given that the statistical characteristics of Th are obviously a function

of source behavior, being able to generate a T ′
h statistically similar to Th would confirm the quality of

Tc as a description of the original source behavior.

Comparing Th and T ′
h is however a subtle exercise. The actual replay of Tc necessarily requires

choosing a set of network-level parameters, such as round-trip times and TCP receiver window sizes, for

each TCP connection in the source-level trace replay experiment. The exact set of packets and their

arrival times is a direct function of these parameters, as explained in Chapter 4. As a consequence,

if we were to conduct a source-level trace replay using arbitrary network-level parameters, we would

obtain a T ′
h with little resemblance to the original Th. The replayed a-b-t connection vectors may be a

perfect description of the source behavior driving the original connections, but the generated T ′
h would

still be very different from the original Th. To address this difficulty, the replay should incorporate

network-level parameters individually derived from Th for each connection. In Chapter 4, we described

and evaluated methods for measuring three important network-level parameters: round-trip time, TCP

receiver window size and loss rate. While this set of parameters is by no means complete, it does

include the main parameters that affect the average throughput of a TCP connection, [PFTK98]. In

this chapter, we examine the results of several source-level trace replay experiments, showing that the

generated traffic is remarkably close to the original traffic. This is a strong justification of our source-

level modeling approach, since it demonstrates that the closed-loop replay of a-b-t connection vectors

provides a good approximation of the original traffic.

Incorporating network-level properties is important, but it is critical to understand the main short-

coming of this approach. The goal of our work is not to make the generated traffic T ′
h identical to the

original traffic Th, which could be accomplished with a simple packet-level replay. The goal is to develop

a closed-loop traffic generation method based on a rich characterization of source behavior. Comparing

Th and T ′
h is a means to understand the quality of traffic generation method, where quality is considered

165

to be higher as the original trace is more closely approximated. By construction, traffic generated using

source-level trace replay can never be identical to the original traffic. The statistical properties of orig-

inal packet header traces are the result of multiplexing a large number of connections into a single link,

and these connections traverse a large number of different paths with a variety of network conditions.

It is simply not possible to fully characterize this environment and reproduce it in a laboratory testbed

or in a simulation. This is both because of the limitations of passive inference from packet headers, and

because of the stochastic nature of network traffic. Source-level trace replay can never incorporate every

factor that shaped Th, and therefore differences between Th and T ′
h are unavoidable. Still, finding a close

match between an original trace and its replay, even if they are not identical, constitutes strong evidence

in favor of our a-b-t model and our data acquisition and generation methods. It also demonstrates the

feasibility of generating realistic network traffic in a closed-loop manner that resembles a rich traffic mix.

Besides evaluating source-level trace replay by comparing original traces and their replays, this chap-

ter also considers whether detailed source-level modeling is necessary to achieve high-quality traffic gen-

eration. This is accomplished by comparing traffic generated using Tc (i.e., replaying connection vectors

and network-level parameters) and traffic generated using a simplified version of Tc with collapsed epochs,

which we will name T coll
c . Formally, given a sequential connection vector Ci = (e1, e2, . . . , en), n ≥ 1,

with epoch tuples of the form ej = (aj , taj , bj , tbj), we define the version of Ci with collapsed epochs as

Ccoll
i = ((

n
∑

i=1

ai, 0,
n

∑

i=1

bi, 0)).

The only a-type ADU size in the resulting connection vector is the total amount of data sent from the

connection initiator to the connection acceptor, and the only b-type ADU size is the total amount of

data sent from the connection acceptor to the connection initiator. No quiet time is part of a connection

vector after collapsing its epochs. Similarly, given a concurrent connection vector Ck = (α, β), where

α = ((a1, ta1), (a2, ta2), . . . , (ana
, tana

))

and

β = ((b1, tb1), (b2, tb2), . . . , (bnb
, tbnb

)),

we define the version of Ck with collapsed epochs as

Ccoll
k = ((

na
∑

i=1

ai, 0), (

nb
∑

i=1

bi, 0)).

166

Traffic generated according to T coll
c does not incorporate any internal source-level structure of connec-

tions, i.e., epochs and inter-ADU quiet times are ignored. For this reason, we say that the collapsing of

epochs “removes” detailed source-level modeling. Note however that even if epochs are collapsed, the

total amount of data transferred in each direction does not change. The results in this chapter demon-

strate that traffic generated using Tc is substantially closer to the original traffic than traffic generated

using T coll
c .

The evaluation of source-level trace replay presented in this chapter examines the results of replaying

five traces. These traces were first considered in Section 3.5: Leipzig-II, UNC 1 PM, UNC 1 AM, UNC

7:30 PM and Abilene-I. Our analysis compares the statistical characteristics of each of these traces and

their replays using the following metrics:

• time series of byte throughput,

• time series of packet throughput,

• Body and tail of the marginal distribution of byte throughput,

• Body and tail of the marginal distribution of packet throughput,

• Wavelet spectrum (logscale diagram),

• Estimated Hurst parameter and its confidence interval, and

• time series of the number of active connections.

These metrics were introduced in Section 4.2. For each original trace, we compare four different replays,

conducted using tmix and usernet in the testbed shown in Figure 5.2. The first replay is the lossless

replay , which replayed the a-b-t connection vectors in Tc, giving each TCP connection its measured

round-trip time and TCP receiver window sizes. The second replay is the lossy replay, which was

identical to the first one, but it also applied random packet dropping to each TCP connection according

to its measured loss rate. The third replay, is the lossless replay with collapsed epochs, which replayed

the a-b-t connection vectors after they had their epochs collapsed, and it also gave each connection its

measured round-trip time and TCP received window sizes. The fourth replay is the lossy replay with

collapsed epochs, which was identical to the third one but incorporated loss rates. We will often refer to

the first two replays as full replays and to the second two replays as collapsed-epochs replays.

It is important to note that our method for incorporating losses into the experiments, random drop-

ping according to the measured probability of loss per connection, is not consistent with closed-loop

167

traffic generation. We are by no means suggesting that loss rates should be incorporated in this manner

into regular networking experiments that require closed-loop traffic generation. In such experiments,

losses should only be the result of congestion on network links and buffering limitations. If this is the

case, the endpoints generating synthetic traffic can not only react to the network conditions (e.g., reduc-

ing sending rates when congestion is detected), but also modify them (e.g., reducing overall congestion

thanks to the lower sending rates). This is the right approach to reproduce the essential feedback loop

in TCP which should be used in empirical studies of TCP performance.

However, loss is an important factor in TCP behavior (see Section 4.1.3), so our lossy experiments

should result in a T ′
h that is closer to the original Th. By incorporating losses, we eliminate one pos-

sible cause of divergence between original and replayed traces which could confuse our assessment of

our source-level modeling approach. Comparing lossless and lossy replays enables a more systematic

evaluation of our traffic modeling and generation methods, and it also helps to understand the impact

of loss rates on the generated traffic. Losses are shown to have only a minimal effect on some traces and

for some metrics, but a much more substantial effect on others.

The analysis in this section confirms the high-quality of the synthetic traffic generated using source-

level trace replay. Our analysis reveals some (mostly minor) differences between original traffic and replay

traffic. While we put forward some hypotheses about the cause of these differences, their confirmation

requires further analysis. This additional work, which would involve both analysis and experimentation,

would certainly be enlightening. It would tell us more about the limitations of our approach, and even

about the inherent limitations of testbed experimentation. However, we have chosen not to pursue this

avenue here. As discussed above, our goal is not to generate a T ′
h equal to Th, but to convincingly

demonstrate the benefits of our closed-loop traffic generation method. We believe this chapter achieves

this goal, so we do not present any further analysis beyond the comparison of five traces and their four

types of source-level replays using a rich set of metrics.

6.2 Source-level Replay of Leipzig-II

6.2.1 Time Series of Byte Throughput

The first trace we consider in this chapter is Leipzig-II. It has a duration of 2 hours and 45 minutes,

and its average throughput is relatively low. We will first consider the traffic received by Leipzig’s hosts

168

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Leipzig-II Inbound
Original

Lossless Replay
Lossy Replay

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Leipzig-II Inbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.1: Byte throughput time series for Leipzig-II inbound and its four types of source-level
trace replay.

from Internet hosts, i.e., in the inbound direction with respect to the University of Leipzig. Figure 6.1

compares the original time series of byte throughput (solid line) and four different source-level trace

replays (dashed lines). The plot on the left shows the full replays of Tc with and without imposing

loss rates using usernet . The plot shows that the original time series is highly bursty1, even when

1-minute bins are considered. Both replays closely approximate the original traffic, showing a strikingly

good match in most regions. It also shows very little difference between lossless and lossy replays. This

suggests that losses had a very moderate impact in the original trace, at least regarding the time series

of byte throughput.

We also observe in the left plot of Figure 6.1 several major throughput spikes, e.g., in minutes 25 and

105, that are very closely approximated by both replays. It is clear that the source-level nature of these

spikes was accurately captured by our modeling approach. In a few other regions, the original and the

replayed traces do not match so well. We have for example a spike in the throughput of the replays in

minute 55 that was not present in the original traffic. This suggests that, for some number of connections

active in that region of the trace, our model did not capture a significant limitation of throughput that

was present in the original trace. This limitation could be at the source level or at the network level,

but there is no way to know without further analysis. Given our traffic generation methods, we can

however say that loss is very unlikely to be behind this difference, since both lossless and lossy replays

show the same spike. We can also observe the opposite phenomenon in several locations, such as minutes

90 and 152, were we find ditches in the throughput of the replays. Here our measurement and modeling

approach seems to be imposing an artificial limitation to the throughput of one or more connections.

1The term bursty does not have a unique meaning. In this paragraph, it simply refers to high variability. Some authors
consider traffic more bursty as its long-range dependence becomes stronger [WP98], while others as its marginal distribution
becomes less Gaussian [SRB01]. We make use of these more formal definitions, discussed in Chapter 4, in later sections.

169

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Leipzig-II Outbound
Original

Lossless Replay
Lossy Replay

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Leipzig-II Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.2: Byte throughput time series for Leipzig-II outbound and its four types of source-level
trace replay.

While this suggests that further refinement is possible, the plot clearly shows that our approach result

in an excellent approximation of the original byte arrival process and its overall burstiness.

The right plot of Figure 6.1 compares the original time series of byte throughput and the ones from

the lossless and lossy replays with collapsed epochs. The approximation is also generally good, but the

replays appear more bursty, which seems rather significant given the high level of aggregation (1-minute

bins). The replays with collapsed epochs results in several new spikes in which the replay is well above

the original throughput. This means that removing the source-level structure enabled artificially higher

throughputs for some number of replayed connections. Despite these difficulties, it is important to note

that the collapsed-epochs replay achieves a reasonably good approximation of original throughput with a

much simpler source-level model. The collapsed-epochs replays could then be sufficient for some kinds of

experimental studies in which only a good reproduction of the time series of byte throughput is required.

The time series of byte throughput in the outbound direction is studied in Figure 6.2. The comparison

of the original and the full replays is found in the left plot. As we observed for the opposite direction, the

time series from the replays closely track the original one, and losses do not have a significant impact.

We find a number of sharp spikes and ditches from the original traffic that are well reproduced by the

replays, e.g., minutes 88, 97 and 143. We also find some artificial ones not present in the original,

notably the spike in the replay on minute 38 and the ditch around minute 70. The right plot compares

the original and the collapsed-epochs replays, which are again shown to be somewhat more bursty that

the full replays throughout the trace.

170

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Leipzig-II Inbound
Original

Lossless Replay
Lossy Replay

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Leipzig-II Inbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.3: Packet throughput time series for Leipzig-II inbound and its four types of source-level
trace replay.

6.2.2 Time Series of Packet Throughput

The analysis of the time series of packet throughput reveals larger differences between original and

replayed traffic. Figure 6.3 shows the time series for the inbound direction. The comparison of the time

series from the original trace and those from the full replays reveals a close approximation for the first

60 minutes, and a consistently lower packet throughput for the rest of the trace. The replays generally

have between 2% and 5% less packets per 1-minute bin that the original trace, although they mostly

track the original shape. The right plot shows that the collapsed-epochs replays result in far lower packet

throughput for the entire trace, between 20% and 40% below the original. This clearly shows that the

detailed modeling of source-level structure accomplishes a more realistic traffic generation in terms of

the number of generated packets. The main reason is the modeling of epochs, which often increases the

number of segments per connection. Replaying an epoch with non-zero ADU sizes necessarily involves

sending two packets, even if the sizes of the ADUs are very small. An epoch involves a necessary exchange

of data, so at least one packet is used to carry the ADU ai from the initiator to the acceptor, and another

one to carry the ADU bi from the acceptor the initiator. This means for example that a connection with

10 epochs, and ADUs with a size of 100 bytes in both directions requires 20 packets to be fully replayed.

On the contrary, the collapsed-epochs version of this connection can be replayed with a single pair of

packets, since the 10 ADUs in each direction can fit into a single TCP segment (it is only 1,000 bytes).

Another reason for the more realistic time series of packet throughput when the full replay is used is the

modeling of quiet times. Quiet times between two ADUs sent in the same direction (see Section 3.1.2)

can also result in a larger number of packets per connection, since they often prevent consecutive small

ADUs from sharing packets.

171

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Leipzig-II Outbound
Original

Lossless Replay
Lossy Replay

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Leipzig-II Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.4: Packet throughput time series for Leipzig-II outbound and its four types of source-level
trace replay.

While the results in Figure 6.3 convincingly demonstrate a substantially more realistic traffic gener-

ation with the full model, there is still some room for improvement. We can think of several possible

refinements, which should improve the approximation. First, we made no attempt to model the Max-

imum Segment Size (MSS) supported by the path of each TCP connection. Instead of relying on the

default size derived from Ethernet’s MTU (1,500 bytes), as we do in our experiments, it seems possible

to collect MSS information for each connection and extend tmix to make use of these measurements2.

Connections replayed using smaller MSS values would frequently require more packets to be replayed.

Second, the measurement techniques we used to determine ADU boundaries for data sent in the same

direction rely on a constant inter-ADU quiet time threshold equal to 500 milliseconds. Some applications

may be using smaller quiet times between their writes, which could result in a larger number of packets

per connection. Simply reducing the threshold is problematic, since this would increase the number of

spurious splits of ADUs due to network delays (rather than application behavior). To avoid this, we

could make the inter-ADU quiet time threshold a multiple of the measured round-trip time. Given the

typical distributions of round-trip times (see Section 4.1.1), this method would reduce the threshold

for most connections and increase the sensitivity of the measurements. Another approach is to study

segment sizes, using non-full segments to mark ADU boundaries. This would require some further re-

finement, since non-full segments can easily come from application writes which are not a multiple of the

MSS. Two consecutive non-full segments are for example far more likely to mark a true ADU boundary.

The lesson is similar for the outbound direction results, which are shown in Figure 6.4. The left plot

2MSS is a system-wide constant in FreeBSD, so generating traffic that preserves per-connection MSS is not directly
possible with our current implementation. However, there is a relatively simple way to extend our method to support
per-connection MSS values. We could use a first step to group connections with the same MSS and then assign each group
to a host configured with that MSS. Fortunately, only a few MSS values are common on the Internet, so it seems feasible
to implement this extension without increasing the number of hosts.

172

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

Leipzig-II Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

Leipzig-II Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.5: Byte throughput marginals for Leipzig-II inbound and its four types of source-level
trace replay.

shows that the full replays are generally a good approximation to the original, but they exhibit a some-

what lower number of packets in some regions. On the contrary, collapsed-epochs replays consistently

show a far lower number of packets.

The reader may be puzzled by the finding of very similar shapes for the inbound and outbound time

series of packet throughput, which show spikes and ditches located at the same minutes. This is due

TCP’s acknowledgment mechanism, which forces TCP endpoints to at least send one acknowledgment

for each pair of data segments received. As consequence, a connection that sends a large number of data

segments in one direction, creating a spike in the time series, must necessarily receive a large number of

acknowledgments in the opposite direction, creating a similar spike.

6.2.3 Marginal Distributions

One important limitation of the type of analysis in the previous section is the use of a relatively coarse

level of aggregation (1-minute bins). The obvious question is whether the close match between original

traffic and its source-level replays is also found at finer scales, which are arguably more important for some

kinds of studies, such as router queuing evaluation. Given the highly bursty nature of the throughput

time series, simply plotting the time series at finer levels of aggregation just makes the plots completely

unreadable. In this section, we rely on a different kind of analysis to examine the difference between

original and replayed traffic at a finer level of aggregation. Instead of the 1-minute bins used in the

previous section, this section examines throughput using CDFs of the marginal distributions extracted

from time series of 10-milliseconds bins. Section 4.2.2 further discusses the reasoning behind this type

of analysis.

173

Figure 6.5 plots the marginal distributions of the byte throughput in the inbound direction, showing

the data for the original time series and the four types of replay. The left plot shows the body of

the marginal distributions using CDFs in linear axes. The right plot shows the tail of the marginal

distributions using CCDFs in a logarithmic y-axis. The plot of the tail provides information about

the 10-millisecond bins with the highest throughput, giving us a better sense of how well the most

“aggressive” regions (i.e., with the highest throughput) of the time series are reproduced by the replays.

The vast majority of the plot comes from throughputs that are relatively uncommon, e.g., half of the plot

shows data from only 0.1% of the distribution. On the contrary, the plot of the body provides information

about the most common bins, showing the entire distribution without focusing on any particular region.

These two visualizations are complementary. The body plot shows the overall match, which is relevant

for experiments in which producing a realistic range of fine-scale throughputs is important. The tail plots

shows the extremal match, which is relevant for experiments in which reproducing the magnitude and

frequency of peak throughputs is important. None of these plots says anything about the dependency

structure of the time series, which is important and that we study in a later section using wavelets.

While wavelets are a powerful analysis tool, marginals are far easier to interpret in networking terms.

The left plot shows the original data using a solid curve marked with white squares, and the replay

data using dashed curves. The full replay experiments are marked with white symbols, and the collapsed-

epochs replay experiments with black symbols. We can make several observations about this plot. The

position of the original curve with respect to the replay curves defines two different regions in the

plots. Below 40 KB, the distribution from the original data is slightly heavier than those from the

replays. Above 40 KB, the distribution is slightly lighter. This means that the replays tended to be less

concentrated around the central value than the original data, For example, the number of bins with 10

KB is negligible in the original data, but corresponds to between 2% and 5% of the bins in the replays.

We could therefore say that the replays are somewhat more bursty, in the sense that we find more bins

with small values and more bins with large values in the CDFs from the replays than in the CDFs from

the original data. The exact reason is unclear, but we can make a hypothesis. We know from the previous

section that the total number of bytes is similar in original and replay time series. This means that the

presence of a larger number of bins with more bytes in the replay must necessarily be accompanied by a

larger number of bins with fewer bytes to compensate. Connections in the replay are exposed to more

homogeneous delays (primarily because round-trip times are fixed), which gives replayed connections

a chance to achieve higher throughput. In the aggregate, and when considering such fine scales, the

presence of one or a few replay connections with higher throughput than originally observed creates bins

174

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

Leipzig-II Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

Leipzig-II Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.6: Byte throughput marginals for Leipzig-II outbound and its four types of source-level
trace replay.

with more bytes, which are part of the upper portion of the body of the marginal distribution. Faster

connections run out of data sooner, in turn creating bins with fewer bytes than originally observed, which

show up in the lower portion of the body of the marginal distribution. Therefore, the somewhat milder

conditions in the replay can explain the wider spread of marginal distributions from the source-level

trace replay experiments.

Another observation from the plot of the bodies is that the collapsing of the epochs of the replayed

connection vectors has no effect on the marginal distribution of byte throughput. This is an interesting

finding, given that we did find a difference for the plots in Figure 6.1. It means that the slightly more

bursty replays with collapsed epochs come from a less realistic correlation structure rather than from a

fine-grain difference in the values of the bins. The plot also shows that the distributions from the lossy

replays are slightly closer to the original than those from the lossless ones. This is evidence in support of

the statement in the previous paragraph regarding the impact of more complex network dynamics, which

make the highest throughput of many connections lower in the original trace. Adding losses has precisely

this effect, making the marginal distributions from the replays closer to the marginal distribution from

the original.

The analysis of tails in the right plot confirms the last observation. The plot of the body shows

a lighter second half of the distribution. The plot of the tails shows heavier tails from the lossless

experiments, and slightly lighter tails from the lossy experiments. The tail from the lossy full replay is

actually an excellent fit of the original data. Lossless replays gave some connections the opportunity to

reach higher throughputs, which in turn created bins with a larger number of bytes than in the original.

Adding losses avoided this problem. In general, the results in Figure 6.5 are very reassuring.

175

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

Leipzig-II Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

Leipzig-II Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.7: Packet throughput marginals for Leipzig-II inbound and its four types of source-level
trace replay.

The marginal distributions for the time series of byte throughput in the outbound direction are shown

in Figure 6.6. The bodies of distributions (left plot) exhibit a substantial tail, which makes them less

Gaussian than distributions from the inbound data. As in the previous case, the range of bin sizes with a

significant number of samples is wider for the replays than for the original. The relative difference seems

slightly larger in this case, although the absolute difference is of the same magnitude. Lossy replays are

again slightly closer to the original.

The tails of the marginal distributions shown in the right plot are not as close to a straight line

as those found for the inbound direction. The shape of the tail is most complex for the original data,

especially in the region above 90 KB. All of the replays achieve a good match below 90 KB, but are

substantially lighter than the original above that value. The reason is unclear. The different shape can

easily be due to the characteristics of a few connections (given the very small probabilities considered).

The four replays result in similar tails.

As in the previous section, we follow our analysis of byte throughput with an analysis of packet

throughput. The marginal distributions for the inbound direction are shown in Figure 6.7. The compar-

ison of the bodies reveals a quite different result for packet throughput. In general, the distributions from

the replays are significantly lighter than the distribution from the original. The difference is far larger

for the collapsed-epochs replays. The reason was already discussed in the previous section. Collapsing

epochs can often reduce the number of segments in a connection, since it enables connections to combine

small ADUs from different epochs into a single ADU, increasing packet utilization. Our full replay, while

much closer than the collapsed-epochs replay, is still lighter than the original. The possible extensions

described in the previous section could improve the match further. Note also that the improvement

when losses are used is quite minor, so retransmissions are not likely to explain the difference between

176

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

Leipzig-II Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

Leipzig-II Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.8: Packet throughput marginals for Leipzig-II outbound and its four types of source-level
trace replay.

original and replay distributions.

The tails of the marginal distributions from the replays are lighter than those from the original data.

Interestingly, the best match is achieved by the lossless replay with fully characterized epochs rather

than by the lossy replay. The match is excellent below 10−4. Above this value, the shape of the tail

from the original data is less linear, which could be caused by a small number of connections with

characteristics that we do not model well. Lossy replays result in significantly lighter tails, as expected

given the loss-induced reduction in connection throughput.

Figure 6.8 shows the same analysis for the outbound direction. Collapsed-epochs replays again

resulted in bodies that are substantially lighter than the body of the original distribution. In contrast,

the full replay achieved a much closer approximation, even overlapping the original distribution for the

largest values. Adding losses to the experiments made the replays only a bit closer to the original. This

is a strong indication that source-level structure, and not loss/retransmission, is behind the differences

between original and replay trace. We can distinguish two regions in the plot of the tails. Below 80

Kpps, the replays with fully characterized epochs provide an excellent match, while those with collapsed

epochs result in significantly lighter tails. Above 80 Kpps, the slope of the tail from the original trace is

far higher than the slopes of the tails from the replays.

6.2.4 Long-Range Dependence

Another way of looking at the time series of byte and packet arrivals is to study the characteristics

of the time series for a wide range of time scales. This can be accomplished using scaling analysis tools,

177

2 4 6 8 10 12 14
26

28

30

32

34

36

38

40

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzig−II Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
26

28

30

32

34

36

38

40

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzig−II Inbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.9: Wavelet spectra of the byte throughput time series for Leipzig-II inbound and its four
types of source-level trace replay.

2 4 6 8 10 12 14
24

26

28

30

32

34

36

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzig−II Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
24

26

28

30

32

34

36

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzig−II Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.10: Wavelet spectra of the byte throughput time series for Leipzig-II outbound and its
four types of source-level trace replay.

Trace Inbound Outbound
Leipzig-II H C. I. H C. I.

Original 0.9201 [0.8990, 0.9412] 0.9973 [0.9762, 1.0184]
Lossless Replay 0.9863 [0.9652, 1.0074] 1.0475 [1.0264, 1.0686]
Lossy Replay 0.9583 [0.9372, 0.9794] 0.9832 [0.9621, 1.0043]
Lossless Coll. Epochs 0.9986 [0.9775, 1.0197] 1.0473 [1.0262, 1.0684]
Lossy Coll. Epochs 0.9668 [0.9457, 0.9879] 1.0083 [0.9872, 1.0294]

Table 6.1: Estimated Hurst parameters and their confidence intervals for the byte throughput
time series of Leipzig-II and its four types of source-level trace replay.

178

such as the wavelet transform, which was introduced in Section 4.2.3. In this section, we use wavelet

spectrum plots and Hurst parameters estimates to compare the scaling of the arrival processes found in

original and replay traces. Figure 6.9 shows the wavelet spectra of the time series of byte arrivals in the

inbound direction. The left plot reveals an excellent match between the original and the full replays.

The linear region between octaves 6 and 14 is very similar in the three spectra. This tells us that

the kind of long-range dependence found in the original and in the replay traces is very similar. If we

equate burstiness to long-range dependence, we can say that the generated traffic faithfully reproduced

the burstiness of the original traffic. The finest time scales show a somewhat larger difference between

octaves 1 and 5. The spectrum of the original data starts at a lower energy level than the spectra of the

replay data. It also shows a linear trend with an upward slope, which is far less clear in the replay data.

The exact cause of the small difference is not completely clear. Our additional experiments strongly

suggest that it is due to more complex network-level characteristics in the Internet than in the network

testbed. We conducted a large set of experiments (not reported here) which betrayed that the energy

levels at the finest time scales are dominated by round-trip times and other network-level parameters3.

The slightly better match achieved with the lossy replay is consistent with this claim. Further work on

network-level modeling may help improve the match, but it is beyond the scope of this dissertation. The

approximation seems acceptable for most experimental studies.

The wavelet spectra of the collapsed-epochs replays is similar to the wavelet spectrum of the original

trace, as shown in the right plot of Figure 6.9. The spectra from the replays exhibits a slightly higher

slope in the linear region, and a slightly worse approximation of the fine-scale region. The benefit of

modeling source-level behavior is relatively small, in terms of scaling behavior, for this trace, but present

nonetheless.

Figure 6.10 shows the analysis of the wavelet spectra of the time series of byte throughput in the

outbound direction. One interesting observation is that the wavelet spectrum of the original is far from

the expected straight line. This is due to the low mean throughput on this direction. A handful of

connections can have a large impact in the aggregate throughput, which makes the aggregate less stable,

showing a less clear scaling. The full replays are very close to the original in the scaling region, but show

a larger gap at fine scales. The collapsed-epochs replays result in a slightly worse approximation.

Estimated Hurst parameters for the byte throughput time series are shown in Table 6.1. The original

3More specifically, we learned that the range of the distribution of round-trip times determines the knee of the spectrum,
while the distribution of window size determines the level of energy at the finest scales. Related results from web traffic
simulations can be found in [FGHW99].

179

trace exhibits a smaller estimated Hurst parameter than the replays. The estimate for the lossy replay

is however within the confidence interval of the original for the outbound and very close to the upper

bound for the inbound. In general, lossless replays have higher Hurst parameters than lossy replays, and

the replays with collapsed epochs have somewhat higher Hurst parameters than the full replays. Note

also that several estimated Hurst parameters for the outbound direction are above 1, with the lossless

replay even having the lower bound of the confidence interval above 1. Non-stationarities, properly

captured by the source-level trace replay, may be behind this extreme burstiness. It is important to note

that non-stationarity, even if present, does not change the fact that our computation of wavelet energy

and Hurst estimates is identical in all cases. This makes the comparative results meaningful, at least in

relative terms.

Figure 6.11 shows the wavelet spectra for the time series of packet throughput in the inbound direc-

tion. As in the case of byte throughput, the spectra of the replays are quite similar to the spectrum of

the original, especially in the linear region. The spectra of the collapsed-epochs replays are somewhat

farther from the original spectrum than the ones from the full replays. The slope of the linear region is

again higher for the collapsed-epochs replays, and the difference is also larger at the finest scales.

The analysis of the packet throughput in the output direction shown in Figure 6.12 reveals a close

approximation of the original spectrum by the full replays. Collapsed-epochs replays are slightly worse.

Note also that the spectrum of the original trace is smoother here than in Figure 6.10. The phenomenon

that distorted the linear scaling in the original time series of byte throughput seems far less significant

for the time series of packet throughput.

Table 6.2 presents the estimates of Hurst parameters and confidence intervals for the original and

replay time series of packet throughput. The original and the lossy full replays have almost identical

estimated Hurst parameters for the inbound direction, while the other replays show higher Hurst pa-

rameters. The estimated Hurst parameter of the lossy full replay is again the closest one to the original

estimate for the outbound direction. It is somewhat lower than the original, but within the confidence

interval. The other replays show significantly higher estimated Hurst parameters. Note also that the

estimated Hurst parameters for the outbound direction do not go above 1 in this case.

180

2 4 6 8 10 12 14
6

8

10

12

14

16

18

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzig−II Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
6

8

10

12

14

16

18

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzig−II Inbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.11: Wavelet spectra of the packet throughput time series for Leipzig-II inbound and its
four types of source-level trace replay.

2 4 6 8 10 12 14
6

8

10

12

14

16

18

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzig−II Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
6

8

10

12

14

16

18

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Leipzig−II Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.12: Wavelet spectra of the packet throughput time series for Leipzig-II outbound and its
four types of source-level trace replay.

Trace Inbound Outbound
Leipzig-II H C. I. H C. I.

Original 0.9208 [0.8975, 0.9442] 0.9399 [0.9165, 0.9633]
Lossless Replay 0.9716 [0.9482, 0.9950] 0.9701 [0.9468, 0.9935]
Lossy Replay 0.9271 [0.9038, 0.9505] 0.9194 [0.8961, 0.9428]
Lossless Coll. Epochs 0.9883 [0.9649, 1.0116] 0.9925 [0.9692, 1.0159]
Lossy Coll. Epochs 0.9587 [0.9353, 0.9820] 0.9635 [0.9402, 0.9869]

Table 6.2: Estimated Hurst parameters and their confidence intervals for the packet throughput
time series of Leipzig-II and its four types of source-level trace replay.

181

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

Leipzig-II
Lossless

Lossy
Coll. Lossless

Coll. Lossy

1600

1700

1800

1900

2000

2100

2200

2300

20 25 30 35 40

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

Time in Minutes

Original Leipzig-II
Lossless Leipzig-II

Lossy Leipzig-II

Figure 6.13: Active connection time series for Leipzig-II and its four types of source-level trace
replay.

6.2.5 Time Series of Active Connections

The final metric we examine in this chapter to evaluate how closely original and generated traffic

match is the time series of active connections. The left plot in Figure 6.13 shows the time series from

the original trace using a solid line, and the time series from the four replays using dashed lines. The

first observation from this plot is that the collapsed-epochs replays resulted in a strikingly lower number

of active connections that the full replays. Since the number of connections replayed in both types of

the replay is the same, this difference is due to the substantially shorter durations of the connections

replayed with their epochs collapsed. The collapsing of epochs increases connection durations, because

quiet times and epoch structure disappear. Epochs require at least one round-trip time to be replayed

(see Section 3.1.1). As a result, the number of active connections is several times smaller in the collapsed

epochs replays than in the original trace. On the contrary, the number of active connections observed

in the full replays is far closer to the original.

The left plot of Figure 6.13 also provides a good illustration of the impact of replaying losses on the

quality of the approximation. The number of active connections increases substantially when loss rates

are used in the generation, both in the case of collapsed-epochs replays and full replays. However, it is

clear from this plot that collapsing epochs has a far more substantial impact on the number of active

connections than incorporating losses, at least for the Leipzig-II trace. Given how carefully our replay

reproduced the main network-level parameters that affect TCP throughput (round-trip time, window

size and loss rates), this result strongly suggest that traffic generated without any modeling of epoch

structure and quiet time has an unrealistically low number of active connections.

While the lossless full replay achieves a reasonable approximation of the original time series, the

182

20

40

60

80

100

120

140

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

20

40

60

80

100

120

140

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 1 PM Inbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.14: Byte throughput time series for UNC 1 PM inbound and its four types of source-level
trace replay.

lossy full replay is almost a perfect match. The difference is always below 100 connections, which can

be considered an outstanding result. It is clear that generating traffic using a combination of detailed

source-level models and primary network-level parameters makes the number of active connections very

realistic. Note also that this is not only true for the coarse scale (1 minute) at which the left plot of

Figure 6.65 is displayed, but also at the finer scale (5 seconds) in the right plot. Notice for example how

closely the replay tracks the significant variability in the original time series.

6.3 Source-level Replay of UNC 1 PM

6.3.1 Time Series of Byte Throughput

Figure 6.14 shows the time series of byte throughput for UNC 1 PM in the inbound direction, revealing

a good match between original and replayed traces. Lossless replays with and without collapsed epochs

are generally closer than lossy replays, which are often 10 to 20 Mbps below the original. However,

lossless replays show large spikes (minutes 14 and 21) that are not found neither in the original trace nor

in the lossy replays. The lossy replays are actually very close to the original in the neighborhood of these

spikes (e.g., between minutes 20 and 28). Interestingly, the time series for Leipzig-II shown in Figure

6.14 did not reveal a significant difference between lossless and lossy replays. Finding an explanation for

this phenomenon requires further analysis, but this plot certainly justifies our choice of comparing the

original trace to lossless and lossy versions of its source-level trace replay. Without a lossy replay, we

would be tempted to conclude from the artificial throughput spikes in lossless replay that our source-level

model is not properly reproducing an end-point limitation that was present in the original environment.

183

40

60

80

100

120

140

160

180

200

220

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 1 PM Outbound
Original

Lossless Replay
Lossy Replay

40

60

80

100

120

140

160

180

200

220

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 1 PM Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.15: Byte throughput time series for UNC 1 PM outbound and its four types of source-
level trace replay.

However, the lossy replay, by showing that adding losses eliminates this spikes, demonstrates that they

are purely due a network-level parameter and not to a limitation of the a-b-t model. Once again,

we are not naively advocating for incorporating open-loop losses into traffic generation experiments,

but addressing a difficulty that significant loss can create when trying to understand how realistic our

modeling of the traffic source is. Simply relying on a lossless replay can be misleading, as this example

demonstrates.

As in the full replay case, the lossless collapsed-epochs replay shows two large spikes that are not

present in the lossy collapsed-epochs replays. The general impression from the plot is that collapsing

epochs moderately increases the burstiness of the replay. Note for example the larger spike in the minute

5, the spikes in minutes 36 and 44, and the large ditch in minute 29. The collapsed-epochs lossy replay is

quite similar to the full lossy replays, but we find a few periods where the approximation of the original

throughput is slightly worse. For example, the collapsed-epochs replay shows a drop of byte throughput

in minute 40 that is not present in the full lossy replay.

Figure 6.15 reveals somewhat different lessons from the time series of byte throughput in the outbound

direction of UNC 1 PM. Regarding the full replays shown in the left plot, we see that the lossless replay

has only one significant spike above the original traffic. One reason behind this finding is that the much

higher average byte throughput makes spikes due to a few connections far less significant in relative

terms.

Both full replays are generally slightly below the byte throughput of the original trace. The reason

is not completely clear, but it suggests that the replay has a somewhat lighter distribution of connection

throughputs, which makes the aggregate throughput slightly lower. If the replay is continued beyond

184

10

12

14

16

18

20

22

24

26

28

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

10

12

14

16

18

20

22

24

26

28

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 1 PM Inbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.16: Packet throughput time series for UNC 1 PM inbound and its four types of source-
level trace replay.

minute 60, we do observe connections that remain active for a few more minutes and transfer enough

data to account for the difference between the time series. We examined the logs from the generator hosts

and confirmed that no overload occurred during the experiments, so the cause seems to be some artificial

limit on the throughputs of the connections in our replay. One cause could be the overestimation of quiet

times discussed in Section 5.2.1. Another possible cause is that the replays did not take into account the

specific MSS of each connection. Every connection was given the FreeBSD default value (1,460 bytes),

which is the most common one on the Internet. However, it could be the case that a significant fraction

of the segments were carried in TCP connections with a smaller MSS. These connections would then

have higher control overhead, making their transferring of the same payload result in more bytes and

therefore higher aggregate throughput. Given the small size of TCP headers, it is unlikely that the extra

overhead would result in more than a few additional Mbps.

The results from the replays with collapsed epochs are similar, although we observe several additional

spikes in the case of the lossless replay. The lossy replay does not show these spikes, but it is still below the

original for most of the time series. Interestingly, it provides a closer approximation in some regions, such

as between minutes 10 to 22. We can argue that this is an accidental improvement due to the artificially

larger throughputs that a fraction of the connections achieves after their epochs are collapsed.

6.3.2 Time Series of Packet Throughput

The analysis of the packet throughput in the inbound direction shown in Figure 6.16 reveals a

number of interesting characteristics. Both lossless replays show substantial spikes above the original

packet throughput. This is consistent with the similar finding for byte throughput. We also observe that

185

8

10

12

14

16

18

20

22

24

26

28

30

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 1 PM Outbound
Original

Lossless Replay
Lossy Replay

10

15

20

25

30

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 1 PM Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.17: Packet throughput time series for UNC 1 PM outbound and its four types of source-
level trace replay.

collapsed-epochs replays generated a substantially smaller number of segments than full replays. As in

the case of the analysis of the Leipzig-II replay shown in Figure 6.3, the lack of detailed source-level

modeling in the collapsed-epochs replays makes traffic less realistic in terms of the aggregate packet

throughput. In contrast, the lossy full replay shows an excellent match for most of the time series. This

result is different from the Leipzig-II one, where the full replays achieved a good approximation, but

were still below the original packet throughput. Adding per-connection losses had a very minor impact

on the Leipzig-II packet throughput, but the effect is substantial in the UNC 1 PM replay, where we

observe increments of up to 2,000 packets per second. This result demonstrates the effectiveness of our

source-level modeling method, and also justifies our effort to incorporate losses in the replay in order to

study the realism of our modeling approach.

Figure 6.17 examines packet throughput in the outbound direction. Unlike the inbound direction,

adding losses does not have a substantial impact here, and the aggregate packet throughput remains

below the original trace even for the lossy full replay. As discussed in Section 6.2.2, this could be

due to some limitations of our data acquisition algorithm in terms of how well it infers source-level

characteristics, or to the use of the default MSS for all connections. As in previous cases, collapsed-

epochs replays generate a substantially lower number of packets than full replays, which are far closer

to the original packet throughput.

6.3.3 Marginal Distributions

The marginal distribution of byte throughput for the inbound direction of UNC 1 PM and its replays

are shown in the Figure 6.18. The bodies of the distributions show that lossy replays provide a better

186

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

50 100 150 200 250 300 350 400

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.18: Byte throughput marginals for UNC 1 PM inbound and its four types of source-level
trace replay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

UNC 1 PM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600 700 800

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

UNC 1 PM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.19: Byte throughput marginals for UNC 1 PM outbound and its four types of source-level
trace replay.

approximation, although they are slightly heavier than the original. Interestingly, the analysis of the time

series in Section 6.3.1 showed lower aggregate throughput from lossy replays, which seems inconsistent

with the heavier bodies in the marginal distribution. The explanation is given by the plot of the tails

of the marginals, which shows far lighter tails from the lossy replays. The way in which losses were

incorporated in the experiments limited peak throughput substantially at the fine scales considered in

the marginal plots. This is because the probability of artificial losses increases linearly with throughput,

which is not generally true for real conditions. On the contrary, the lossless full replay reproduced the tail

very accurately, demonstrating that the experimental environment and generation method are perfectly

capable of reproducing the observed peak throughputs. It seems likely that further refinements in the

implementation of per-connection losses, making them less open-loop, could make the tails closer to the

original.

The marginal distributions in the outbound direction, which are shown in Figure 6.19, reveal a

187

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

150 200 250 300 350 400 450 500

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

UNC 1 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.20: Packet throughput marginals for UNC 1 PM inbound and its four types of source-
level trace replay.

somewhat worse approximation. We can distinguish three regions in the plot of the bodies. For values

below 175 KB, lossless replays are lighter than the original, while lossy ones are heavier. Above 175

KB, all replays are lighter, which shows that the finding of lower aggregate byte throughput in Section

6.3.1 is due to overall lower throughputs at fine scales (rather than only to lighter tails). In the region

after 175 KB, we can also observe that lossy replays are heavier below 275 KB and lighter above that.

The marginal distributions from the lossy replays are less concentrated around the mean value, and are

therefore somewhat more bursty, which is consistent with the similar finding for Leipzig-II (see Section

6.2.3).

Regarding the tails, we observe that for probabilities below 0.00075, the tail of original marginal is

substantially heavier than the tails of the replay marginals. For probabilities above that, the collapsed-

epochs replays show a major change in the shape of the distributions, being far heavier than the original

for the largest values. We did not encounter a similar phenomenon in the Leipzig-II replays, where

lossy collapsed-epochs replays always had a lighter tail than the lossless full replay. The number of

10-millisecond bins with very high throughput is larger for collapsed-epochs replays than for the full

replays. Note that this artifact is only visible by looking at the tails of the marginals, and not at their

bodies or at the time series of byte throughput.

The marginal distributions of packet throughput for UNC 1 PM inbound are shown in Figure 6.20.

As observed for Leipzig-II, and as we may expect from 6.16, collapsed-epochs replays result in bodies

that are significantly lighter than the body of the original marginal. Full replays are far closer, being the

lossy full replay an excellent approximation of the original distribution. Interestingly, the tails reveal a

rather different picture. Below 350 Kpps, the lossy replays have lighter tails than the original, especially

in the case of the lossy full replay. Lossless replays closely approximate the original tail. Above 350

188

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

UNC 1 PM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

150 200 250 300 350 400 450 500 550 600

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

UNC 1 PM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.21: Packet throughput marginals for UNC 1 PM outbound and its four types of source-
level trace replay.

Kpps, both full replays are lighter than the original, while the collapsed-epochs replays reproduce the

probability of very high throughput bins accurately.

Figure 6.21 shows the marginal distributions of packet throughput in the opposite direction. All

replays are lighter than the original, being the lossy full replay the closest one. The tails from the

replays are also significantly lighter than the original tail. We also observe a similar change in the tail

of the collapsed-epochs replays, which are very close to the original for the largest values.

6.3.4 Long-Range Dependence

The left plot of Figure 6.22 shows that the wavelet spectrum of the original byte throughput in the

inbound direction is well approximated by both full replays for lower and medium octaves. The finding

of this good match at the lower octaves differs from the result for the replay of the Leipzig-II trace, where

this part of the wavelet spectrum was not so well approximated. The lossy replay shows less energy for

octaves 8 and above, while there is a significant jump in the energy of the lossless replay for octaves 12

and above. In the right plot, the lossless collapsed-epochs replays shows substantially more energy for

octaves above 4, while the lossy replay provides a better approximation.

For the outbound direction, the left plot of Figure 6.23 reveals a better approximation of the finest

scales by the lossless full replay, while both full replays closely match the original spectrum at coarser

scales. The right plot shows that both collapsed-epochs replays have less energy at the finest scales,

with a rather sharp ditch for octaves 5 and 6 that was not present in the original. This ditch was

far less pronounced in the full replays. Beyond the finest scales, the lossless collapsed-epochs replay

189

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Inbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.22: Wavelet spectra of the byte throughput time series for UNC 1 PM inbound and its
four types of source-level trace replay.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.23: Wavelet spectra of the byte throughput time series for UNC 1 PM outbound and its
four types of source-level trace replay.

Trace Inbound Outbound
UNC 1 PM H C. I. H C. I.

Original 0.9557 [0.9113, 1.0002] 0.9717 [0.9272, 1.0161]
Lossless Replay 0.9632 [0.9188, 1.0077] 0.9585 [0.9141, 1.0030]
Lossy Replay 0.9118 [0.8674, 0.9563] 0.9306 [0.8861, 0.9750]
Lossless Coll. Epochs 0.9521 [0.9077, 0.9966] 1.0170 [0.9726, 1.0615]
Lossy Coll. Epochs 0.8441 [0.7996, 0.8885] 0.8657 [0.8212, 0.9101]

Table 6.3: Estimated Hurst parameters and their confidence intervals for the byte throughput
time series of UNC 1 PM and its four types of source-level trace replay.

190

is a poor match of the original, while the lossy one provides a close approximation. This high impact

of losses in the collapsed-epochs replay, far larger than in the full replay case, suggests a significant

interaction between loss and long-range dependence when traffic is not generated according to a detailed

source-level model. In other words, endpoints that generate traffic according to less realistic models

(without epochs) are artificially more aggressive than Internet sources. This makes them more sensitive

to lossy environments, since losses can more sharply decrease their higher throughput. This can result

in experiments that overestimate the impact of losses on performance.

The estimated Hurst parameters and their confidence intervals shown in Table 6.3 are somewhat

surprising. In the inbound direction, the estimated Hurst parameter of the original trace is most closely

approximated by the lossless replays. The lossy full replay is slightly lower, and the lossy collapsed-epochs

replay is far lower. The same is true in the opposite direction, at least for the lossless replays. It is difficult

to interpret the meaning of these estimates in the context of the previous results. On the one hand, we

found large spikes in the time series of byte throughput that suggest substantially higher burstiness in the

lossless replays. Additionally, the wavelet spectra in Figure 6.22 did not find better approximations from

the lossless replays. Notice for example that the lossless collapsed-epochs replay is clearly the farthest

from the original. On the other hand, the tails of the marginal distributions clearly favored the lossless

replays, showing lighter tails for the lossy replays. We could argue that the different metrics refer to

different measures of burstiness, and conclude that adding artificial losses (using our open-loop method)

makes the lossy replays less realistic in terms of Hurst parameter estimates. However, this conclusion

seems too simplistic, since it is in contradiction with the Leipzig-II results. Adding losses made the

estimated Hurst parameters far closer in that case. Assuming that the observed differences between

the estimated Hurst parameters are significant, the reason for these divergent conclusions regarding the

impact of losses must necessarily lie in some fundamental difference in the nature of the two network

links. The estimated Hurst parameters say little about the difference, since all of the estimates are

similarly high (above 0.92).

As discussed in Chapter 4, the Leipzig-II trace is a good example of university traffic dominated by

downloading behavior (i.e., inbound traffic is substantially higher than outbound traffic). In contrast,

the UNC 1 PM trace is dominated by content downloaded from UNC servers (rather than downloads

from UNC clients) due to the presence at UNC of a major Internet repository of software and content,

ibiblio.org. This made traffic volume and number of connections far higher for UNC. Still, why would

these differences make introducing losses beneficial in the Leipzig case and detrimental in the UNC

case for the approximation of the original Hurst parameters? We can speculate that the rate-limiting

191

mechanisms used by ibiblio.org create unusual loss patterns that are poorly approximated by our

open-loop losses, but we do not have any supporting evidence.

The lessons from the analysis of the scaling in the packet throughput series is quite similar. The plots

in Figure 6.24 show reasonably close approximations of the original by all of the replays in the inbound

direction, and somewhat worse ones in the outbound direction. The spectrum of the lossless full replay

provides the closest approximation to the spectrum of the original in both directions. The spectrum of

the lossless collapsed-epochs replay is clearly not as close, showing a higher slope for medium to coarse

time scales. As in the case of byte throughput, lossy replays show less energy than the original trace,

especially for the fine scales in the outbound direction. Note also the systematic ditch around octave

14 for all four spectra from lossy replays. This suggests some unexpected periodicities at the 1-minute

scale. A similar ditch can be found in the outbound direction of the original time series in octave 13,

and this ditch is not reproduced by the replays.

Regarding the estimated Hurst parameters and their confidence intervals, Table 6.4 shows different

results for the two directions. The estimates for the inbound direction confirm the lossless full replay

as an excellent approximation, but here the lossless collapsed-epochs replay is also very close to the

original. Both lossy replays are well below the estimated Hurst parameter of the original time series,

and outside its confidence interval. The estimates for the outbound direction show again an excellent

approximation by the lossless full replay, but here the lossless collapsed-epochs replay is far higher than

the original and well within the non-stationarity region. Lossy replays are substantially better in the

outbound direction, with the lossy full replay matching the original estimate.

6.3.5 Time Series of Active Connections

As in the case of Leipzig-II, the lossy full replay of UNC 1 PM achieved a perfect match of the original

time series of active connections This is clear for both the entire range of the time series shown in the

left plot of Figure 6.26 using 1-minute bins, and for the 20-minute region shown in the right plot using 1-

second bins. This finer scale view shows several sharp spikes (minutes 24, 28, 30, 35 and 39) that the lossy

full replay tracked accurately. The lossless replay has only a slightly lower number of active connections

per second, showing similar spikes (but with a negative offset in the y-axis). Collapsed-epochs replays

had a far smaller number of active connections. Also, they did not track the features of the original time

series so well. Notice for example the absence of the minute 24 spike in the collapsed-epochs replays.

192

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Inbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.24: Wavelet spectra of the packet throughput time series for UNC 1 PM inbound and
its four types of source-level trace replay.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.25: Wavelet spectra of the packet throughput time series for UNC 1 PM outbound and
its four types of source-level trace replay.

Trace Inbound Outbound
UNC 1 PM H C. I. H C. I.

Original 0.9564 [0.9158, 0.9970] 0.9339 [0.8933, 0.9746]
Lossless Replay 0.9776 [0.9370, 1.0182] 0.9512 [0.9106, 0.9918]
Lossy Replay 0.8719 [0.8313, 0.9125] 0.9512 [0.9106, 0.9919]
Lossless Coll. Epochs 0.9464 [0.9058, 0.9871] 1.0956 [1.0549, 1.1362]
Lossy Coll. Epochs 0.8509 [0.8103, 0.8916] 0.9200 [0.8793, 0.9606]

Table 6.4: Estimated Hurst parameters and their confidence intervals for the packet throughput
time series of UNC 1 PM and its four types of source-level trace replay.

193

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

UNC 1 PM Original
Lossless Replay

Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

20 25 30 35 40

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

Time in Minutes

UNC 1 PM Original
Lossless Replay

Lossy Replay

Figure 6.26: Active connection time series for UNC 1 PM and its four types of source-level trace
replay.

6.4 Mid-Chapter Review

The present chapter is the longest one in this dissertation, and presents the results of 20 source-level

trace replay experiments using 130 plots and 10 tables. The conclusions are not always straight-forward

or consistent across traces, so it is difficult to form a coherent picture by simply going through the entire

body of results. In this section, we summarize our results so far in order to make the rest of the chapter

easier to follow. Our summary is in the form of a list of 18 observations, which report both on findings

that were consistent for Leipzig-II and UNC 1 PM, and findings that were inconsistent.

6.4.1 Observations on Byte Throughput

From the analysis of the plots of the time series of byte throughput, their marginal distributions and

wavelet spectra, we can make the following observations:

B.1 Both full and collapsed-epochs replays provide a reasonable approximation of the original 1-minute

time series of byte throughput and the body of its 10-millisecond marginal. Replays do not track

every spike in the original time series, but the similarity is remarkable. The replays achieve a

very close approximation of the Leipzig-II time series, but are slightly below the UNC 1 PM time

series. For both traces, the approximation of the bodies of the original marginal are somewhat

better for the inbound direction than for the outbound one. This observation is not explained by

traffic volume asymmetry, since the inbound direction was the dominant direction in terms of byte

volume only in the case of Leipzig-II.

B.2 Lossless replays sometimes show substantially more spikes of 1-minute byte throughput above the

194

original trace than lossy replays. This is clear for UNC 1 PM but not for Leipzig-II. At the

finer scales studied by the marginal distributions, we find that the tails of the lossless replays are

substantially heavier than those of the lossy replays. However, they are not consistently above the

tails of the original distributions. In contrast, the results for every trace show that the bodies of

the lossless replays are wider than the bodies of the lossy replays. This reveals higher burstiness in

the lossless replays in the sense that they have a higher probability of bins with byte throughput

far from the mean (i.e., a larger number of 10-millisecond intervals with have rather low or rather

high byte throughput).

B.3 Collapsed-epochs replays show somewhat more bursty 1-minute time series, and track the changes

in the shape of the original time series less closely. The extra burstiness may not appear very

substantial in the plots, but given the coarse scale, it may have a large impact on experiments

sensitive to prolonged byte throughput spikes. We do not find a corresponding phenomenon for

the marginal distributions, where collapsed-epochs replays are generally close to the full replays

(except for the outbound direction of UNC 1 PM). Together with observation B.5, this shows

that the extra burstiness of the collapsed-epochs replays manifests itself in the auto-correlation

structure of the byte throughput process, rather than in the set of byte throughputs observed

throughout the replays.

B.4 Full replays provide a close approximation of the scaling region (octaves 6 to 15) of the wavelet

spectra of the original traces. This does not necessarily translate into similarly good approximations

of the estimated Hurst parameters. Only the lossy replays are within confidence intervals for

Leipzig-II, while only the lossless ones are within confidence intervals for UNC 1 PM.

B.5 Collapsed-epochs replays tend to show slightly more energy in the scaling region. This is true for the

four spectra from lossless replays and for the two spectra from lossy replay of Leipzig-II. However,

the energy of the original scaling region is well approximated by the lossy collapsed-epochs replay

for the outbound direction of UNC 1 PM. This higher energy in the wavelet spectrum plot does

not necessarily translate into higher estimates of the Hurst parameters.

B.6 Both full and collapsed-epochs replays do not consistently match the spectra of the finer scales

(octaves 1 to 5). We find higher or slightly higher energy levels for the replays of Leipzig-II, similar

levels for the replays of the inbound direction of UNC 1 PM and lower levels for the outbound

direction of UNC 1 PM.

B.7 By construction, the most detailed replay is the lossy full replay, so we expect it to achieve the

best approximation of the original trace. This was always true for 1-minute time series, the body

195

of the marginal distribution and the scaling region of the wavelet spectrum. However, it was not

consistently true for the tail of the marginal distribution, the energy of the wavelet spectrum at

fine scales, and the estimated Hurst parameter.

6.4.2 Observations on Packet Throughput

We can make the following observations regarding packet throughput:

P.1 Full replays achieve a close approximation of the original 1-minute time series of packet throughput,

remaining between 2% and 8% below the original for most of the time series. Collapsed-epochs

replays result in a substantially worse approximation, being between 20% to 30% below the original

for most of the time series. This difference is also present in the bodies of the 10-millisecond

marginal distributions. In the best case for full replays, the median of the marginal distribution

is equal to the original median for the inbound direction of the UNC 1 PM lossy replay. In the

worst case, the median is 7% below the original for the inbound direction of the Leipzig-II lossy

replay. Collapsed epochs replays show medians of the marginal distributions that are 20% (UNC

1 PM inbound) and 25% (Leipzig-II outbound) below the original median.

P.2 Incorporating losses into the replays increases packet throughput, reducing the distance to the

original time series. While this effect is small for Leipzig-II, it is rather significant for UNC 1

PM inbound. In addition, lossless replays sometimes show more artificial spikes in the 1-minute

time series plot than the lossy ones (e.g., UNC 1 PM outbound). This phenomenon seems less

prominent for packet throughput than for byte throughput (see observation B.2).

P.3 Unlike the byte throughput case, the tails of the packet throughput from the replays marginals are

never significantly heavier than the original tails. Lossless replays provide the best approximations

of the original tails, being excellent in some cases (Leipzig-II inbound and UNC 1 PM inbound).

Lossy replays show lighter tails than lossless replays, revealing significantly worse approximations of

the original tails. We can also observe that the tails of the collapsed-epochs replays are consistently

lighter than those of the full replays. However, the impact of detailed modeling on the tails of the

marginals is less prominent than the impact of incorporating losses.

P.4 Full replays and lossy collapsed-epochs replays provide good approximations of the original wavelet

spectra, while the lossless collapsed-epochs replays show somewhat higher energy. In general, we

can say that the best approximation is achieved by the lossless full replay. As in the case of

byte throughput, Hurst parameter estimates offer a different picture. Only the estimates for the

196

lossy full replay are within confidence intervals of the original estimates for Leipzig-II, while the

estimates for both lossless and lossy full replays are within confidence intervals for UNC 1 PM.

P.5 Replays do not consistently reproduce the energy levels at the finest scales of the original time

series of packet arrivals. We find minor differences for Leipzig-II and UNC 1 PM inbound, and

substantially larger ones for UNC 1 PM outbound. Collapsed-epochs replays are significantly worse

than full replays only for UNC 1 PM.

6.4.3 Observations on Active Connections

Regarding active connections, we can make the following observations that hold true for both Leipzig-

II and UNC 1 PM:

C.1 The number of active connections in the original trace and in the full replays is very similar.

C.2 The lossy full replay provides the best approximation of the active connection time series, being

within 1% of the original time series. There is no difference for UNC 1 PM.

C.3 The number of active connections in collapsed-epochs replays is several times smaller than the

original (around 3 times smaller for Leipzig-II and UNC 1 PM).

C.4 Adding losses to the replays substantially increases the average number of connections. This

increase is of the same magnitude for both full and collapsed-epochs replays.

C.5 Full replays track the features of the original time series very closely. The only difference between

lossless and lossy replays is a slowly varying offset. This suggests a homogeneous impact of losses,

which lengthens the lifetimes of a stable number of connections throughout the traces.

C.6 Unlike full replays, collapsed-epochs replays do not track the features of the original time series.

However, the magnitude of this effect pales in comparison to the much smaller number of active

connections.

6.5 Source-level Replay of UNC 1 AM

6.5.1 Time Series of Byte Throughput

The plots of the 1-minute time series of byte throughput for the original UNC 1 AM and its replays

are shown in Figure 6.27 (inbound direction) and in Figure 6.28 (outbound direction). For the inbound,

197

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 1 AM Inbound
Original

Lossless Replay
Lossy Replay

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 1 AM Inbound
Original

Lossless with Coll. Epochs
Lossy with Coll. Epochs

Figure 6.27: Byte throughput time series for UNC 1 AM inbound and its four types of source-level
trace replay.

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 1 AM Outbound
Original

Lossless Replay
Lossy Replay

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 1 AM Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.28: Byte throughput time series for UNC 1 AM outbound and its four types of source-
level trace replay.

we observe a moderately bursty time series with a large increase in byte throughput between minutes 15

and 32. In good agreement with observation B.1, the replays track the shape of the original time series

well. They also approximate some smaller spikes, such as the one in minute 45, and miss others, such as

the one in minute 17. The result is similar for the outbound direction, although we again find a slightly

lower overall throughput in the replays. There is also an area of higher throughput in the original trace

between minutes 35 and 43 that is not properly reproduced by any of the replays. The full lossy replay

provide the closest approximation, but there is still a clear difference with respect to the original time

series.

The results also support the observation of higher burstiness from lossless replays, B.2, and from

collapsed-epochs replays, B.3; especially for the inbound direction. The results are also consistent with

observation B.7, since the full lossy replay appears closest to the original.

198

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 1 AM Inbound
Original

Lossless Replay
Lossy Replay

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 1 AM Inbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.29: Packet throughput time series for UNC 1 AM inbound and its four types of source-
level trace replay.

2

4

6

8

10

12

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 1 AM Outbound
Original

Lossless Replay
Lossy Replay

2

3

4

5

6

7

8

9

10

11

12

13

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 1 AM Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.30: Packet throughput time series for UNC 1 AM outbound and its four types of source-
level trace replay.

6.5.2 Time Series of Packet Throughput

The time series of packet throughput for UNC 1 AM inbound shown in Figure 6.29 are in sharp

contrast to earlier results. As stated in observation P.1, the time series from the replays of the previous

traces were generally below the time series of the original trace. However, the full replays of UNC 1 AM

are often above the original packet throughput, especially in the case of the lossy full replay. The same

is not true for the outbound direction, as shown in Figure 6.30, where the replays are again below the

original for a large fraction of the time series. While the replays provide a reasonable approximation of

the overall time series, the original packet throughput in the outbound direction is substantially lower

between minutes 35 and 43. The difference is most apparent for the collapsed-epochs replays.

Regarding observation P.2, we can see that collapsing epochs substantially reduced packet through-

put. Paradoxically, this makes the time series of the lossy collapsed-epochs match the original quite

199

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

UNC 1 AM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

UNC 1 AM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.31: Byte throughput marginals for UNC 1 AM inbound and its four types of source-level
trace replay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

UNC 1 AM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350 400

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

UNC 1 AM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.32: Byte throughput marginals for UNC 1 AM outbound and its four types of source-level
trace replay.

well, although the same is not true for the lossless collapsed-epochs replay. Note also that it is difficult

to argue for this trace that the lossy replays are significantly more bursty than the lossy ones at the

1-minute scale. We only observe one artificial spike in minute 27 for the lossless collapsed-epochs replay.

6.5.3 Marginal Distributions

Figures 6.31 and 6.32 study the marginal distributions of the original 10-millisecond time series UNC

1 AM and those from the source-level trace replays. The bodies of the distributions from the replays

are almost identical to the original for the inbound direction, and quite close for the outbound direction,

which further supports observation B.1. Observation B.2 is consistent with these results, although the

bodies of the lossless replays are very close to those of the lossy ones in this case. We do however observe

consistently heavier tails from lossless replays. Note the much heavier tail from the lossless collapsed-

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

UNC 1 AM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

60 80 100 120 140 160 180 200 220

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

UNC 1 AM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.33: Packet throughput marginals for UNC 1 AM inbound and its four types of source-
level trace replay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

UNC 1 AM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

50 100 150 200 250 300

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

UNC 1 AM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.34: Packet throughput marginals for UNC 1 AM outbound and its four types of source-
level trace replay.

epochs replay, which reveals an extra burstiness that was not visible in Figure 6.27. In agreement with

observation B.3, we do not find consistently wider bodies or heavier tails from the collapsed-epochs

replays. Finally, observation B.7 remains valid, with the lossy full replay being best for the tail of the

inbound direction, but clearly not for the opposite direction.

The lesson from the plots of the packet throughput marginals shown in Figures 6.33 and 6.34 is similar

to the one discussed for the time series in Section 6.5.2. In the inbound direction, the marginal from the

lossy full replay is heavier than the original, while the lossless full replay and the lossy collapsed-epochs

replays are rather close to the original. In the outbound direction, the results are consistent with the

somewhat lower packet throughput for the replay stated in observation P.1.

The tails of the marginals are again surprising for UNC 1 AM, and do not follow observation P.3.

The inbound plot shows lossless replays that are significantly heavier than the original, which exhibits

the lightest tail. Lossy replays provide far better approximations. The outbound plot appears closer to

201

the previous observation, with the lossless replays being the closest ones to the original. Note however

that they are somewhat heavier, unlike in the Leipzig-II and UNC 1 PM cases.

6.5.4 Long-Range Dependence

While the wavelet spectra for the inbound direction shown in Figure 6.35 are in good agreement with

observation B.4, we find substantially higher energy above the original in the spectrum of the lossless full

replay for outbound direction. The estimated Hurst parameters shown in Table 6.5 are again difficult

to assess, as mentioned in that observation. Lossless replays are the only ones within the confidence

interval of the estimate for the original inbound direction, while only the lossless collapsed-epochs replay

is outside the confidence interval for the outbound direction. Incidentally, the extremely high estimate

for the lossless collapsed-epochs replay is remarkable. It is 0.23 above the lossless full replay, illustrating

the major difference that detailed source-level modeling can make on traffic long-range dependence.

In the scaling region, collapsed-epochs replays do show higher energy than full replays, as observed

in B.5. This higher energy does not translate into higher Hurst parameter estimates. Notice for example

the lower estimates for the inbound direction. For both directions, the lossy collapsed-epochs replay

provides a good approximation of the original spectrum, although not as good as the lossy full replay.

The results for UNC 1 AM are therefore consistent with observation B.7. At the finest scales, we find

that the lossy full replay approximates the energy levels of the inbound direction most closely, while

it is the lossy collapsed-epochs replay the best match for the outbound direction. This inconsistency

supports observation B.6.

Figures 6.37 and 6.38 reveal that the wavelet spectra from lossless replays do not approximate the

original spectra well. For both directions, the full lossless replay shows significantly more energy, while

the full collapsed-epochs replay shows higher slope in the scaling region. This poor fit for the lossless

full replay contradicts observation P.4. Lossy replays appear closer to the original spectra in the scaling

region, especially in the case of the lossy full replay. Replays do not consistently match the energy in

the fine-scale region, as stated in observation P.5. Lossy replays are the closest ones in this region.

The estimated Hurst parameters shown in Table 6.6 do not follow observation P.4 very clearly.

The estimates from the lossless collapsed-epochs replay are far larger than the original estimates. The

estimates from the lossless full replays are far lower, but they are still above the upper ends of the

confidence intervals. Finally, both lossy replays are within confidence intervals, although the actual

202

2 4 6 8 10 12 14
26

28

30

32

34

36

38

40

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
26

28

30

32

34

36

38

40

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Inbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.35: Wavelet spectra of the byte throughput time series for UNC 1 AM inbound and its
four types of source-level trace replay.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.36: Wavelet spectra of the byte throughput time series for UNC 1 AM outbound and its
four types of source-level trace replay.

Trace Inbound Outbound
UNC 1 AM H C. I. H C. I.

Original 0.9885 [0.9479, 1.0292] 0.9990 [0.9584, 1.0397]
Lossless Replay 1.0275 [0.9868, 1.0681] 0.9705 [0.9299, 1.0111]
Lossy Replay 0.9465 [0.9058, 0.9871] 0.9546 [0.9140, 0.9953]
Lossless Coll. Epochs 1.0089 [0.9683, 1.0495] 1.2036 [1.1630, 1.2443]
Lossy Coll. Epochs 0.9136 [0.8730, 0.9542] 0.9720 [0.9313, 1.0126]

Table 6.5: Estimated Hurst parameters and their confidence intervals for the byte throughput
time series of UNC 1 AM and its four types of source-level trace replay.

203

2 4 6 8 10 12 14
6

8

10

12

14

16

18

20

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
6

8

10

12

14

16

18

20

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Inbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.37: Wavelet spectra of the packet throughput time series for UNC 1 AM inbound and
its four types of source-level trace replay.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.38: Wavelet spectra of the packet throughput time series for UNC 1 AM outbound and
its four types of source-level trace replay.

Trace Inbound Outbound
UNC 1 AM H C. I. H C. I.

Original 0.9316 [0.8871, 0.9760] 0.9309 [0.8864, 0.9753]
Lossless Replay 0.9860 [0.9416, 1.0305] 0.9830 [0.9385, 1.0274]
Lossy Replay 0.9749 [0.9304, 1.0193] 0.9759 [0.9315, 1.0204]
Lossless Coll. Epochs 1.1478 [1.1034, 1.1923] 1.2128 [1.1683, 1.2572]
Lossy Coll. Epochs 0.9504 [0.9059, 0.9948] 0.9757 [0.9313, 1.0202]

Table 6.6: Estimated Hurst parameters and their confidence intervals for the packet throughput
time series of UNC 1 AM and its four types of source-level trace replay.

204

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

UNC 1 AM Original
Lossless Replay

Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1400

1500

1600

1700

1800

1900

2000

2100

2200

20 25 30 35 40

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

UNC 1 AM Original
Lossless Replay

Lossy Replay

Figure 6.39: Active connection time series for UNC 1 AM and its four types of source-level trace
replay.

estimates are higher.

6.5.5 Time Series of Active Connections

The time series of active connections shown in Figure 6.39 confirm the list of observations in Section

6.4. It is clear that observations C.1 and C.2 hold, being the lossy full replay a perfect match of

the original time series. Observation C.3 is also true, although the relative gap between the number

of connections in full and collapsed-epochs replays is smaller for this trace. The impact of losses is

somewhat more significant for the collapsed-epochs replays, which is not completely in agreement with

observation C.4. Observations C.5 and C.6 are consistent with the results for UNC 1 AM.

6.6 Source-level Replay of UNC 7:30 PM

6.6.1 Time Series of Byte Throughput

The time series of byte throughput for the inbound and outbound directions of UNC 7:30 PM are

shown in Figures 6.40 and 6.41 respectively. Observation B.1 is clearly applicable to these results. For

the inbound direction, note the very good approximation of the time series features between minutes 20

and 60, and the accurately reproduced spikes in minutes 46 and 53. In contrast, the replay seems out of

phase for the initial spike in minute 1, and the large spike in minute 32. This could be explained by one

or a few fast connections in the original trace that could not be replayed fast enough. In the outbound

direction, we find replays with somewhat lower byte throughput, which was also observed in the other

205

5

10

15

20

25

30

35

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 7:30 PM Inbound
Original

Lossless Replay
Lossy Replay

5

10

15

20

25

30

35

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 7:30 PM Inbound
Original

Lossless with Coll. Epochs
Lossy with Coll. Epochs

Figure 6.40: Byte throughput time series for UNC 7:30 PM inbound and its four types of source-
level trace replay.

20

40

60

80

100

120

140

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 7:30 PM Outbound
Original

Lossless Replay
Lossy Replay

20

40

60

80

100

120

140

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

UNC 7:30 PM Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.41: Byte throughput time series for UNC 7:30 PM outbound and its four types of
source-level trace replay.

two UNC traces.

The possible extra burstiness in lossless replays mentioned in observation B.2 is not present in the

inbound direction, and the last 40 minutes in the outbound direction. We do however observe substan-

tially higher throughputs in the outbound direction for the first 20 minutes, especially in the case of the

lossless collapsed-epochs replay. Regarding observation B.3, we do observe slightly more bursty time

series from the collapsed-epochs replay in both directions, although the difference seems minor in this

case. A few of the (smaller) features in the inbound direction are more closely approximated by the full

replays, such as the spike in minute 22 and the ditch in minute 43.

206

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 7:30 PM Inbound
Original

Lossless Replay
Lossy Replay

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 7:30 PM Inbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.42: Packet throughput time series for UNC 7:30 PM inbound and its four types of
source-level trace replay.

4

6

8

10

12

14

16

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 7:30 PM Outbound
Original

Lossless Replay
Lossy Replay

4

6

8

10

12

14

16

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

UNC 7:30 PM Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.43: Packet throughput time series for UNC 7:30 PM outbound and its four types of
source-level trace replay.

6.6.2 Time Series of Packet Throughput

The analysis of the packet throughput results shows again some interesting differences with respect

to earlier results and observations P.1 and P.2, but only in the outbound direction. The results for

the inbound direction presented in Figure 6.42 are in good agreement with observation B.1, since we

observe substantially lower packet throughput for collapsed-epochs replays. The result is also consistent

with observation B.2, showing higher packet throughput in the lossy replay. However, the result for

the outbound direction is more surprising. Unlike previous cases, losses have a minimal impact on the

replays, as shown in Figure 6.43. We could argue that the lossy replay provides a better fit between

minutes 30 and 35 and after minute 52, but the rest of the time series for this replay is very similar to

the one for the lossless replay. We can also say that the lossless replay makes a better attempt to match

the spike in minute 14, although the replay spike seems shifted to minute 16.

207

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

UNC 7:30 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

UNC 7:30 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.44: Byte throughput marginals for UNC 7:30 PM inbound and its four types of source-
level trace replay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

UNC 7:30 PM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 200 300 400 500 600 700 800

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

UNC 7:30 PM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.45: Byte throughput marginals for UNC 7:30 PM outbound and its four types of source-
level trace replay.

6.6.3 Marginal Distributions

The marginal distributions of the 10-millisecond time series of byte throughput for the inbound

direction are shown in Figure 6.44, while the ones for the outbound direction are shown in Figure 6.45.

In agreement with observation B.1, the body of the marginals are closely approximated by the replays,

especially in the case of the inbound direction. For the outbound, it is interesting to note a better

approximation by the lossless replays for the upper part of the body and the first half of the tail.

As observation B.2 and B.3 pointed out, it is difficult to make general a statement about the approx-

imation of the tails. For UNC 7:30 PM inbound, collapsed epoch replays match the original as closely

as the full replays that match the original tail below 10−4, but they are substantially heavier above that

probability. Note that this heaviness did not manifest itself in the plots of 1-minute byte throughput.

For UNC 7:30 PM outbound, we however have that the lossless replays are the ones showing an excellent

208

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

UNC 7:30 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

50 100 150 200 250 300 350 400

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

UNC 7:30 PM Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.46: Packet throughput marginals for UNC 7:30 PM inbound and its four types of source-
level trace replay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

UNC 7:30 PM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-05

0.0001

0.001

0.01

0.1

1

50 100 150 200 250 300 350 400 450 500 550

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

UNC 7:30 PM Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.47: Packet throughput marginals for UNC 7:30 PM outbound and its four types of
source-level trace replay.

match below 10−3, but a far heavier tail above that probability. Overall, the only type of replay that

did not show an overly heavy tail was the lossy full replay, which supports observation B.7.

The body of the marginal distributions for the 10-millisecond packet throughputs shown in Figure

6.46 and 6.47 do not clearly follow observation P.1. In the inbound direction, the distributions from the

collapsed-epochs replays are clearly lighter than those from the full replays and the original trace for

most of the distribution. However, they provide a better approximation above 100 packets. Interestingly,

the distributions from the lossless replays exhibit similar shapes, but a clear offset, and the same is true

for the lossy replays. For this direction, we find that the impact of detailed source-level modeling and

per-connection losses is of the same order. The lesson is similar for the outbound direction, although all

of the replay distributions are lighter than the original distribution in this case.

Regarding the tails of the marginal distributions, we observe similar conditions in both directions.

Lossless replays exhibit substantially heavier tails than the original, while lossy replays exhibit substan-

209

tially lighter tails. This is in sharp contrast to the results for the 1-minute time series studied in Section

6.6.2, where losses had a very small impact. We can argue that lossless replays are artificially more

bursty only at fine-time scales for UNC 7:30 PM. The results clearly support observation P.3, showing

that the tails are far more sensitive to losses than to detailed source-level modeling for this trace.

6.6.4 Long-Range Dependence

The spectra of the byte throughput in the full replays are close to the original spectrum, as shown

in Figure 6.48. However, the spectra of the outbound byte throughput shown in Figure 6.49 reveals

a lossless replay with substantially more energy in the scaling region (which starts at octave 6). As

in the case of UNC 1 AM outbound, this finding does not support observation B.4 regarding lossless

full replays. The lossy full replay provides however a closer approximation to the original spectrum.

Estimated Hurst parameters in Table 6.7 show similar results. Estimates from the replays are within the

confidence interval of the inbound estimate, but somewhat lower. However, they are above the upper

end of the confidence interval of the outbound estimate. The estimate from the lossy collapsed-epochs

replay is specially high in this case, probably driven by the spike in octave 11. It is again difficult to draw

any strong conclusion other than the general finding of inconsistent results already stated in observation

B.4.

Collapsed-epochs replays show substantially more energy in the lossless case, but the difference in

not so substantial for the lossy replay, especially in the inbound direction. This is in agreement with

observation B.5.

The lossy full replay provides the best approximation again, as pointed out in observation B.7,

However, some regions, such as the one between octaves 9 to 12 in the inbound direction, are more

closely reproduced by the lossy collapsed-epochs replay. Interestingly, the four replays track the fine-

scale energy profile of the original spectrum for the inbound direction, but only the lossless ones do so

for the outbound direction. Observation B.6 already reflected this type of inconsistency in the results.

The lessons from the wavelet spectra in Figures 6.50 and 6.51 are surprisingly similar to those from

the analysis of the packet throughput spectra for UNC 1 AM, discussed in Section 6.5.4. The full lossless

replay shows higher energy, and the full collapsed-epochs replay shows substantially higher slope in the

scaling region. Lossy replays provide far better approximations of the original spectra. As we observed

for UNC 1 AM, these findings are inconsistent with observation P.4. Regarding fine scale energy levels

210

2 4 6 8 10 12 14
26

28

30

32

34

36

38

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
26

28

30

32

34

36

38

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Inbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.48: Wavelet spectra of the byte throughput time series for UNC 7:30 PM inbound and
its four types of source-level trace replay.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.49: Wavelet spectra of the byte throughput time series for UNC 7:30 PM outbound and
its four types of source-level trace replay.

Trace Inbound Outbound
UNC 7:30 PM H C. I. H C. I.

Original 0.8927 [0.8520, 0.9333] 0.9424 [0.9018, 0.9830]
Lossless Replay 0.8490 [0.8083, 0.8896] 1.0191 [0.9784, 1.0597]
Lossy Replay 0.8449 [0.8043, 0.8856] 1.0044 [0.9637, 1.0450]
Lossless Coll. Epochs 0.8392 [0.7985, 0.8798] 0.9984 [0.9578, 1.0390]
Lossy Coll. Epochs 0.8655 [0.8249, 0.9062] 1.0971 [1.0564, 1.1377]

Table 6.7: Estimated Hurst parameters and their confidence intervals for the byte throughput
time series of UNC 7:30 PM and its four types of source-level trace replay.

211

2 4 6 8 10 12 14
6

8

10

12

14

16

18

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
6

8

10

12

14

16

18

20

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Inbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.50: Wavelet spectra of the packet throughput time series for UNC 7:30 PM inbound and
its four types of source-level trace replay.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
6

8

10

12

14

16

18

20

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 7:30 PM Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.51: Wavelet spectra of the packet throughput time series for UNC 7:30 PM outbound
and its four types of source-level trace replay.

Trace Inbound Outbound
UNC 7:30 PM H C. I. H C. I.

Original 0.9560 [0.9116, 1.0005] 1.0061 [0.9617, 1.0506]
Lossless Replay 0.9655 [0.9210, 1.0099] 1.0043 [0.9599, 1.0488]
Lossy Replay 0.9186 [0.8742, 0.9631] 0.9524 [0.9080, 0.9969]
Lossless Coll. Epochs 0.9491 [0.9047, 0.9936] 0.9931 [0.9487, 1.0375]
Lossy Coll. Epochs 0.9967 [0.9523, 1.0411] 1.0508 [1.0064, 1.0953]

Table 6.8: Estimated Hurst parameters and their confidence intervals for the packet throughput
time series of UNC 7:30 PM and its four types of source-level trace replay.

212

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

UNC 7:30 PM
Lossless Replay

Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1800

2000

2200

2400

2600

2800

3000

20 25 30 35 40

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

UNC 7:30 PM
Lossless Replay

Lossy Replay

Figure 6.52: Active connection time series for UNC 7:30 PM and its four types of source-level
trace replay.

in the outbound direction, lossless replays show higher energy than lossy ones, which are still above the

original. In the outbound direction, lossless replays are very close to the original, while lossy ones are

below it. Once again, the difficulties for matching fine scale energies mentioned in observation B.6 are

present in this trace.

The estimates of the Hurst parameters are not so consistent with the results for UNC 1 AM, and are

in better agreement with observation P.4. Here lossless replays approximate the original spectra closely,

while lossy replays appear lower (full case) or higher (collapsed-epochs case) than the original.

6.6.5 Time Series of Active Connections

The time series of active connections shown in Figure 6.52 are in good agreement with earlier traces.

Every observation listed in Section 6.4.3 is confirmed by the UNC 7:30 PM results. Unlike the two

previous UNC traces, the lossy full replay is not a perfect fit of the original time series, but it still

provides a very close approximation, well within the 1% bound mentioned in observation C.2. The

large spike around minute 23 does not appear in the collapsed-epochs replay, providing another clear

illustration of observation C.6. Note that whatever the cause of this spike, it is not due to a difference in

the number of connections started, since they are identical in the four replays. The spike is necessarily

explained by a set of connections with substantially longer lifespans in the full replays than in the

collapsed-epochs replays.

213

60

80

100

120

140

160

180

200

220

240

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Abilene-I Inbound
Original

Lossless Replay
Lossy Replay

60

80

100

120

140

160

180

200

220

240

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Abilene-I Inbound
Original

Lossless with Coll. Epochs
Lossy with Coll. Epochs

Figure 6.53: Byte throughput time series for Abilene-I Clev/Ipls and its four types of source-level
trace replay.

40

60

80

100

120

140

160

180

200

220

240

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Abilene-I Outbound
Original

Lossless Replay
Lossy Replay

40

60

80

100

120

140

160

180

200

220

240

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

Time in Minutes

Abilene-I Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.54: Byte throughput time series for Abilene-I Ipls/Clev and its four types of source-level
trace replay.

6.7 Source-level Replay of Abilene-I

6.7.1 Time Series of Byte Throughput

The two directions of Abilene-I show the highest throughput of the five traces considered in this

chapter. Combined byte throughput is often above 400 Mbps, creating the most challenging traffic

generation scenario in terms of traffic volume. The excellent agreement between original and replay data

shown in Figures 6.53 and 6.54 provide convincing evidence in favor of observation B.1. The replays

closely track the general shape of the time series, even reproducing major changes such as the one

between minutes 30 and 42. In general, we observe some spikes that appear in both original and replay

time series, while others do not.

Lossless replays and collapsed-epochs replays do not seem to add any significant burstiness for this

214

10

15

20

25

30

35

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Abilene-I Inbound
Original

Lossless Replay
Lossy Replay

5

10

15

20

25

30

35

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Abilene-I Inbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.55: Packet throughput time series for Abilene-I Clev/Ipls and its four types of source-
level trace replay.

5

10

15

20

25

30

35

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Abilene-I Outbound
Original

Lossless Replay
Lossy Replay

5

10

15

20

25

30

35

0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
in

 K
p

p
s

Time in Minutes

Abilene-I Outbound
Original

Lossless Replay with Collapsed Epochs
Lossy Replay with Collapsed Epochs

Figure 6.56: Packet throughput time series for Abilene-I Ipls/Clev and its four types of source-
level trace replay.

trace, which agrees with the weak statements in observations B.2 and B.3. Note however that the high

aggregate throughput could easily be hiding extra burstiness of the magnitude observed for previous

traces. For example, careful examination uncovers higher throughput above the original in collapsed-

epochs replay, for the spike in minute 7 and for the region between minutes 15 and 30.

6.7.2 Time Series of Packet Throughput

The time series of packet throughput in Figures 6.55 and 6.56 are consistent with observation P.1,

showing an excellent match between original and full replays. Given that Abilene-I is the trace with the

lowest loss level (see Section 4.1.3), this could suggest that the difficulties with the last two UNC traces

were probably due to the complexity of their loss characteristics. Collapsed-epochs replays show a lower

packet throughput, generally 2,000 to 3,000 packets below the original. In relative terms, the difference

215

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350 400

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

Abilene-I Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

200 250 300 350 400 450 500 550

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

Abilene-I Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.57: Byte throughput marginals for Abilene-I Clev/Ipls and its four types of source-level
trace replay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350 400

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of KBytes (10-Millisecond Bins)

Abilene-I Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

200 300 400 500 600 700 800

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of KBytes (10-Millisecond Bins)

Abilene-I Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.58: Byte throughput marginals for Abilene-I Ipls/Clev and its four types of source-level
trace replay.

is between 8% and 10%, which is smaller than for previous traces. This could easily be explained by a

larger percentage of bulk transfers in Abilene-I, where a single ADU carrying a single file constitutes the

only payload of the TCP connection. This is for example the case in FTP-DATA connections.

6.7.3 Marginal Distributions

The marginal distributions from Abilene-I presented in Figure 6.57 and 6.58 show very similar bodies

for original and replay traces. This further confirms observation B.1. Unlike previous traces, we find

remarkably similar tails for all four replay traces that are consistently lighter than the original tail. The

difference is specially striking in the outbound direction. One possible explanation for this intriguing

result for the Abilene-I trace comes from the type of monitored link. Abilene-I is the only trace in

this chapter collected in a link technology (OC-48, 2.5 Gbps) different from the one used in the replay

216

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

150 200 250 300 350 400 450

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

Abilene-I Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

200 250 300 350 400 450 500 550 600

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

Abilene-I Inbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.59: Packet throughput marginals for Abilene-I Clev/Ipls and its four types of source-level
trace replay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

150 200 250 300 350 400 450

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Packets (10-Millisecond Bins)

Abilene-I Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

200 250 300 350 400 450 500 550 600 650 700

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Number of Packets (10-Millisecond Bins)

Abilene-I Outbound
Original

Lossless Replay
Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

Figure 6.60: Packet throughput marginals for Abilene-I Ipls/Clev and its four types of source-level
trace replay.

(Gigabit Ethernet, 1 Gbps). While the plots in Figures 6.53 and 6.54 showed no single minute with more

than 500 Mbps, it is perfectly possible to have shorter (e.g., 10 millisecond) intervals with far higher

byte throughput. An alternative explanation is the presence of some possible limit in the forwarding

capacity of our software routers, which is not far above 500 Mbps.

The bodies of the marginal distributions for packet throughput in Figures 6.59 and 6.60 are consistent

with observation P.1. Collapsed-epochs replays show substantially lighter distributions, while full replays

are closer to the original. The approximation in the outbound direction is remarkably good. As a

consequence of the low loss in this trace, observation P.3 does not apply to Abilene-I. The impact of

losses is smaller than the impact of source-level modeling. This effect is however dwarfed by the large

difference between the tails of the replays and the original one. As discussed for byte throughput,

differences in link technology between Abilene-I and the testbed could explain the far lighter tails in the

replays.

217

6.7.4 Long-Range Dependence

The wavelet spectra for the inbound direction, shown in Figure 6.61, support observation B.4. How-

ever, the difference between original and full replays is substantial in the outbound direction, shown in

Figure 6.62. Given the major change in slope after octave 11, it is difficult to draw any conclusions from

this finding. Regarding observation B.5, we do observe worse approximations by the collapsed-epochs

replays, which exhibit substantially deeper ditches around octave 5 (notice the lower smallest value in

the y-axis of the outbound plot). In any case, the replays do not closely track the fine scale shape of the

spectra, which is in agreement with observation B.6.

Hurst parameters, shown in Table 6.9, are remarkably high for this trace. All of them are above 1,

suggesting significant non-stationarity, which is clearly preserved in the replays. The estimate for the

lossy full replay is the closest one for both directions. Together with the wavelet spectra, this supports

observation B.7.

As for byte throughput, the wavelet spectra of the packet throughput for Abilene-I shown in Figures

6.63 and 6.64 are not comparable to previous cases, and inconsistent with observation P.4. The difference

between the replays and the original follows the same pattern in all of the cases, with a large ditch in

octave 5. This ditch is much more pronounced for the collapsed-epochs replays. In any case, the result

is a poor match between the original spectra and the replays, both at fine scales and at the the scaling

region. Estimated Hurst parameters for the replays are lower for the inbound replays and higher for the

outbound ones, and mostly outside confidence intervals. Incorporating losses had a minimal impact on

the wavelet spectra of the Abilene-I replays, resulting only in a small decrease of the slope in the scaling

region. This decrease translated into a slightly smaller Hurst parameters estimates for the lossy replays.

6.7.5 Time Series of Active Connections

Unlike the results for previous traces, Figure 6.65 shows a substantial difference between the lossy full

replay and the original time series. This weakens observations C.1 and C.2 from Section 6.4.3, being the

replay around 15% below the original. The rest of the observations clearly hold. The relative magnitude

of the gap between the full replays and the collapsed-epochs ones is largest for Abilene-I. The reason

is unclear, especially given the excellent approximations for the other traces. It is hard to imagine a

larger fraction of bandwidth-constrained connections in this trace, and round-trip time estimation should

be as accurate as for the other traces. We are more inclined to think that the mix of applications in

218

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Inbound
Lossy with Coll. Epochs
Lossy with Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.61: Wavelet spectra of the byte throughput time series for Abilene-I Clev/Ipls and its
four types of source-level trace replay.

2 4 6 8 10 12 14
28

30

32

34

36

38

40

42

44

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
26

28

30

32

34

36

38

40

42

44

j = log
2
(scale) −− Bytes Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.62: Wavelet spectra of the byte throughput time series for Abilene-I Ipls/Clev and its
four types of source-level trace replay.

Trace Inbound Outbound
Abilene-I H C. I. H C. I.

Original 1.0597 [1.0320, 1.0874] 1.0604 [1.0327, 1.0881]
Lossless Replay 1.1170 [1.0893, 1.1447] 1.1356 [1.1079, 1.1633]
Lossy Replay 1.0814 [1.0537, 1.1091] 1.1079 [1.0802, 1.1356]
Lossless Coll. Epochs 1.1824 [1.1573, 1.2075] 1.2111 [1.1860, 1.2362]
Lossy Coll. Epochs 1.1580 [1.1329, 1.1831] 1.1874 [1.1623, 1.2125]

Table 6.9: Estimated Hurst parameters and their confidence intervals for the byte throughput
time series of Abilene-I and its four types of source-level trace replay.

219

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Inbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
6

8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Inbound
Lossy with Coll. Epochs
Lossy with Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.63: Wavelet spectra of the packet throughput time series for Abilene-I Clev/Ipls and its
four types of source-level trace replay.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

24

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Outbound
Lossless Replay
Lossy Replay

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
6

8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

Abilene−I Outbound
Lossless Coll. Epochs
Lossy Coll. Epochs

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 6.64: Wavelet spectra of the packet throughput time series for Abilene-I Ipls/Clev and its
four types of source-level trace replay.

Trace Inbound Outbound
Abilene-I H C. I. H C. I.

Original 1.1326 [1.1075, 1.1577] 1.0996 [1.0745, 1.1247]
Lossless Replay 1.1191 [1.0941, 1.1442] 1.1443 [1.1192, 1.1694]
Lossy Replay 1.0849 [1.0598, 1.1100] 1.1232 [1.0981, 1.1483]
Lossless Coll. Epochs 1.1841 [1.1563, 1.2118] 1.1923 [1.1646, 1.2200]
Lossy Coll. Epochs 1.1757 [1.1480, 1.2034] 1.1850 [1.1573, 1.2127]

Table 6.10: Estimated Hurst parameters and their confidence intervals for the packet throughput
time series of Abilene-I and its four types of source-level trace replay.

220

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

Abilene-I Original
Lossless Replay

Lossy Replay

Lossless Coll. Epochs
Lossy Coll. Epochs

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

20 25 30 35 40

N
u

m
b

er
 o

f
A

ct
iv

e
C

o
n

n
ec

ti
o

n
s

P
er

 S
ec

o
n

d

Time in Minutes

Abilene-I Original
Lossless Replay

Lossy Replay

Figure 6.65: Active connection time series for Abilene-I and its four types of source-level trace
replay.

Abilene-I includes a substantial number of (probably long) connections whose driving application is not

well-described by our source-level model.

6.8 Summary

The results in this chapter demonstrated that source-level trace replay can closely approximate the

characteristics of real traffic traces. We have also shown that full source-level replays are closer or far

closer to original traces than collapsed-epochs replays for several metrics. In particular, the largest

difference is observed for the time series of packet throughput, the body of the packet throughput

marginal and the time series of active connections. Byte throughput is similar for full and collapsed-

epochs replays. The latter exhibits somewhat more bursty time series, but the bodies of the marginals

do not change significantly.

The rest of the metrics cannot be clearly interpreted, since losses have a much more significant

impact on them than the use of full or collapsed-epochs replays. Lossy full replays are clearly better

than lossy collapsed-epochs replays in terms of wavelet spectra, estimated Hurst parameters and tails

of the marginals for some traces, but this is not consistent for the five traces. Our analysis clearly

demonstrated the need to carefully consider the impact of losses on evaluating the quality of synthetic

traffic. Without our direct comparison of lossless and lossy replays, the results for certain metrics could

have mislead our conclusions regarding source-level modeling. In contrast, other metrics are less affected

by the loss model. This is the case for the time series of packet throughput, the body of the packet

throughput marginal and the time series of active connections, where full replays are clearly better

221

approximations than collapsed-epochs replays.

222

CHAPTER 7

Trace Resampling and Load Scaling

That which is static and repetitive is boring. That which is dynamic and random is
confusing. In between lies art.

— John A. Locke (1632–1704)

Everything that can be counted does not necessarily count; everything that counts cannot
necessarily be counted.

— Albert Einstein (1879–1955)

The previous chapters presented a complete methodology for reproducing the traffic observed on a

network link in a closed-loop manner, and proposed a number of metrics for studying the realism of the

generated traffic. In this chapter, we study ways to introduce statistical variability in synthetic traffic

in a meaningful and controlled manner. In addition, we address the need for changing offered load in

network experiments. The methods that we introduce in this chapter add significant flexibility to our

traffic generation approach, enabling researchers to perform a wider range of experiments.

In the approach presented so far, traffic is generated according to a trace Tc = {(Ti, Ci)}. Each

augmented connection vector Ci is replayed starting at time Ti. This implies that two different replays

of Tc using the same hardware and the same physical network result in very similar synthetic traffic. In

both cases, the synthetic traffic has the same number of TCP connections, replaying the same source-

level behaviors under the same network-level parameters, and starting exactly at the same times. Only

tiny variations would be introduced on the end-systems by changes in clock synchronization, operating

system scheduling and interrupt handling, and at switches and routers by the stochastic nature of packet

multiplexing. This reproducibility was exactly what was needed to evaluate how well synthetic traffic

approximated the real traffic from which it derived.

However, in the practice of experimental networking, experimenters often want to introduce more

variability in their experiments. One way of accomplishing this is to use more than one trace in a

replay, exposing the studied network protocol or mechanism to different types of workloads. This is

highly desirable, but it has its drawbacks. First, the experimenter may want to perform a number of

experiments that is larger than the number of available traces. Second, traces from different sites, and

even traces from the same site but collected at different times of the day, may be so different that it

becomes difficult to extrapolate from the results of the experiments.

A different, and complementary, approach is to conduct several experiments using traffic that “looks

like” some specific trace Tc, without exactly replaying Tc over and over. The first challenge in devising

a method for accomplishing this task is to define what “looks like” mean. This involves creating a

model (either formal or informal) of the traffic which is general enough to contain Tc but specific enough

to always resemble the original trace. Running different experiments then requires to instantiate this

model several times to create new derived traces T ′
c , T ′′

c , . . . and to generate traffic with these new traces

using their source-level trace replay. In this chapter, this instantiation consists of resampling the set of

connection vectors in Tc and assigning them new start times. Statistical variability in the derived traces

comes from the resampling of the original connection vectors, and from the process of connection start

times. We preserve the statistical properties of the original set of connection vectors by resampling entire

connection vectors, i.e., we do not manipulate the sizes and order of the ADUs and inter-ADU quiet

times inside connection vectors. Our belief is that a trace created by modifying the source-level behavior

of the connection vectors or their network-level parameters “does not look like” the original trace. For

example, doubling the size of the ADUs in Tc is an easy way of creating a new trace and increasing the

offered load. However, the resulting connection vectors have little to do with the connections observed

in the link from which Tc was collected. Our choice to maintain connection vectors intact is reasonable,

and consistent with the spirit of our overall methodology, which goes to great lengths to accurately

characterize the source-level characteristics of each connection. Other researchers may have a different

mental model of the legitimate level of statistical variability which could be introduced in T ′
c , T ′′

c , . . . We

propose a specific solution and demonstrate that it is reasonable using quantitative data. A discussion

of the different philosophies is outside the scope of this work.

The two sections in this chapter describe two techniques for introducing variability in the source-level

replay of a trace. Section 7.1 describes Poisson Resampling . This technique assumes that connections are

independent of each other, which is a reasonable choice for highly aggregated traffic. Poisson Resampling

involves randomly resampling the connection vectors in Tc in an independent manner to create a new T ′
c .

New start times are given to each resampled connection vector in a such a way that connection inter-

arrivals are exponentially distributed. As we will show, empirical data support the choice of exponential

224

inter-arrivals.

Section 7.2 describes Block Resampling . This technique involves resampling blocks of connection

vectors, preserving arrival dependencies among the connections inside the same block. Each block is the

set of connections observed in an interval of fixed duration (e.g., 1 minute) in the original trace. We will

demonstrate that this technique, unlike Poisson Resampling, preserves the long-range dependence in the

connection arrival process found in real traces. This cannot be achieved by sampling independently from

an exponential (or any other) distribution. Note that we will reserve the term resampling for randomly

selecting connection vectors, and the term sampling for randomly drawing values from a parametric

distribution, such as the exponential distribution.

The second topic of this chapter is how to manipulate a trace Tc to modify the traffic load (i.e.,

average byte throughput) that this trace offers during its source-level replay. This is a common need

in experimental networking research, where the performance of a network mechanism or protocol is

often affected by the amount of traffic to which it is exposed. For example, active queue management

mechanisms have very different performance depending on the level of utilization of the input link, so

researchers generally perform experiments with offered loads that range from 50% to 120% of the link

bandwidth. Rather than trying to find or collect traces with the exact range of loads needed (which is

generally difficult), we propose to produce a collection of resampled traces with the intended range of

offered loads.

Average load l is defined as the total number of bytes injected in the network s divided by the

total duration of the experiment d. Changing the average load in an experiment of constant duration

therefore implies creating a scaled trace T ′
c with a higher or a lower total number of bytes. Once again, the

assumption is that it is possible to create a scaled trace T ′
c which “looks like” the original Tc but with a

larger or smaller number of bytes. This requires a model of traffic that is general enough to encompass Tc

and traces derived from Tc with different offered loads. As should be obvious, the problems of introducing

statistical variability and changing average load are related, and can naturally be treated together, as we

will do in this chapter. The two techniques mentioned above, Poisson Resampling and Block Resampling,

provide the foundation for deriving scaled traces. In both cases, the resampling of Tc to create a scaled

T ′
c can be modified to achieve a target average load. This means that our scaling method is predictable,

which is an advance over earlier traffic generation methods, e.g., [CJOS00, LAJS03, SB04]. These

earlier methods required a separate experimental study, a calibration, to construct a function coupling

the parameters of the traffic generator and the achieved load. For example, web traffic generators usually

225

require a calibration to discover the relationship between average load and the number of user equivalents.

The scaling methods presented in this chapter eliminate the need for this extra study. Their starting

point is the observation that the average load offered by the source-level replay of Tc is a deterministic

function of the total number of bytes in the ADUs of Tc. We will show that these observation holds true

using numerical simulations and testbed experiments. In contrast, the same analysis will demonstrate

that the average load offered by the replay of Tc is not strongly correlated with its number of connections.

In the case of Poisson Resampling, our method to construct a new trace T ′
c with a specific target offered

load involves resampling Tc until the desired total number of bytes (coming from ADUs) is reached. In

the case of Block Resampling, constructing a new trace T ′
c with a specific target offered load involves

subsampling blocks (“thinning”) to decrease load, or combining two or more blocks (“thickening”) to

increase load.

7.1 Poisson Resampling

7.1.1 Basic Poisson Resampling

The first technique we consider for introducing variability in the traffic generation process is Poisson

Resampling. The starting point of every method presented in this chapter is a connection vector trace

Tc = {(Ti, Ci) | i = 1, 2, . . . , n} where Ci is an augmented connection vector (an a-b-t connection vector

plus some network-level parameters), and Ti is its relative start time. The basic version of our Poisson

Resampling technique consists of deriving a new trace T ′
c = {(T ′

j , C
′
j) | i = 1, 2, . . . , n′} by randomly

choosing connection vectors from Tc without replacement, and assigning them start times according to

an exponential distribution. We define the duration d of Tc as Tn − T1, the length of the interval in

which connections are started1. Given a target duration d′ for T ′
c , the Poisson Resampling algorithm

iteratively adds a new (T ′
j , C

′
j) to T ′

c until T ′
j > d′. Each C ′

j is equal to some randomly selected Ci, and

T ′
j = T ′

j−1 + δj ,

where δj is sampled independently from an exponential distribution. The mean µ′ of this exponential

distribution provides a way to control the density of connections in the derived trace. For example, if

we intend to have the same density of connections in T ′
c as in Tc, we can compute the mean inter-arrival

1This duration is always slightly below the true duration of the original packet header trace, since at least the packets
of the last connection started are observed after its start time.

226

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Connection Inter-arrival Time in Microseconds

UNC 1 PM
Exponential (Mean=1700 usecs.)

UNC 1 AM
Exponential (Mean=6889 usecs.)

Figure 7.1: Bodies of the distributions of con-
nection inter-arrivals for UNC 1 PM and 1 AM,
and their exponential fits.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Connection Inter-arrival Time in Microseconds

UNC 1 PM
Exponential (Mean=1700 usecs.)

UNC 1 AM
Exponential (Mean=6889 usecs.)

Figure 7.2: Tails of the distributions of connec-
tion inter-arrivals for UNC 1 PM and 1 AM,
and their exponential fits.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Connection Inter-arrival Time in Microseconds

Abilene-I
Exponential (Mean=3,075 usecs.)

Leipzig-II
Exponential (Mean=5,230 usecs.)

Figure 7.3: Bodies of the distributions of con-
nection inter-arrivals for Abilene-I and Leipzig-
II, and their exponential fits.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Connection Inter-arrival Time in Microseconds

Abilene-I
Exponential (Mean=3,075 usecs.)

Leipzig-II
Exponential (Mean=5,230 usecs.)

Figure 7.4: Tails of the distributions of connec-
tion inter-arrivals for Abilene-I and Leipzig-II,
and their exponential fits.

time µ = d/n of the connection vectors in Tc, and use it as the mean µ′ of the experimental distribution

used to construct T ′
c . Given the light tail of the exponential distribution, the resulting number n′ of

connection vectors in T ′
c is always very close to d′/µ′. If d = d′, the number of connection vectors in T ′

c

is also very close to n.

The resampling technique described above has the advantage of its simplicity. Furthermore, it is

statistically appealing, since the exponential distribution naturally arises from the combination of in-

dependent events. The use of connection inter-arrivals sampled independently from an exponential

distribution is intuitively consistent with the view of traffic as a superposition of a large number of inde-

pendent connections that transmit data through the same network link. Our empirical data, presented

in Figures 7.1 to 7.4, confirm the applicability of this inter-arrival model. Figure 7.1 shows two pairs

227

of CDFs comparing real connection arrivals and their exponential fits. The first pair (white symbols)

corresponds to the distribution of connection inter-arrivals for UNC 1 PM (squares), and an exponential

distribution2 with the same mean (triangles). The second pair (black symbols) shows the distribution

of connection inter-arrivals for UNC 1 AM and an exponential distribution with the same mean. Both

fits are excellent, so exponentially distributed connection inter-arrivals are clearly a good starting point

for a trace resampling technique. The tails of the empirical distributions, shown in Figure 7.2, are also

consistent with the fitted exponentials. Their slope is slightly lower, which could motivate a fit with

a more general distribution like Weibull. However, a small improvement in the fit would require an

increase in the complexity of the model, since the one-parameter exponential model would have to be

replaced by the two-parameter Weibull model. This additional effort would produce only a limited gain

given that the exponential fit is excellent for 99.9% of the distribution.

Figures 7.3 and 7.4 consider another two traces, Abilene-I and Leipzig-II. The bodies are again

very closely approximated, but the tails are heavier for the original data. Note that this effect is more

pronounced as the traces get longer. The duration of the UNC traces is one hour, the duration of

Abilene-I is 2 hours, and the duration of Leipzig-II is 2 hours and 45 minutes. This could suggest that

the worse fit is due to non-stationarity in the connection arrival process, which becomes more likely for

longer traces. Further analysis is needed to confirm this hypothesis or find an alternative explanation.

We must note that these results are in sharp contrast with those in Feldmann [Fel00], where the empirical

inter-arrival distributions were significantly different from the bodies3 of fitted exponential distributions.

The reason for this difference is unclear at this point4.

The main problem with the basic Poisson Resampling technique is the lack of control over the

load offered by the replay of T ′
c . As we will demonstrate, the number of connections in T ′

c is only

loosely correlated to the offered load. As a consequence, it becomes difficult to predict the load that

a Poisson resampled trace generates, even for resamplings of the same duration and mean inter-arrival

rate. This would force researchers to create many resampled traces until they hit upon a resampling

with the intended offered load. We studied the wide range of offered loads that result from basic Poisson

Resampling by performing a large of number of resamplings of the same connection vector trace Tc.

As discussed in the introduction of this chapter, average load l created by Th is equal to the total

number of bytes s in Th divided by its duration d. Given that TCP headers and retransmitted segments

2The shown exponential distribution comes from randomly sampling the theoretical distribution n − 1 times.
3The tails were not studied in that paper.
4Besides problems with the fitting or the data acquisition in the paper, we conjecture that this could be due to the

slightly different type of data we considered in our study. Our connections were fully captured and included only those
connections that actually carried data. Those in [Fel00] included degenerate cases in which no data was transferred.

228

140

145

150

155

160

165

170

175

180

185

1.409 1.41 1.411 1.412 1.413 1.414 1.415 1.416 1.417 1.418

A
ve

ra
g

e
O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Number of Connection Vectors (in Millions)

Basic Poisson Resampling
Target Offered Load

Figure 7.5: Average offered load vs. number
of connections for 1,000 Poisson resamplings of
UNC 1 PM.

Average Offered Load in Mbps

F
re

q
u

en
cy

150 160 170 180

0
20

40
60

Figure 7.6: Histogram of the average offered
loads in 1,000 Poisson resamplings of UNC 1
PM.

usually represent only a small fraction of s, the total size of the ADUs in Tc divided by d is also a

close approximation of l. We use this approximation to examine the average loads offered by a large

number of Poisson resamplings, considering the offered load of a resampling T ′
c equal to the total size

s′ of its ADUs divided by its duration d′. It is also important to note that the traces we consider are

bidirectional, and they do not necessarily create the same average load in both directions. The analysis

in the rest of this section will focus only on one direction of the trace, the target direction, whose average

load is given the total size of the ADUs flowing in that direction divided by the duration of the trace.

More formally, the total size of the ADUs in the target direction is equal to

s′ =
∑

i∈Cinit

ni

a
∑

j=1

ai
j +

∑

i∈Cacc

ni

b
∑

j=1

bi
j , (7.1)

where Cinit is the set of connection vectors in T ′
c initiated in the target direction, Cacc is the rest of the

connection in T ′
c (the connections accepted rather than initiated in the target direction), ni

a and ni
b are

the numbers of a-type and b-type ADUs of i-th connection vector respectively, and ai
j and bi

j are the sizes

of the j-th a-type and b-type ADU of the i-th connection vector respectively. Computing offered load as

s′/d′ is only a convenient (and reasonable) approximation of the load generated by replaying T ′
c . First,

s′ is an underestimation, since it does not take into account the total size of packet headers (only ADUs),

and the retransmissions in the replay. Second, the duration of the replay of the connection vectors in

T ′
c will be somewhat above d′. d′ only considers the period in which connections are started, but some

of them will terminated after the last connection is started. An obvious example is the last connection.

As we will demonstrate using experiments, the inaccuracy of s′/d′ is very small, so it provides a good

foundation for understanding load scaling. This calculation is obviously much more convenient than

229

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Total Sum of ADU Sizes in Bytes

Target Direction
Opposite Direction

Figure 7.7: Tails of the distributions of connec-
tion sizes for UNC 1 PM.

20

40

60

80

100

120

140

160

180

40 60 80 100 120 140 160

A
ch

ie
ve

d
 O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Target Offered Load in Mbps

Basic Poisson Resampling
Mean of 1,000 Experiments

Achieve Loads [5%, 95%]

Figure 7.8: Analysis of the accuracy of
connection-driven Poisson Resampling from
6,000 resamplings of UNC 1 PM (1,000 for each
target offered load).

replaying thousands of resamplings in the testbed network.

Figure 7.5 shows a scatterplot of the results of 1,000 resamplings of UNC 1 PM. The duration of the

resamplings and their mean rate of connection inter-arrival were equal to the ones in UNC 1 PM. For

each resampling, the total number of connections is shown on the x-axis, while the resulting offered load

s′/d′ is shown on the y-axis. This plot demonstrates that basic Poisson Resampling results in traces

with very small variability in the number of connection vectors, between 1,409,727 and 1,417,664 (the

standard deviation σ was equal to 1,191.71). On the contrary, the range of offered loads is very wide,

between 143.55 and 183.44 Mbps (σ = 6.01 Mbps), centered around the offered load of Tc, 161.89 Mbps.

The distribution of offered loads and its spread is further illustrated by the histogram in Figure 7.6.

The wide range of offered loads that can result from Poisson Resampling is due to the heavy-tailed

nature of the distribution of the total number of bytes contributed by each connection vector. The tail

of this distribution for the UNC 1 PM trace is shown in Figure 7.7. The values in the plot correspond to

the target direction, i.e.,
∑ni

a

j=1 aj for each connection in Cinit and
∑ni

b

j=1 bj for each connection in Cacc.

The tails show non-negligible probabilities for very large sizes, and a linear decay of the probability over

six orders of magnitude in the log-log CCDF. As a consequence, the contribution to the offered load

made by each connection is highly variable and thus the number of connections in a trace is a poor

predictor of its offered load. This makes basic Poisson Resampling inadequate for controlling load. Its

only parameter is the mean inter-arrival rate of connections. This rate controls the same number of

connections in the resampling, but not the total size of these connections, which varies greatly due to

the heavy-tailed connection sizes. Figure 7.8 further illustrates this point using six sets of 1,000 trace

230

resamplings, each set with a different target offered load. The plot shows a cross marking the mean

of the load achieved by each of the sets of 1,000 experiments. The variability in the offered loads is

illustrated using error bars for each set of experiments. The lower and upper endpoints of the error bars

correspond to the 5th and 95th percentiles of the loads offered by each set of trace resamplings. Each

set of trace resamplings had a fixed mean inter-arrival rate µ′. Under the assumption that the mean

offered load l is proportional to the number of connections n, we would expect the load to be inversely

proportional to the mean arrival rate µ, since µ = d/n. Therefore, if the resamplings have the same

duration d, we would expect to achieve an offered load of

l′ =
lµ′

µ
(7.2)

in each resampling. This expected value is shown in the x-axis as “target offered load”. The mean of the

loads offered by each set of resamplings is indeed equal to the expected (target) value. However, the error

bars show a wide range of offered loads for the same µ′, which is undesirable for a load scaling technique.

For example, the width of the range of loads offered by the resamplings with the highest target load

was 20 Mbps. Differences of this magnitude between resamplings can have a dramatic effect on the

experiments, completely obscuring differences among competing mechanisms. The difficulty of precisely

controlling the load using only the number of connections as a parameter motivated our refinement of

Poisson Resampling to achieve far more predictable offered loads.

7.1.2 Byte-Driven Poisson Resampling

As the previous section demonstrated, the number of connection vectors in a trace is a poor predictor

of the mean offered load achieved during the replay of a resampled trace T ′
c . Therefore, controlling the

number of connections in a resampling does not provide a good way of achieving a target offered load,

and an alternative method is needed. In the idealized model of offered load in the previous section, the

offered load l was said to be exactly equal to s/d. If so, we need to control the total number of bytes

in the resampled trace T ′
c to precisely match a target offered load. In Byte-driven Poisson Resampling ,

the mean inter-arrival rate of T ′
c is not computed a priori using Equation 7.2. Instead, the target load

l′ is used to compute a target size s′ = l′d′ for the payloads in the scaled direction.

Byte-driven Poisson Resampling has two steps:

1. We construct a set of connection vectors (without arrival times) by iteratively resampling the

231

140

145

150

155

160

165

170

175

180

185

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

A
ve

ra
g

e
O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Number of Connection Vectors (in Millions)

Basic Poisson Resampling
Byte-Driven Poisson Resampling

Target Offered Load

Figure 7.9: Comparison of average offered
load vs. number of connections for 1,000
connection-driven Poisson resamplings and
1,000 byte-driven Poisson resamplings of UNC
1 PM.

Average Offered Load in Mbps

F
re

q
u

en
cy

160 161 162 163 164

0
50

10
0

15
0

20
0

25
0

Figure 7.10: Histogram of the average offered
loads in 1,000 byte-driven Poisson resamplings
of UNC 1 PM.

connection vectors in Tc until the total payload size of the chosen connection vectors, computed

using Equation 7.1, reaches s′.

2. We assign start times to the connection vectors in the resampling using the technique described

in the previous section. The mean of the exponential distribution from which inter-arrival times

are sampled is d′/n′, where d′ is the desired duration of T ′
c , and n′ is the number of connection

vectors in the resampling.

Using this technique, and under the assumption that l = s/d, the load offered by the resulting T ′
c should

be very close to the target load5. Figure 7.9 demonstrates that this is the case by comparing the offered

loads of 1,000 simulated trace resamplings constructed using the technique in section 7.1.1 and another

1,000 resamplings using the byte-driven technique. The target load of the byte-driven resamplings was

161.89 Mbps, which was the average load in the original UNC 1 PM trace. The range of achieved offered

loads is far narrower for the second technique, thanks to the variable number of connection vectors that

are assigned to each T ′
c . The histogram in Figure 7.10 shows that the vast majority of the resamplings

are very close to the target load (σ = 0.41 Mbps).

Figure 7.11 summarizes the results of 4 sets of 1,000 byte-drive Poisson resamplings. The plot uses

the same type of visualization found in Figure 7.8. The error bars, barely visible in this case, illustrate

the accurate load scaling that can be achieved with Byte-driven Poisson Resampling.

5Note that the duration of T ′

c comes from random samples of an exponential distribution, so it can be slightly lower
or higher that the intended d

′. Given the light tail of the exponential distribution and the large number of samples, this
deviation is necessarily very small.

232

90

100

110

120

130

140

150

160

170

180

90 100 110 120 130 140 150 160 170 180

A
ch

ie
ve

d
 O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Target Offered Load in Mbps

Byte-Driven Poisson Resampling
Mean of 1,000 Experiments
Achieved Loads [5%, 95%]

Figure 7.11: Analysis of the accuracy of byte-driven Poisson Resampling from 4,000 resamplings
of UNC 1 PM (1,000 for each target offered load).

90

100

110

120

130

140

150

160

170

180

90 100 110 120 130 140 150 160 170 180

A
ch

ie
ve

d
 O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Target Offered Load in Mbps

Testbed Experiments
Byte-Driven Poisson Resampling

Target Scaling Function

Figure 7.12: Analysis of the accuracy of byte-
driven Poisson Resampling using source-level
traces replay: replays of three separate resam-
plings of UNC 1 PM for each target offered
load, illustrating the scaling down of load from
the original 177.36 Mbps.

90

100

110

120

130

140

150

160

170

180

90 100 110 120 130 140 150 160 170 180

A
ch

ie
ve

d
 O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Target Offered Load in Mbps

Testbed Experiments
Testbed Experiments

Target Scaling Function

Figure 7.13: Analysis of the accuracy of byte-
driven Poisson Resampling using testbed ex-
periments: replay of one resampling of UNC
1 AM for each target offered load, illustrating
the scaling up of load from the original 91.65
Mbps.

233

The previous analysis demonstrated that accurate load scaling requires control of the total number

of bytes in T ′
c rather than of the total number of connections. This demonstration was based on the

computation of the offered load using equation 7.1. It is important to verify that the actual load

generated during a testbed replay of T ′
c is similar to the computed load. To show that this is indeed the

case, we replayed a number of resampled traces with four different target loads. Each resampled trace

was then constructed using byte-driven Poisson Resampling, with a duration of 1 hour. To eliminate

startup and shutdown effects, we only considered the middle 40 minutes for computing the achieved

load. Figure 7.12 summarizes the results of the experiments for the resamplings of the UNC 1 PM trace.

Each point corresponds to a separate replay experiment, showing the target load on the x-axis and the

achieved load on the y-axis. We ran three experiments for each target load, and the results show a good

approximation of the intended scaling line. Several experiments achieved loads a few Megabytes above

the target. In general, we expected the experiments to have slightly higher achieved loads, since the

scaling method focuses on the offered payload, ignoring packetization overhead (i.e., extra load from

bytes in the packet headers). A more precise tuning of the offered load would take packetization into

account, perhaps using a fixed constant to decrease the target payload, or by studying the total size

(including headers) of each connection, as replayed in the same testbed environment. In any case, and

given the above good results, it seems reasonable to ignore these further refinements.

The results in Figure 7.12 provide examples of scaling down the load of a trace, since the original

load of UNC 1 PM was 177.36 Mbps, and 9 of the 12 experiments had target offered loads below this

value. Scaling down the load of a trace using byte-driven resampling simply requires to choose a target

load l′ below the original load l, which in turns means that the s′ of the resampling will be below the

original s. These results confirm the close approximation of the target loads in the testbed experiments,

where offered load is measured from real TCP segments (rather than computed using Equation 7.1).

The plot shows for example that the three resamplings with target load 177.36 Mbps achieved loads

of 176.72, 178.23 and 182.45 respectively. The impact of the TCP headers, retransmission and the

slightly underestimated duration mentioned in the previous section is therefore very small. The results

in Figure 7.13 provide an example of scaling up the load of a trace, since they correspond to byte-driven

Poisson resamplings of UNC 1 AM, which had an original load of 91.65 Mbps. The resulting loads also

approximate the intended targets very closely.

234

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
C

o
n

n
ec

ti
o

n
 A

rr
iv

al
s

(1
0-

S
ec

o
n

d
 B

in
s)

Time in Minutes

UNC 1 PM
Exponential (Mean=1700 usecs.)

Figure 7.14: Connection arrival time series for
UNC 1 PM (dashed line) and a Poisson arrival
process with the same mean (solid line).

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
C

o
n

n
ec

ti
o

n
 A

rr
iv

al
s

(1
0-

S
ec

o
n

d
 B

in
s)

Time in Minutes

UNC 1 AM
Exponential (Mean=6889 usecs.)

Figure 7.15: Connection arrival time series for
UNC 1 AM and a Poisson arrivals process with
the same mean.

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM Connection Interarrivals
Exponential Conn. Inter. (Mean=1700 usecs.)

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 7.16: Wavelet spectra of the connection
arrival time series for UNC 1 PM and a Poisson
arrival process with the same mean.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Connection Interarrivals
Exponential Conn. Inter. (Mean=6889 usecs.)

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 7.17: Wavelet spectra of the connection
arrival time series for UNC 1 AM and a Poisson
arrival process with the same mean.

Trace Estimated Parameters
UNC 1 PM Conn. Arrivals H=0.685041 C.I.=[0.646250, 0.723831]
Poisson µ = 1, 698 µsecs. H=0.506069 C.I.=[0.467279, 0.544860]
UNC 1 AM Conn. Arrival H=0.756533 C.I.=[0.717743, 0.795324]
Poisson µ = 6, 889 µsecs. H=0.502217 C.I.=[0.463427, 0.541008]

Table 7.1: Estimated Hurst parameters and their confidence intervals for the connection arrival
time series of UNC 1 PM and UNC 1 AM, and their Poisson arrival fits.

235

7.2 Block Resampling

The basic assumption of Poisson Resampling is that connection inter-arrivals are independent and

identically distributed according to an exponential distribution, which results in a Poisson arrival process.

While the choice of exponential inter-arrivals is reasonable given the measurement data presented in

Figures 7.1 to 7.4, the arrival process may not necessarily be independent. On the one hand, we can

argue that common application protocols make use of more than one connection, creating correlations

among some start times. For example, web browsers often open several connections for downloading a

web page. On the other hand, we focus on traces of highly aggregated traffic, where a large number

of hosts start hundreds or even thousands of connections every second. The high aggregation could

diminish or even eliminate completely any correlation structure in the connection arrival processes.

The analysis of our traces reveals non-negligible correlations in the connection arrival process. Figures

7.14 and 7.16 examine the arrival process for the UNC 1 PM trace. Using a time series of 10-millisecond

bin counts, Figure 7.14 compares the burstiness of the original arrival process (dashed line) and that of

a Poisson arrival process with the same mean inter-arrival time (solid line). The original arrival process

was far more variable. Its standard deviation was equal to 346.07, while the one for the Poisson process

was equal to 79.21. In order to further study the connection arrival process across a range of time-scales,

we rely on wavelet analysis. Figure 7.16 shows the wavelet spectra of the original connection arrivals and

a Poisson process with the same mean inter-arrival time. The Poisson process exhibits the expected flat

spectrum of short-range dependent processes [HVA02]. On the contrary, the spectrum for the original

connection arrivals follows a line with a substantial positive slope, which is characteristic of long-range

dependent processes. The results of the wavelet-based estimation [AV98] of the Hurst parameters of

these processes are given in table 7.1. The Poisson process has a Hurst parameter very close to the

expected 0.5, while the original arrival process has a Hurst parameter of 0.685. This is consistent with

moderate long-range dependence. For comparison, typical estimates of the Hurst parameter for packet

and byte arrival processes are between 0.75 and 0.95, i.e., typical packet and byte arrival processes

exhibit significantly stronger long-range dependence than this connection arrival process.

We performed a similar analysis for the UNC 1 AM trace, and the results are shown in Figures

7.15 and 7.17. As in the previous case, the time series plot shows a connection arrival process that is

significantly more bursty than that of a Poisson process with the same mean. Note however than in this

case there is some degree of non-stationarity. We observe a significantly larger number of connections

started in the first 5 minutes, and a significantly lower number started in the last 10 minutes. In this

236

case we compute the mean inter-arrival rate required to construct the Poisson arrivals using the middle

40 minutes of the trace. We therefore handle the effect of trace boundaries by ignoring the first and the

last few minutes of the arrival process. The wavelet spectra for these middle 40 minutes and a Poisson

process with the same mean arrival rate are shown in Figure 7.17. As in the UNC 1 PM case, the original

connection arrival process exhibits clear long-range dependence. The estimated Hurst parameter in Table

7.1 reveals a somewhat stronger long-range dependence for the UNC 1 AM trace (0.757 vs. 0.685).

In summary, the connection arrival processes we have examined are consistent with significant long-

range dependence. Therefore, it is desirable to develop the resampling and load scaling methods that can

reproduce this structure, to cover experiments where the manner in which connections arrive is relevant

for the network phenomenon studied using synthetic traffic. One example of this type of scenario is the

evaluation of a router mechanism where the arrival of new connections creates new state in the router.

For such a mechanism, a more bursty arrival process creates a more stringent workload, just like burstier

traffic was shown by [BC98] to be more demanding on web server performance.

Poisson Resampling cannot reproduce this observed long-range dependence in the connection arrival

process since its inter-arrivals times come from independently sampling an exponential distribution. For

this reason, we propose a second resampling technique that can reproduce the long range dependence in

the connection arrival process. The starting point is the intuition that dependencies between connection

start times are far more likely to occur within relatively small periods. For example, web browsing

results in new connections started according to the sequence of web page downloads and the way the

browser opens new connections to the servers in which these pages are found. This results in brief bursts

of connections whose start times are correlated. We use this intuition to develop a resampling method

wherein the resampled objects are not individual connections, but groups of connections started during

the same period, which we call blocks. The key idea of our Block Resampling method is that sampling

blocks of connections rather than individual connections preserves the relative offsets of connection start

times within blocks, and therefore the dependency structure6 Our method is derived from the Moving

Block Bootstrap method [ET93].

Block Resampling proceeds in the following manner: Given a trace Tc, we divide it in blocks of

duration β, so that the first block B1 groups together connections started in the interval [0, β), the

second block B2 groups together connections started in the interval [β, 2β), and so on. The block

resampled trace T ′
c is obtained by concatenating randomly sampled blocks, and adjusting the start time

6We thank Peter Hall for suggesting the use of block bootstrapping in the context of the a-b-t model. The theoretical
aspect of this idea are explored in [HNHC02], while this chapter focuses on its use to preserve the long-range dependence
in connection arrivals and develops thinning and thickening methods to scale offered load in block-resampled traces.

237

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 PM Conn. Arrivals
1−Second Block Resample 1
1−Second Block Resample 2
1−Second Block Resample 3
1−Second Block Resample 4
1−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 PM Conn. Arrivals
5−Second Block Resample 1
5−Second Block Resample 2
5−Second Block Resample 3
5−Second Block Resample 4
5−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 PM Conn. Arrivals
10−Second Block Resample 1
10−Second Block Resample 2
10−Second Block Resample 3
10−Second Block Resample 4
10−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

10

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 PM Conn. Arrivals
30−Second Block Resample 1
30−Second Block Resample 2
30−Second Block Resample 3
30−Second Block Resample 4
30−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 PM Conn. Arrivals
1−Minute Block Resample 1
1−Minute Block Resample 2
1−Minute Block Resample 3
1−Minute Block Resample 4
1−Minute Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

10

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 PM Conn. Arrivals
5−Minute Block Resample 1
5−Minute Block Resample 2
5−Minute Block Resample 3
5−Minute Block Resample 4
5−Minute Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 7.18: Block resamplings of UNC 1 PM: impact of different block lengths on the wavelet
spectrum of the connection arrival time series.

238

2 4 6 8 10 12 14
0

1

2

3

4

5

6

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 AM Conn. Arrivals
1−Second Block Resample 1
1−Second Block Resample 2
1−Second Block Resample 3
1−Second Block Resample 4
1−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 AM Conn. Arrivals
5−Second Block Resample 1
5−Second Block Resample 2
5−Second Block Resample 3
5−Second Block Resample 4
5−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 AM Conn. Arrivals
10−Second Block Resample 1
10−Second Block Resample 2
10−Second Block Resample 3
10−Second Block Resample 4
10−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 AM Conn. Arrivals
30−Second Block Resample 1
30−Second Block Resample 2
30−Second Block Resample 3
30−Second Block Resample 4
30−Second Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 AM Conn. Arrivals
1−Minute Block Resample 1
1−Minute Block Resample 2
1−Minute Block Resample 3
1−Minute Block Resample 4
1−Minute Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
nc

e(
j)

UNC 1 AM Conn. Arrivals
5−Minute Block Resample 1
5−Minute Block Resample 2
5−Minute Block Resample 3
5−Minute Block Resample 4
5−Minute Block Resample 5

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 7.19: Block resamplings of UNC 1 AM: impact of different block lengths on the wavelet
spectrum of the connection arrival time series.

239

of connections in each block by the time offset of the new location of this block. For example, if the

random resampling puts block B2 as the first block of T ′
c , the start times of the i-th connection vector

in this block is set to Ti −β. Similarly, if B2 is placed in the fourth location of T ′
c , the start times of the

i-th connection in this block are set to Ti + 2β. More formally, when the j-th block Bj in the original

trace becomes the k-th block Bk in the block resampling, the start time Ti of the i-th connection vector

in Bj is set to

T ′
i = Ti + (k − j)β.

Block Resampling chooses blocks for T ′
c with replacement, making it possible to create new traces

that are longer than the original Tc from which the blocks are obtained.

As pointed out by Efron and Tibshirani [ET93], choosing the block duration β can be a difficult

problem. In our case, we found a clear trade-off between block duration and how well long-range

dependence was preserved in the resampled trace. The shorter the block duration, the larger the number

of distinct trace resamplings that can be performed from the same trace Tc. This number is equal to

(d/β)! for resampled traces with the same duration d of the original trace. However, if the duration of

the blocks is too small, the process of connection arrivals in the resampled trace exhibits a dependency

structure that does not resemble the one in the original trace.

Figure 7.18 explores the impact of block duration on the long-range dependence of the connection

arrival process in the resampled trace. The top left plot shows the wavelet spectra of the connection

arrivals for UNC 1 PM and for 5 block resamplings where the block duration was 1 second. There is

a clear and consistent flat region after octave 8, which shows that blocks of 1 second are too short to

preserve the long-range dependence of the original connection arrival process. As the block duration is

increased in subsequent plots, we observe an increasingly better match between the arrivals in the block

resamplings and the arrivals in the original trace. Blocks with a duration of 30 seconds or 1 minute

provide the best trade off between blocks that are large enough to ensure realistic long-range dependence

in the connection arrival process, and blocks that are short enough to provide a large number of distinct

resamplings. The same sensitivity analysis was performed for the UNC 1 AM trace and the results are

shown in Figure 7.19. Block durations of 30 seconds or 1 minute are also shown to perform well.

As discussed earlier in this chapter, an important goal of trace resampling is the ability to preserve the

target load of the original trace and to scale it up and down according to the needs of the experimenter.

The analysis of a large set of Poisson resamplings revealed that offered load and number of connections

are only loosely correlated. This motivated the use of a byte-driven version of Poisson Resampling

240

140

145

150

155

160

165

170

175

180

185

1.395 1.4 1.405 1.41 1.415 1.42 1.425 1.43 1.435 1.44

A
ve

ra
g

e
O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Number of Connection Vectors (in Millions)

30-Second Block Resampling
Original Offered Load

Average Offered Load in Mbps

F
re

qu
en

cy

140 150 160 170 180

0
10

20
30

40
50

60
70

140

145

150

155

160

165

170

175

180

185

1.38 1.39 1.4 1.41 1.42 1.43 1.44

A
ve

ra
g

e
O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Number of Connection Vectors (in Millions)

1-Minutes Block Resampling
Original Offered Load

Average Offered Load in Mbps

F
re

qu
en

cy

140 150 160 170 180

0
10

20
30

40
50

60

120

130

140

150

160

170

180

190

1.38 1.39 1.4 1.41 1.42 1.43 1.44

A
ve

ra
g

e
O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Number of Connection Vectors (in Millions)

5-Minute Block Resampling
Original Offered Load

Average Offered Load in Mbps

F
re

qu
en

cy

130 140 150 160 170 180 190

0
10

20
30

40

Figure 7.20: Block resamplings of UNC 1 PM: average offered load vs. number of connection
vectors (left) and corresponding histograms of average offered loads (right) in 3,000 resamplings.

241

2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

9

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)
UNC 1 PM Conn. Arrivals
Subsample 90% Conn.
Subsample 80% Conn.
Subsample 70% Conn.
Subsample 60% Conn.
Subsample 50% Conn.

0.04 0.16 0.64 2.56 10.24 40.96 secs.

2 4 6 8 10 12 14
−1

0

1

2

3

4

5

6

j = log
2
(scale) −− Connection Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 AM Conn. Arrivals
Subsample 90% Conn.
Subsample 80% Conn.
Subsample 70% Conn.
Subsample 60% Conn.
Subsample 50% Conn.

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 7.21: Wavelet spectra of several random subsamplings of the connection vectors in UNC
1 PM (left) and 1 AM (right)

which could achieve a very precise scaling of the load offered by the resampled trace. In the case of

Block Resampling, the question is whether the averaging effect of grouping connections into blocks

significantly diminishes the variability observed for the basic version of Poisson Resampling. We study

this question by examining the offered load found in a large collection of block resampled traces. If the

blocks had roughly uniform offered load, we would expect to generate similar offered load with each

resampled trace. The results in Figure 7.20 do not confirm this expectation. The top row presents the

analysis of 1,000 trace resamplings constructed by resampling UNC 1 PM using 30-second blocks. The

average offered load was derived from the total payload computed using Equation 7.1. As shown in

the scatterplot, the number of connections stayed within a narrow range, but the offered loads were far

more variable. The histogram on the right further characterizes the distribution of offered loads in these

trace resamplings. The use of blocks does not appear to have any benefit in terms of a more predictable

load. This is not surprising given the known burstiness of the packet and byte arrival processes at many

time-scales. If blocks were effective at smoothing out these processes, we would find little long-range

dependence. This situation does not change for longer block durations, as shown in the middle and lower

rows of Figure 7.20 for blocks of 1 and 5 minutes respectively. It is interesting to note the wider y-axis

and range of the histogram for the 5-minutes blocks, which suggest even higher variability for this longer

block duration.

The Block Resampling method described so far makes it possible to construct a resampled T ′
c of

arbitrary duration but it cannot be used to adjust its offered load. In order to perform this task, we can

rely on thinning , when the offered load of Tc is above our intended offered load, and on thickening , when

242

Trace Estimated Parameters

UNC 1 PM Conn. Arrivals H=0.727540 C.I.=[0.701687, 0.753393]
Subsample 90% Conn. H=0.724175 C.I.=[0.698322, 0.750028]
Subsample 80% Conn. H=0.724046 C.I.=[0.698193, 0.749899]
Subsample 70% Conn. H=0.718502 C.I.=[0.692649, 0.744354]
Subsample 60% Conn. H=0.701378 C.I.=[0.675525, 0.727230]
Subsample 50% Conn. H=0.701020 C.I.=[0.675167, 0.726872]

UNC 1 AM Conn. Arrivals H=0.746591 C.I.=[0.720738, 0.772444]
Subsample 90% Conn. H=0.738659 C.I.=[0.712806, 0.764512]
Subsample 80% Conn. H=0.725030 C.I.=[0.699177, 0.750882]
Subsample 70% Conn. H=0.715679 C.I.=[0.689827, 0.741532]
Subsample 60% Conn. H=0.696723 C.I.=[0.670870, 0.722576]
Subsample 50% Conn. H=0.691139 C.I.=[0.665287, 0.716992]

Table 7.2: Estimated Hurst parameters and their confidence intervals for five subsamplings ob-
tained from the connection arrival time series of UNC 1 PM and UNC 1 AM

90

100

110

120

130

140

150

160

170

180

90 100 110 120 130 140 150 160 170 180

A
ch

ie
ve

d
 O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Target Offered Load in Mbps

Testbed Experiments
Byte-Driven Block Resampling

Target Scaling Function

Figure 7.22: Analysis of the accuracy of byte-
driven Block Resampling using source-level
trace replay: replays of two separate resam-
plings of UNC 1 PM for each target offered
load, illustrating the scaling down of load from
the original 177.36 Mbps.

90

100

110

120

130

140

150

160

170

180

190

90 100 110 120 130 140 150 160 170 180

A
ch

ie
ve

d
 O

ff
er

ed
 L

o
ad

 in
 M

b
p

s

Target Offered Load in Mbps

Testbed Experiments
Testbed Experiments

Target Scaling Function

Figure 7.23: Analysis of the accuracy of byte-
driven Block Resampling using source-level
trace replay: replay of one resampling of UNC
1 AM for each target offered load, illustrating
the scaling up of load from the original 91.65
Mbps.

the offered load of Tc is below our intended offered load. Block thinning involves randomly removing

connections from T ′
c . Theoretical work by Hohn and Veitch [HV03]has shown that the thinning of a long-

range dependent process does not change its long-range dependence structure. Our own experimentation

confirms this result. Figure 7.21 shows the wavelet spectra of thinned versions of the connection arrivals

in the UNC 1 PM trace (left) and the UNC 1 AM trace (right). The overall energy level decreases as the

fraction of connections removed from each block increases. However, the spectra maintain their shapes,

which demonstrates that the degree of the long-range dependence remains unchanged. The estimated

Hurst parameters for these two traces is presented in Table 7.2. The values reveal only a moderate

decrease in the Hurst parameter even when half of the connections are dropped.

243

Block thickening consists of combining more than one block in each of the disjoint intervals of T ′
c ,

i.e., to “fusion” one or more blocks from Tc to form a single block in T ′
c . This makes the offered load a

multiple of the original load. For example, to double the load, the connection vectors of two randomly

chosen blocks will be placed in the first interval, those from another pair of randomly chosen blocks

will be placed in the second interval, and so on. The new start times of the connection vectors in the

resampled trace are computed using Equation 7.2, but being careful to use the right j for each connection

vector.

To achieve offered loads that are not a multiple of the original load, we can combine basic thickening

and thinning using a two-step process. The first step is to create a preliminary version of T ′
c by combining

as many blocks as possible without exceeding the target load. The second step is to “complete” this

trace by combining it with another block-resampled trace that has been thinned in such a manner that

the combined load of the two resampled traces matches the intended load. For example, in order to

create a T ′
c with 2.5 times the load of Tc, a first thickened trace T tk

c is created by combining two blocks

in each position. This trace is then combined with second trace T tn
c that has been thinned to half of

the offered load of Tc. From our analysis in Figure 7.20, we can see that T tk
c is not necessarily equal to

twice the offered load of Tc. For this reason T tn
c is actually thinned to exactly the offered load needed to

complement T tk
c , and not just to half of the original offered load This careful thinning makes the scaling

match the intended load in a highly precise manner. We can therefore achieve any intended load with

the Block Resampling method, so it is as flexible as Poisson Resampling. In accordance with our earlier

analysis, accurate thinning cannot rely on any correlation between the number of connections and the

offered load, so it must be driven by Equation 7.1, just like byte-driven Poisson Resampling. Therefore,

our final resampling technique is Byte-driven Block Resampling.

Figures 7.22 and 7.23 show the result of several testbed experiments where Byte-driven Block Re-

sampling is used to create new traces. The results demonstrate that traces resampled using this method

achieve a very good approximation of the target offered loads. As in the case of Byte-driven Poisson

Resampling, the achieved loads are slightly higher than target ones due to the packetization overhead,

which is not taken into account in the resampling.

One interesting question is whether the effort to preserve the scaling of the connection arrival process

has any effect on the generated traffic aggregate. To understand this question, we can compare the

process of packet (or byte) arrivals from block resamplings and from Poisson Resampling, since the

former fully preserves connection arrival long-range dependence and the latter fully eliminates it. Figure

244

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

24

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)
UNC 1 PM
Block Resampling 1
Block Resampling 2

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 7.24: Wavelet spectra of the packet ar-
rival time series for UNC 1 PM and the source-
level trace replays of two block resamplings of
this trace.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

j = log
2
(scale) −− Packet Arrivals

lo
g

2 V
ar

ia
n

ce
(j

)

UNC 1 PM
Poisson Resampling 1
Poisson Resampling 2
Poisson Resampling 3

0.04 0.16 0.64 2.56 10.24 40.96 secs.

Figure 7.25: Wavelet spectra of the packet ar-
rival time series for UNC 1 PM and the source-
level trace replays of three Poisson resamplings
of this trace.

7.24 shows the wavelet spectra of the packet arrivals in UNC 1 PM and those in two testbed experiments

where byte-driven block resamplings of UNC 1 PM were replayed. Figure 7.25 shows the same wavelet

spectrum of the packet arrivals in UNC 1 PM, and also the spectra from three testbed experiments

where byte-driven Poisson resamplings of UNC 1 PM were replayed. Both resampling methods achieve

equally good approximations of the packet scaling found in the original trace. In other words, according

to this type of analysis, the simpler Poisson Resampling method performs as well as the more elaborate

Block Resampling method. This is a confirmation, using a closed-loop traffic generation approach, of

the results by Hohn et al. in [HVA02], which were obtained using (open-loop) semi-experiments. This

is not to say that long-range dependence in the arrival of connections (e.g., arrival of flow state or cache

misses to a router) can be safely ignored, since other metrics and experimental results may be more

sensitive to this characteristic of the synthetic traffic.

7.3 Summary

Our basic traffic generation method, source-level trace replay, results in highly realistic synthetic

traffic. This method is however inflexible, in the sense that the same connection vectors are started at the

same relative times in every replay. In this chapter, we proposed two methods for resampling an original

trace of connection vectors, to create a new trace with similar statistical characteristics. This similarity

is defined in terms of source-level behavior and network-level parameters, so the resampling methods

245

also modify connection vector start times. Our first resampling method is Poisson Resampling, which

chooses connections vectors at random and assigns them exponentially distributed inter-arrival times.

Our measurement results demonstrated that this choice of the inter-arrival distribution is appropriate,

in the sense that the marginal distribution of the connection inter-arrival in every trace we examined

is remarkably consistent with the exponential distribution. Our second resampling method is Block

Resampling, which chooses blocks of connection vectors at random. Unlike Poisson Resampling, Block

Resampling preserves the dependency structure of the original connection arrival process. This makes

it possible to reproduce the moderate long-range dependence that we observe in the connection arrivals

of our traces.

Besides presenting two resampling methods, we also studied how to control the offered load by a

resampled trace. Firstly, we demonstrated that the number of connections and the average offered load

are not strongly correlated. This means that controlling the number of connections in the resamplings

does not provide a good way of creating resampled traces with a specific target offered load. This is a

common requirement when a set of experiments covers a range of offered loads in an empirical study. In

order to address this difficulty, we propose to drive the resampling by a target total size of the ADUs

in the resampling rather than by a target number of connections. We used this approach to develop

byte-driven versions of Poisson Resampling and Block Resampling, which are shown to result in highly

predictable offered loads.

246

CHAPTER 8

Conclusions and Future Work

real: (2b3) existing as a physical entity and having properties that deviate from an ideal,
law, or standard.

— Merrian–Webster English Dictionary

There are sadistic scientists who hurry to hunt down errors instead of establishing the
truth.

— Marie Curie (1867–1934)

This dissertation proposed and evaluated a new approach for generating realistic traffic in networking

experiments. Our construction relied on several components to form a coherent solution to this problem:

1. The a-b-t model of source-level behavior, which provides a generic but detailed way of describing

source-level behavior that is applicable to any Internet application.

2. An efficient measurement method for accurately translating the packet header trace of any arbi-

trary TCP connection into its a-b-t connection vector, even in the presence of packet reordering

and retransmission.

3. The source-level trace replay method for generating traffic in a closed-loop manner, which provides

a way of introducing fully reproducible synthetic traffic in networking experiments.

4. The ability to directly compare original traffic and its source-level replay, after incorporating

network parameters also derived from packet header analysis. Such a comparison enables us to

assess the realism of the synthetic traffic.

5. A method for resampling a-b-t connection vectors that supports both the introduction of controlled

variability in the generated traffic and the predictable scaling of the offered load.

The rest of this chapter discusses these components1, highlighting some concrete contributions and open

1Also known as the five pillars of Abtism. [sic]

questions, which could be the subject of future work. Our focus is on the larger scheme of things, so we

refer the reader to the summaries of each chapter for additional findings and possible refinement of our

methodology.

8.1 Empirical Modeling of Traffic Mixes

The main problem solved by our approach is generating closed-loop traffic consistent with the behav-

ior of the entire set of applications in modern traffic mixes. Unlike earlier approaches, which described

individual applications in terms of the specific semantics of each application, we proposed to describe the

source behavior driving each connection in a generic manner using the a-b-t model. This is consistent

with the view of traffic from TCP, which does not concern itself with application semantics, but only

with sending and receiving Application Data Units (ADUs) as demanded by the applications. The a-b-t

model provides an intuitive but detailed way of describing source behavior. It also satisfies a crucial

property: given a packet header trace collected from an arbitrary Internet link, we can algorithmically

infer the source-level behavior driving each connection, and cast it into the notation of the a-b-t model.

Section 3.3 described our inference algorithm, whose asymptotic cost is is O(sW), where s is the

number of segments in a connection and W is the maximum size of the TCP receiver window (in

segments). The foundation of the analysis is the logical data order that can be established between

segments of the same connection. This order corresponds to the application-layer order of the data

carried in each segment. From this order, we can accurately identify individual ADUs without any timing

analysis. Furthermore, the handling of retransmission and reordering becomes very generic, eliminating

the need to handle the many possible cases one by one. Our validation using traffic from synthetic

applications with known source behavior demonstrated the robustness of our analysis to segment loss

and reordering, and to the way in which endpoints use sockets (i.e., using different sizes and timings of

I/O operations).

Overall, our algorithmic approach enables us to model traffic in an automated manner in a question

of hours. This addresses a major difficulty with earlier efforts targeted at individual applications, which

required months to be completed and were hardly ever updated. One future direction is develop an

online implementation of the algorithm, which would enable us to model traffic mixes in real time. The

O(sW) cost of our analysis makes this online processing feasible. Efficient memory management is the

main challenge, since each connection would require separate state during its lifetime. It seems possible

248

to restrict this per-connection state to the current ADU in each direction, which is much more efficient

than keeping track of entire connection vectors. Real-time modeling has several benefits. First, the set

of a-b-t connection vectors is between tens and hundreds of times smaller than packet header traces

from which it derives. This would enable researchers to study traffic at the source-level for much longer

periods that it is possible nowadays. Second, real-time modeling can remain active indefinitely, which

makes it possible to observe unusual but important phenomena, such as flash crowds, BGP failures, etc.

To satisfy storage constraints, uninteresting traffic can be periodically thrown away.

In our study, we identified a fundamental dichotomy between applications that exchange ADUs in a

sequential manner and those that do it concurrently. Sequential communication follows an alternating

sequence of ADUs sent in opposite directions, where ADUs from one endpoint usually play the role of

requests and ADUs from the opposite endpoint play the role of responses. One important property of

this pattern is that each ADU exchange must necessarily take one round-trip time. As a consequence,

the duration of sequential connections often has little to do with the amount of transferred data, being

dominated by the number of request/response pairs. For this reason, sequential connections usually

show far lower throughputs than one would expect from their total number of bytes. SMTP provides a

good example of this phenomenon, since most SMTP connections carry little data but take rather long

to complete. As illustrated in Figure 3.3, this is mostly due the substantial number of control ADUs

required by this protocol.

Concurrent communication supports the sending of ADUs from both endpoints at the same time.

This is the natural model both for applications without requests and responses, and for applications that

are able to pipeline their requests and responses. Pipelining eliminates the need to spend one full round-

trip time to complete each request/response exchange, which can substantially increase throughput.

The analysis of our collection of traces revealed that the number of connections that exhibit concurrent

data exchanges is small (0.9-3.6%), but that they account for a far larger fraction of the total bytes in

the traces (12.1-31.9%). This is consistent with the observation that concurrency can increase overall

throughput, so application protocol designers are more compelled to use concurrency in applications that

exchange large amounts of data. BitTorrent is a prominent example of data concurrency, where we can

observe simultaneously natural concurrency (both endpoints send and received requests and file pieces),

and pipelining (multiple requests and file pieces can be outstanding at any point in time). Figure 3.9

showed one example of this behavior.

Our measurement algorithm can determine whether a connection exhibits sequential or concurrent

249

data exchanging by examining only the sequence and acknowledgment numbers in the segments of a

connection, without analyzing of segment arrival times. The basis of our technique is again the logical

data order among TCP segments, which is a total order for sequential connections, and a partial order

for concurrent ones. The inequalities presented in Section 3.3.2 formalized this idea, providing a method

for identifying data exchange concurrency without false positives.

8.2 Refining and Extending our Modeling

Our methodology strongly relies on non-parametric modeling . Parametric models are far more com-

pact and can often provide deeper insights than non-parametric ones. However, their use has little to

do with the quality of synthetic traffic. A non-parametric model can result in traffic as realistic or more

than a parametric model, without the risk of oversimplification. In any case, our a-b-t connection vectors

offer a good foundation for building a parametric model of Internet traffic mixes. Our analysis of the

relationship between ADU sizes and numbers of epochs in Section 3.5.1 uncovered substantial complex-

ity and a striking lack of consistency among the different links considered in our study. Techniques like

Hidden Markov Modeling could perhaps provide the right approach.

Our own related work explored the possibility of attacking this complex modeling problem by decom-

posing traffic mixes in to a set of fundamental pattern of communication [HCNSJ05]. The idea was to

use statistical clustering to find applications that behave in a similar manner, i.e., that follow the same

“communication pattern”, and to separately model each of the identified traffic clusters. For example,

interactive applications such as telnet and SSH are very different from file-sharing applications such as

Kazaa or Gnutella, so it seems much easier to develop separate models for “interactive applications” and

“file-sharing applications” than a single model to encompass both of them. In our exploratory study,

we followed a two step process to find traffic clusters. First, we computed a vector of features for each

connection, which included statistics such as the median size of the ADUs in the connection, a measure

of the directionality of the data exchanges, and the correlation between the sizes of a-type and b-type

ADUs. Feature vectors provide a way to compare connections, even if their a-b-t connection vectors have

very different forms, and use a distance metric to quantify the similarity between the source behaviors

in two connections. Second, we used a hierarchical clustering algorithm to construct a taxonomy of

traffic classes based on the similarity among connections. The results of our analysis demonstrated that

some clear and intuitive traffic clusters emerged when this procedure was applied to sets of connection

vectors derived from real traces. We believe this type of approach can simplify the modeling of traffic

250

mixes. Furthermore, it can also provide a more flexible way of resampling traces, where the fraction of

connection vectors from each of the traffic clusters can be changed at will (e.g., increasing of decreasing

the fraction of file-sharing-like traffic).

There are other open questions in the modeling of Internet traffic mixes, and their solution is com-

plicated by the need to devise better measurement methods. We can cite the following examples:

• Our modeling of concurrent connections employs two separate connection vectors, one for each

direction, eliminating any dependencies among ADUs flowing in opposite direction. This de-

pendencies are certainly present in some cases, at least when concurrency is used to implement

pipelining. A refined version of the a-b-t model where the causality between ADUs is specified

using an acyclic graph could capture this type of structure. The analysis of sequence and acknowl-

edgment numbers can provide a starting point for understanding ADU dependencies. However,

such an approach would result in a substantial number of spurious dependencies that were not

really part of the application behavior.

• The a-b-t model has no mechanism to specify dependencies between ADUs in different connections.

While more complex forms of the model are possible, there is again great difficulty in determining

when these dependencies exists. By analyzing ADU arrival times for the same endpoint, we could

hypothesize a dependency. We could further strengthen such an analysis by requiring several

instances of the same dependency pattern, i.e., only accepting a timing dependency when several

pairs of connections with “similar” ADU sizes and number of epochs are observed.

• A important problem that has received very limited attention in the source-level modeling literature

is the possibility of changes in user behavior as a function of network conditions. Such possibility

would break the assumption of network independence in source-level models. Our work in this

area [PHCM+06] revealed phenomenal difficulties in measuring such dependencies. Even a simple

question such as whether users with higher access bandwidths tended to download larger objects

was statistically problematic. Our results showed that this trend does not appear to be present

in the UNC trace. While substantial differences exists in the access bandwidth of different UNC

endpoints (e.g., between wireless and wired end hosts), the number of endpoints with severely

limited bandwidth is very small (e.g., few endpoints were behind a modem).

These three problems are unlikely to have straightforward solutions. We also believe that their impact

on the quality of synthetic traffic is small, or even insignificant, in empirical studies focusing on large

251

traffic aggregates.

A final question is how to combine source-level modeling and unwanted traffic modeling. Our analysis

in Section 4.2.1 showed the need to carefully separate connections with regular data exchanges, for which

the a-b-t model is applicable, and other types of connections (i.e., failed connection establishments

attempts, port and network scans, etc.). While our filtering for regular connections removed only a

tiny fraction of the bytes in the traces, the number of individual connections was very large, which may

be detrimental for certain studies. In addition, we did not consider how to generate malicious traffic.

Our literature review discussed some relevant efforts on this topic. However, they tend to be open-loop.

Since malicious traffic can have dramatic effect on the network conditions, understanding its impact on

source behavior seems critical. We know of no study that considered this question.

8.3 Assessing Realism in Synthetic Traffic

The result of our packet header processing is a collection of a-b-t connection vectors, which can then be

replayed in software simulators and testbed experiments to drive network stacks. Such a replay generates

synthetic traffic that fully preserves the feedback loop between the TCP endpoints and the state of the

network, which is essential in experiments where network congestion can occur. By construction, this

type of traffic generation is fully reproducible, providing a solid foundation for networking experiments

where two or more network mechanisms must be compared under similar conditions.

Our experimental work demonstrated the high quality of the generated traffic, by directly comparing

traces from real Internet links and their source-level trace replay. This comparison is both a rigorous

way of validating the a-b-t model and its measurement methods, and a challenging exercise where each

connection vector must be replayed in a TCP connection whose original network conditions are preserved

in the experiments. If these network conditions were not preserved, it would be very difficult to determine

whether differences between an original trace and its source-level trace replay are due to shortcomings of

the a-b-t model or to a lack of realistic network parameters. For this reason, we devote substantial effort

to the accurate measurement, purely from packet header traces, of three important network parameters:

round-trip times, maximum receiver window sizes, and loss rates. These three parameters have a major

impact on the throughput that a TCP connection can achieve. In addition, the testbed experiments

in our evaluation of the approach carefully reproduce these parameters, using an extended version of

dummynet to efficiently simulate per-connection round-trip times and loss rates.

252

It is important to note that the inclusion of open-loop loss rates in some of our experiments is only

a means to achieve a more fair validation of the a-b-t model. A substantial loss rate has a dramatic

effect on the characteristics of a connection, so comparing such a connection in the original trace and

in a replay without a simulated loss rate tells us very little about the accuracy of the source-level

characterization. In general, we always conduct source-level trace replay experiments both with and

without simulated loss rate, and compare their results. This type of analysis allowed us to conclude that

source-level behavior had a more substantial impact on our traces than losses, but that neither of them

can be ignored when trying to understand the characteristics of network traffic. One interesting finding

from our experimental work is that simplistic source-level models substantially exacerbate the impact of

losses, which may substantially change the conclusions from certain empirical studies.

Our results demonstrated that source-level trace replay can closely approximate the characteristics

of real traffic traces. By comparing synthetic traffic with and without detailed source-level structure,

we showed that more complete source-level modeling makes synthetic traffic closer or far closer to real

Internet traffic. In particular, the largest difference was observed for the time series of packet throughput,

the body of the packet throughput marginal and the time series of active connections. Other metrics did

not show consistent improvement when detailed source-level modeling is used. However, in these cases,

it is often difficult to determine whether the difference between real and synthetic traffic comes from

the shortcomings of the source-level model or from the lack of certain network-level parameters. This is

the main difficulty with our approach: while providing the most stringent way of evaluating synthetic

traffic, it also requires to deconstruct the factors that shape traffic very carefully. While some factors are

well understood and can be measured accurately, others are not. In this regard, our work complements

current efforts to further understand traffic, provides a way to verifying new theories using an elaborate

experimental approach.

One important future direction for our work is to expand the set of metrics used to evaluate the quality

of synthetic traffic. At a low level, the distribution of packet sizes provides a good avenue to understand

the effect of source behavior on packetization. At a higher level, the distribution of connection goodputs

is a particularly good (and demanding) metric to study how closely the modeling (of sources and network

parameters) reproduces TCP performance. We could study goodput either by looking at the distribution

of connection goodputs directly, or by comparing each replayed connection with its original version and

computing relative errors of some sort. Another important high-level metric is response time, which can

be easily defined as the duration of epoch for sequential connections. Many studies rely on response

time to examine the performance of network mechanism, so it is desirable to validate its experimental

253

reproduction. However, there are several difficulties with this metric. It requires to identify request and

response pairs, which are not necessarily the pair formed by ADUs ai and bi. The server side initiates

the connection in some protocols, while other protocols do not have clearly-defined roles as client and

server for their endpoint. It is very difficult to distinguish among these situations purely from packet

header analysis. Also, there is no simple definition of response time for concurrent connections. As an

alternative, we can use connection duration as a metric, which is always well-defined, but it has far lower

resolution.

8.4 Incorporating Additional Network-Level Parameter

While our methods to measure and simulate network parameters appear sufficiently accurate in our

experimental evaluation, there are several directions in which this part of the work can be refined. Path

round-trip times are not fixed for each connection, but follow a distribution of delays. It seems possible

to refine our measurement to incorporate this fact, at least to some extent, into our approach, although

the lack of samples for most connections greatly complicates this problem. It is also unclear whether

this refinement would have any significant impact on the generated traffic. Improving the measurement

and simulation of losses could have a more substantial effect. Figure 4.18 already revealed some level of

inaccuracy, and our experimentation revealed the need to take into account pure acknowledgment losses

and not just data segment losses. More importantly, the assumption of independent losses and their

simulation using random dropping seems unrealistic, which explains some of the differences between

original and synthetic traffic.

There are other network parameters that could be taken into account. In general, we believe that only

two of them would have a significant impact on the quality of synthetic traffic: maximum segment sizes

and path capacity. Maximum segment sizes are straightforward to measure, and their incorporation into

the experiments would improve the realism of packetization in the generated traffic. Its implementation

in a network testbed experiments requires some careful handling of resources, since maximum segment

sizes are often a machine-wide constant. The impact of this refinement is not expected to be dramatic,

given that most connections are known to use the same maximum segments size (the one derived from

Ethernet’s MTU, which we employed in our experiments).

Path capacity presents a much more difficult measurement problem, both when defined as bottleneck

capacity and as available bandwidth. Recent work by Huang and Dovrolis [JD04] provides a useful

254

foundation. While it is only applicable with confidence to connections with large amounts of data, “bulk

connections”, this is precisely the type of connection whose throughput could be dominated by capacity

limits. Throughput in connections with small amounts of data is mostly a function of round-trip time.

As discussed in Section 3.3, most connections are in this case. However, bulk connections are responsible

for a large fraction of the bytes, so their accurate replay is important. We also believe that combining

our ADU analysis with the Huang and Dovrolis approach can provide less noisy samples, improving the

accuracy of the method. In the case of capacity, the implementation in the experiment is not difficult

by making use of dummynet ’s per-connection capacity.

Besides these concrete specific network parameters, we believe that a better understanding of the

impact of traffic shapers and end host bandwidth quotas can help to explain some of the differences

between source-level trace replay experiments and original traffic. This seems specially relevant for

UNC, where the impact of losses appeared rather different from the ones in other sites. We hypothesized

that the presence of a major data and software repository known to use bandwidth constraints was

behind our finding. Another important factor in traffic characteristics is the growing impact of wireless

networks. Our large-scale measurement effort in this area [HCP05], showed an insignificant increase of

end-to-end losses in this environment (thanks to link-layer retransmission) but substantial increases in

the magnitude and variability of round-trip times.

8.5 Flexible Traffic Generation

The final problem that we considered in this work was how to introduce controlled variability in net-

work experiments, i.e., how to derive from a trace of connection vectors a new trace that still “resembles”

the original one. Our solution involves resampling entire connection vectors, fully preserving observed

source-level behavior, and assigning them new start times. We gave two methods for this assignment:

sampling from an exponential distributions, which results in Poisson connection arrivals, and sampling

blocks of connections, which preserves the long-range dependence in the connection arrival process that

we encountered in our traces. The first method, Poisson Resampling, is analytically appealing, and sup-

ported by empirical data, since the marginal distribution of connection inter-arrival is consistent with

an exponential distributions. Block Resampling provides a non-parametric alternative, which is more

realistic with regards to the dependency structure of the connection arrival process. This structure did

not show any effect on packet and byte arrivals, but it seems important for mechanisms that require

per-connection state.

255

We also showed that our resampling methods can be carefully directed to produce a new trace of

connection vectors whose offered traffic load matches an arbitrary target very closely. Such trace scaling

is a common requirement in suites of experiments that must expose a network mechanism to a range of

traffic loads. The key to our solution is to count the total amount of data in the resamplings, which was

shown to be strongly correlated to offered load. On the contrary, our results clearly showed that the

number of connections is only weakly correlated to offered load, and cannot be used for accurate scaling

of resamplings. While this result is an intuitive consequence of the heavy-tailness in the amount of data

carried by connections, the issue has been poorly understood in earlier models, where the parameters

that can be controlled to tune offered load were associated with the number of connections. This is

for example the case for the number of user equivalents in web traffic models. The traffic load offered

by this type of “connection-driven” models can never match a target offered load as accurately as our

“byte-driven” resamplings of connection vector traces.

Our work on trace resampling can be extended in several directions. First, there is some need to

refine our handling of the packetization overhead, which would result in even more accurate load scaling.

Second, our methods only manipulate one trace at a time. Being able to combine multiple traces

would provide an even more flexible framework. While it seems straightforward to extend our methods

to support this operation, demonstrating the validity of the results appears difficult. It represents a

departure from measured traffic into a hypothetical traffic that may or may not be realistic, and it can

introduce non-stationarities. Third, developing a broader model of network traffic, either parametric or

non-parametric, could provide a better way to guide the resampling process. In this direction, a better

understanding of the main patterns of source-level behavior would provide more flexible way of creating

hypothetical scenarios. Our work on traffic clusters described above is a step in this direction, since

combining clusters support the exploration of a wide range of traffic generation scenarios. The possibility

of succinctly describing the range of patterns in a cluster, e.g., file-sharing applications with symmetric

bulk transfers and concurrency, is specially useful for exploring future scenarios where applications that

only represent a small fraction of the traffic become increasingly important.

256

BIBLIOGRAPHY

[AA01] Masaki Aida and Tetsuya Abe. Pseudo-address generation algorithm of packet destinations for
Internet performance simulation. In Proceedings of IEEE Infocom, pages 1425–1433. IEEE, 2001.

[AKM04] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In Proceedings of ACM
SIGCOMM, August 2004.

[AKSJ03] Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay. Variability in TCP
round-trip times. In Proceedings of ACM SIGCOMM Internet Measurement Conference, pages
279–284. ACM Press, 2003.

[APS99] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP congestion control, 1999.

[AV98] P. Abry and D. Veitch. Wavelet analysis of long-range-dependent traffic. IEEE Transactions
on Information Theory, 44(1):2–15, 1998.

[AW95] Martin F. Arlitt and Carey L. Williamson. A synthetic workload model for Internet Mosaic
traffic. In Summer Computer Simulation Conference, pages 24– 26, July 1995.

[Bar00] S. Barber. RFC 2980: Common NNTP Extensions, October 2000. Status:
INFORMATIONAL.

[BBBC99] Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crovella. Changes in web client
access patterns: Characteristics and caching implications. World Wide Web, 2(1-2):15–28, 1999.

[BC98] Paul Barford and Mark Crovella. Generating representative web workloads for network and
server performance evaluation. In Proceedings of ACM SIGMETRICS, pages 151–160, 1998.

[BC99] Paul Barford and Mark Crovella. A performance evaluation of hyper text transfer protocols. In
Proceedings of ACM SIGMETRICS, pages 188–197. ACM Press, 1999.

[BD99] Gaurav Banga and Peter Druschel. Measuring the capacity of a web server under realistic
loads. World Wide Web, 2(1-2):69–83, 1999.

[BEF+00] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy,
Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in Network
Simulation. IEEE Computer, 33(5):59–67, May 2000.

[BHCKS04] A. Budhiraja, F. Hernández-Campos, V. G. Kulkarni, and F. D. Smith. Stochastic
differential equation for tcp window size: Analysis and experimental validation. Probab. Eng. Inf.
Sci., 18(1):111–140, 2004.

[BHK+91] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K.
Ousterhout. Measurements of a distributed file system. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 198–212, New York, NY, USA, 1991. ACM Press.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer Protocol —
HTTP/1.0, May 1996. Status: INFORMATIONAL.

[Bra65] P.T. Brady. A technique for investigating on-off patterns of speech. The Bell System Technical
Journal, pages 1–22, January 1965.

[Bra89] R. T. Braden. RFC 1122: Requirements for Internet hosts — communication layers, October
1989.

257

[CB96] Mark E. Crovella and Azer Bestavros. Self-similarity in world wide web traffic: evidence and
possible causes. In Proceedings of ACM SIGMETRICS, pages 160–169, New York, NY, USA,
1996. ACM Press.

[CBC95] Carlos Cunha, Azer Bestavros, and Mark Crovella. Characteristics of WWW client-based
traces. Technical report, Boston University, 1995.

[CCG+04] J. Cao, W. S. Cleveland, Y. Gao, K. Jeffay, F. D. Smith, and M. Weigle. Stochastic Models
for Generating Synthetic HTTP Source Traffic. In Proceedings of IEEE Infocom, 2004.

[CDJM91] Ramón Cáceres, Peter B. Danzig, Sugih Jamin, and Danny J. Mitzel. Characteristics of
wide-area TCP/IP conversations. In Proceedings of ACM SIGCOMM, pages 101–112. ACM
Press, 1991.

[CHC+04a] Yu-Chung Cheng, Urs Hoelzle, Neal Cardwell, Stefan Savage, and Geoffrey M. Voelker.
Monkey see, monkey do: A tool for tcp tracing and replaying. In USENIX Annual Technical
Conference, June 2004.

[CHC+04b] Yu-Chung Cheng, Urs Hölzle, Neal Cardwell, Stefan Savage, and Geoffrey M. Voelker.
Monkey see, monkey do: A tool for TCP tracing and replaying. In USENIX Annual Technical
Conference, pages 87–98, 2004.

[CJOS00] Mikkel Christiansen, Kevin Jeffay, David Ott, and F. Donelson Smith. Tuning RED for web
traffic. In Proceedings of ACM SIGCOMM, pages 139–150, 2000.

[CL97] Mark Crovella and Lester Lipsky. Long-lasting transient conditions in simulations with
heavy-tailed workloads. In Proceedings of the Winter Simulation Conference, pages 1005–1012,
1997.

[CM99] P. Chaudhuri and J.S. Marron. SiZer for exploration of structures in curves. Journal of the
American Statistical Association, 94:807–823, 1999.

[Coh03] B. Cohen. Incentives build robustness in BitTorrent. In Conference Workshop on Economics
of Peer-to-Peer Systems, May 2003.

[Con04] Internet 2 Consortium. Internet2 netflow weekly reports.
http://netflow.internet2.edu/weekly, 2004.

[Cor06] Cisco Corporation. Netflow. http://www.cisco.com/netflow, 2006.

[DJ91] Peter B. Danzig and Sugih Jamin. tcplib: A library of TCP/IP traffic characteristics. USC
Networking and Distributed Systems Laboratory TR CS-SYS-91-01, October, 1991.

[Dow01a] Allen B. Downey. Evidence for long-tailed distributions in the internet. In Proceedings of
ACM SIGCOMM Internet Measurement Workshop, pages 229–241, New York, NY, USA, 2001.
ACM Press.

[Dow01b] Allen B. Downey. The structural cause of file size distributions. In Proceedings of the
ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), page 361, Washington, DC, USA, 2001. IEEE
Computer Society.

[ENW96] Ashok Erramilli, Onuttom Narayan, and Walter Willinger. Experimental queueing analysis
with long-range dependent packet traffic. IEEE/ACM Transactions on Networking, 4(2):209–223,
1996.

[ET93] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, 1993.

258

[EV03] Cristian Estan and George Varghese. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Transactions on Computer Systems,
21(3):270–313, 2003.

[Fel88] D. Feldmeier. Improving gateway performance with a routing-table cache. In Proceedings of
IEEE Infocom, pages 27–31, March 1988.

[Fel00] Anja Feldmann. Characteristics of TCP connection arrivals. In Kihong Park and Walter
Willinger, editors, Self-Similar Network Traffic and Performance Evaluation. Wiley-Interscience,
2000.

[FGHW99] Anja Feldmann, Anna C. Gilbert, Polly Huang, and Walter Willinger. Dynamics of IP
traffic: A study of the role of variability and the impact of control. In sigcomm, pages 301–313,
1999.

[FGM+97] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2068: Hypertext
Transfer Protocol — HTTP/1.1, January 1997. Status: PROPOSED STANDARD.

[FJ93a] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[FJ93b] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[FK03] Sally Floyd and Eddie Kohler. Internet research needs better models. ACM Computer
Communication Review, 33(1):29–34, 2003.

[FP01] Sally Ford and Vern Paxson. Difficulties in simulating the internet. IEEE/ACM Transactions
on Networking, 9(4):392–403, 2001.

[FTD03] Chuck Fraleigh, Fouad Tobagi, and Christophe Diot. Provisioning ip backbone networks to
support latency sensitive traffic. In Proceedings of IEEE Infocom. IEEE, 2003.

[GcC02] Kartik Gopalan and Tzi cker Chiueh. Improving route lookup performance using network
processor cache. In Proceedings of the ACM/IEEE Conference on Supercomputing, pages 1–10,
Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[GDS+03] P. Krishna Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble, Henry M. Levy,
and John Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-sharing workload.
In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), pages 314–329,
2003.

[GM01] Liang Guo and Ibrahim Matta. The war between mice and elephants. In Proceedings of the
IEEE International Conference on Network Protocols (ICNP), page 180, Washington, DC, USA,
2001. IEEE Computer Society.

[GMP97] Ian Graham, Jed Martens, and Murray Pearson. The dag: an atm measurement board. In
4th Electronics New Zealand Conference, 1997.

[GW94] Mark W. Garrett and Walter Willinger. Analysis, modeling and generation of self-similar vbr
video traffic. In Proceedings of ACM SIGCOMM, pages 269–280, New York, NY, USA, 1994.
ACM Press.

[HCJS+01] F. Hernández-Campos, K. Jeffay, F.D. Smith, J. S. Marron, and A. Nobel. Methodology
for developing empirical models of TCP-based applications, June 2001. unpublished manuscript.

[HCJS03] F. Hernández-Campos, K. Jeffay, and F. D. Smith. Tracking the evolution of web traffic:
1995-2003. In Proceedings of the ACM/IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS), October 2003.

259

[HCMSS04] F. Hernández-Campos, J. S. Marron, Gennady Samorodnitsky, and F. D. Smith. Variable
heavy tails in internet traffic. Perform. Eval., 58(2+3):261–261, 2004.

[HCNSJ05] Félix Herández-Campos, Andrew B. Nobel, F. Donelson Smith, and Kevin Jeffay.
Understanding patterns of tcp connection usage with statistical clustering. In Proceedings of the
ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 35–44, 2005.

[HCP05] Félix Hernández-Campos and Maria Papadopouli. Assessing the real impact of 802.11
WLANS: A large-scale comparison of wired and wireless traffic. In 14th IEEE Workshop on Local
and Metropolitan Area Networks, 2005.

[HCSJ04] F. Hernández-Campos, F.D. Smith, and K. Jeffay. Generating realistic TCP workloads. In
Proceedings of Computer Measurement Group (CMG) Conference, December 2004.

[HNHC02] Peter Hall, Andrew B. Nobel, and Félix Hernández-Campos. Block bootstrap approach to
simulating Internet traffic. Unpublished Manuscript, 2002.

[HV03] Nicolas Hohn and Darryl Veitch. Inverting sampled traffic. In Proceedings of ACM SIGCOMM
Internet Measurement Conference, pages 222–233, New York, NY, USA, 2003. ACM Press.

[HVA02] N. Hohn, D. Veitch, and P. Abry. Does fractal scaling at the IP level depend on TCP flow
arrival processes. In Proceedings of ACM SIGCOMM Internet Measurement Workshop, 2002.

[Inc] NetIQ Software Inc. Chariot performance evaluation platform.
http://www.netiq.com/products/chr/default.asp.

[Int] Internet Traffic Archive. http://ita.ee.lbl.gov.

[Jai90] R. Jain. Characteristics of destination address locality in computer networks: a comparison of
caching schemes. Computer Networks and ISDN Systems, 18(4):243–254, 1990.

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis. Wiley, 1991.

[JBB92] V. Jacobson, R. Braden, and D. Borman. RFC 1323: TCP extensions for high performance,
May 1992. Status: PROPOSED STANDARD.

[JD02] Hao Jiang and Constantinos Dovrolis. Passive estimation of TCP round-trip times. ACM
Computer Communication Review, 32(3):75–88, 2002.

[JD04] Hao Jiang and Constantinos Dovrolis. The effect of flow capacities on the burstiness of
aggregated traffic. In Passive and Active Measurement, pages 93–102, 2004.

[JRF+99] Y. Joo, V. Ribeiro, A. Feldmann, A. Gilbert, and W. Willinger. On the impact of variability
on the buffer dynamics in IP networks. In Allerton Conference on Communication, Control and
Computing, September 1999.

[JRF+01] Youngmi Joo, Vinay Ribeiro, Anja Feldmann, Anna C. Gilbert, and Walter Willinger.
Tcp/ip traffic dynamics and network performance: a lesson in workload modeling, flow control,
and trace-driven simulations. ACM Computer Communication Review, 31(2):25–37, 2001.

[KBBkc03] Thomas Karagiannis, Andre Broido, Nevil Brownlee, and Michalis Faloutsos kc claffy.
File-sharing in the Internet: A characterization of p2p traffic in the backbone. Technical report,
UC Riverside, November 2003.

[KcLH+02] Purushotham Kamath, Kun chan Lan, John Heidemann, Joe Bannister, and Joe Touch.
Generation of high bandwidth network traffic traces. In Proceedings of the ACM/IEEE
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 401–410, Fort Worth, Texas, USA, October
2002. USC/Information Sciences Institute, IEEE.

260

[KHR02] Dina Katabi, Mark Handley, and Charles Rohrs. Internet congestion control for future high
bandwidth-delay product environments. In Proceedings of ACM SIGCOMM, 2002.

[KL86] B. Kantor and P. Lapsley. RFC 977: Network news transfer protocol: A proposed standard for
the stream-based transmission of news, February 1986. Status: PROPOSED STANDARD.

[KLPS02] Eddie Kohler, Jinyang Li, Vern Paxson, and Scott Shenker. Observed structure of addresses
in IP traffic. In Proceedings of ACM SIGCOMM Internet Measurement Workshop, pages
253–266. ACM Press, 2002.

[KP88a] P. Karn and C. Partridge. Improving round-trip time estimates in reliable transport protocols.
In Proceedings of ACM SIGCOMM, pages 2–7, New York, NY, USA, 1988. ACM Press.

[KP88b] P. Karn and C. Partridge. Improving round-trip time estimates in reliable transport protocols.
In Proceedings of ACM SIGCOMM, pages 2–7, New York, NY, USA, 1988. ACM Press.

[KZ97] Edward W. Knightly and Hui Zhang. D-bind: an accurate traffic model for providing qos
guarantees to vbr traffic. IEEE/ACM Transactions on Networking, 5(2):219–231, 1997.

[LAJS03] Long Le, Jay Aikat, Kevin Jeffay, and F. Donelson Smith. The effects of active queue
management on web performance. In Proceedings of ACM SIGCOMM, pages 265–276, New
York, NY, USA, 2003. ACM Press.

[LH02] Kun-Chan Lan and John Heidemann. Rapid model parameterization from traffic
measurements. ACM Trans. Model. Comput. Simul., 12(3):201–229, 2002.

[LTWW93] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wilson. On the
self-similar nature of Ethernet traffic. In Deepinder P. Sidhu, editor, Proceedings of ACM
SIGCOMM, pages 183–193, San Francisco, California, 1993.

[Mah97] Bruce A. Mah. An empirical model of HTTP network traffic. In Proceedings of IEEE
Infocom, volume 2, pages 592–600, 1997.

[MDG01] Joerg Micheel, Stephen Donnelly, and Ian Graham. Precision timestamping of network
packets. In Proceedings of ACM SIGCOMM Internet Measurement Workshop, pages 273–277,
New York, NY, USA, 2001. ACM Press.

[MGT00] Vishal Misra, Wei-Bo Gong, and Don Towsley. Fluid-based analysis of a network of aqm
routers supporting tcp flows with an application to red. In Proceedings of ACM SIGCOMM,
pages 151–160, New York, NY, USA, 2000. ACM Press.

[MH00] A. Mena and J. Heidemann. An empirical study of Real Audio traffic. In Proceedings of IEEE
Infocom, March 2000.

[MHCS02] J. S. Marron, F. Hernández-Campos, and F. D. Smith. Mice and elephants visualization of
Internet traffic. In Proceedings of 15th Conference on Computational Statistics, August 2002.

[Mit04] M. Mitzenmacher. A brief history of generative models for power law and lognormal
distributions. Internet Mathematics, 1(2):226–251, 2004.

[MJ93] Steven McCanne and Van Jacobson. The bsd packet filter: A new architecture for user-level
packet capture. In Proceedings of the Winter USENIX Technical Conference, pages 259–269,
January 1993.

[MJ98] David Mosberger and Tai Jin. httperf: a tool for measuring web server performance.
SIGMETRICS Perform. Eval. Rev., 26(3):31–37, 1998.

[MSM97] M. Mathis, J. Semke, and J. Mahdavi. The macroscopic behavior of the TCP congestion
avoidance algorithm. ACM Computer Communication Review, 27(3), 1997.

261

[Nag84] J. Nagle. RFC 896: Congestion control in IP/TCP internetworks, January 1984. Status:
UNKNOWN.

[NIS06] NIST/SEMATECH. e-handbook of statistical methods.
http://www.itl.nist.gov/div898/handbook, 2006.

[nlaa] National Laboratory for Applied Network Research (NLANR). http://www.nlanr.net.

[nlab] NLANR’s Passive Measurement and Analysis (PMA) project. http://pma.nlanr.net.

[NSSW02] Carl Nuzman, Iraj Saniee, Wim Sweldens, and Alan Weiss. A compound model for TCP
connection arrivals for LAN and WAN applications. Computer Networks, 40(3):319–337, 2002.

[Ost] David Ostermann. Tcptrace: a TCP connection analysis tool. http://www.tcptrace.org.

[Pax94] Vern Paxson. Empirically derived analytic models of wide-area TCP connections. IEEE/ACM
Transactions on Networking, 2(4):316–336, 1994.

[Pax97] V. Paxson. Fast, approximate synthesis of fractional gaussian noise for generating self-similar
network traffic. ACM Computer Communication Review, 27(5):5–18, October 1997.

[PF95] Vern Paxson and Sally Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM
Transactions on Networking, 3(3):226–244, 1995.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP throughput:
a simple model and its empirical validation. In Proceedings of ACM SIGCOMM, pages 303–314,
New York, NY, USA, 1998. ACM Press.

[PHCL+] C. Park, F. Hernández-Campos, L. Le, J. S. Marron, J. Park, V. Pipiras, F. D. Smith, R. L.
Smith, M. Trovero, and Z. Zhu. Long-range dependence analysis of Internet traffic.

[PHCM+06] Cheolwoo Park, Félix Hernández-Campos, J. S. Marron, Kevin Jeffay, and F. D. Smith.
Correlations of size, rate, and duration in tcp connections: the case against. In submission, 2006.

[PHCMS05] Cheolwoo Park, Félix Hernández-Campos, J. S. Marron, and F. Donelson Smith.
Long-range dependence in a changing internet traffic mix. Computer Networks, 48(3):401–422,
2005.

[Pos81] J. Postel. RFC 793: Transmission control protocol, September 1981.

[Pro] The DAG Project. http://dag.cs.waikato.ac.nz.

[PW00] Kihong Park and Walter Willinger, editors. Self-Similar Network Traffic and Performance
Evaluation. Wiley-Interscience, 2000.

[RDFS04] Andy Rupp, Holger Dreger, Anja Feldmann, and Robin Sommer. Packet trace manipulation
framework for test labs. In Proceedings of ACM SIGCOMM Internet Measurement Conference,
pages 251–256. ACM Press, 2004.

[Riz97] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols. ACM
Computer Communication Review, January 1997.

[SB04] Joel Sommers and Paul Barford. Self-configuring network traffic generation. In Proceedings of
ACM SIGCOMM Internet Measurement Conference, pages 68–81, New York, NY, USA, 2004.
ACM Press.

[SBDR05] Joel Sommers, Paul Barford, Nick Duffield, and Amos Ron. Improving accuracy in
end-to-end packet loss measurement. In Proceedings of ACM SIGCOMM, August 2005.

262

[SGG02] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file sharing
systems. In Proceedings of Multimedia Computing and Networking, 2002.

[SHCJO01] F. Donelson Smith, Félix Hernández-Campos, Kevin Jeffay, and David Ott. What
TCP/IP protocol headers can tell us about the web. In Proceedings of ACM SIGMETRICS,
pages 245–256, 2001.

[SRB01] S. Sarvotham, R. Riedi, and R. Baraniuk. Connection-level analysis and modeling of network
traffic. In Proceedings of ACM SIGCOMM Internet Measurement Workshop, November 2001.

[Ste94] R. W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

[SYB04] Joel Sommers, Vinod Yegneswaran, and Paul Barford. A framework for malicious workload
generation. In Proceedings of ACM SIGCOMM Internet Measurement Conference, pages 82–87.
ACM Press, 2004.

[tcpa] Tcpdump public repository. http://www.tcpdump.org.

[tcpb] Tcpreplay: Pcap editing and replay tools for *nix. http://tcpreplay.sourceforge.net.

[Wal99] J. Walker. A primer on wavelets and their scientific applications. CRC Press, 1999.

[WP98] Walter Willinger and Vern Paxson. Where mathematics meets the Internet. Notices of the
American Mathematical Society, pages 961–970, September 1998.

[WTSW97] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson. Self-similarity
through high-variability: statistical analysis of Ethernet LAN traffic at the source level.
IEEE/ACM Transactions on Networking, 5(1):71–86, 1997.

[YVIB05] Tao Ye, Darryl Veitch, Gianluca Iannaccone, and Supratik Bhattacharyya. Divide and
conquer: PC-based packet trace replay at OC-48 speeds. In Tridentcom, Trento, Italy, February
2005.

[ZRMD03] Z.-L. Zhang, V. Ribeiro, S. Moon, and C. Diot. Small-time scaling behaviors of Internet
backbone traffic: An empirical study. In Proceedings of IEEE Infocom, San Francisco, March
2003.

263

