
Dallas, August 18-22 Volume 20, Number 4, 1986
I II

Image Rendering by Adaptive Refinement

Larry Bergman, Henry Fuchs, Eric Grant
University of North Carolina at Chapel Hill

Susan Spach
Hewlett-Packard Laboratories

Palo Alto, California

Abstract

This paper describes techniques for improving the performance
of image rendering on personal workstations by using CPU
cycles going idle while the user is examining a static image on
the screen. In that spirit, we believe that a renderers work is
never done. Our goal is to convey the most information to the
user as early as possible, with image quality constantly
improving with time. We do this by first generating a crude
image rapidly and then adaptively refining it where necessary as
long as the user does not change viewing parameters. The
renderer operates in a succession of phases, first displaying only
vertices of polygons, next polygon edges, then flat shading
polygons, then shadowing polygons, then Gouraud shading
polygons, then Phong shading polygons, and f inal ly
anti-aliasing. Performance is enhanced by each phase using
results from previous phases and trimming the amount of data
needed by the next phase. In this way, only a fraction of the
pixels in an image may be Phong shaded while the rest may be
Gouraud or flat shaded. Similarly anti-aliasing is performed
only on pixels around which there is significant color change.
The system features fast response to user intervention,
encourages user intervention at any moment, and makes useful
the idle cycles in a personal computer.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/Image Generation -- Display algorithms, 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism -- Visible line/surface
algorithms,

General Terms: algorithms, computer graphics,

Additional Keywords: image synthesis, 3-D rendering, hidden-surface
elimination, interaction, anti-aliasing.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-196-2/86/008/0029 $00.75

1. I n t r o d u c t i o n

Computer image generation algorithms can be divided roughly
into two application areas: interactive and non-interactive.
Non-interactive algorithms typically generate high-quality still
images or animated sequences, whereas interactive algorithms
seek to generate the image in near real-time. In this paper we
describe algorithms which unify the two approaches: the best
possible image is generated subject to the near real-time
constraint, but the image improves with time to a level of quality
usually not found in interactive applications.

This paper describes an implementation of a general purpose
polygon-based renderer with the above goals. We use the term
ref inement to indicate that the image is constantly being
improved, and adaptive to indicate that the improvement adapts
to the particular nature of the image -- the polygons and pixel
locations whose further processing is likely to make the greatest
improvement in the picture quality. We have at this time only
heuristic measures of picture quality, but hope that the
techniques described in this paper will apply even more
dramatically with more precise measures of image quality.

2. Related Work

Progressive Transmission of Images

A number of researchers [SLOAN79,KNOWLTON80,HILL83]
have addressed the problem of transmitting images over low
bandwidth lines. Images are encoded and transmitted so that the
user first sees a rough, low resolution representation of the
complete imag.e. As time passes, the image is refined until the
source image is seen. The user may abort transmission at any
time. This provides an efficient means for browsing through an
image database.

Our research shares a similar goal: to convey the most
information as early as possible, with image quality improving
in time. Instead of starting with a complete image at the far end
of a communication channel, however, we start with a scene
description (e.g., a collection of polygons) and must generate
the final image.

Level of Detail Managemen t

The time required to render an image is related to the complexity
of the scene description. Two methods have been used to
control the size of the rendered data set.

29

/ / S I G G R A P H '86

The first method is to generate adaptively the scene description
at image generation time based on constraints. Subdivision
algorithms [CATMULL74, LANE80, FOURNIER82] are
examples of procedure models whose output varies based on
view information.

The second method is to store a hierarchy of object descriptions,
and choose the most appropriate representation at display time.
Clark [CLARK76] recognized the value of this approach, which
apparently had been used in flight simulators for many years.

The flight simulator application, however, differs from our
application in at least two significant ways. Designing a
database for a flight simulator is a one-time task, hence it is
reasonable to hand-tune a database. Secondly, many of the
objects are procedurally modeled, and can be generated to
varying levels of detail by varying the parameters of a single
procedure. Medical imaging, one of our applications, must
often deal with new data sets that are not procedurally modeled,
such as models reconstructed from CT scans. It is possible to
generate less detai led versions of these data sets as a
post-process [MACDOUGAL84], but in general this is a more
difficult problem than generating these versions at original
object-definit ion time (such as with data sets for flight
simulators).

Oct- t rees [HUNTER78, JACKINS80, M E A G H E R 8 0 ,
SAMET84], because of their natural hierarchy, are well-suited
for rendering at various levels of refinement; rendering can take
place to the desired level of definition. Although we might
explore oct-trees for some of our medical applications, we have
found polygonal surface representations to be more compact
than oct-trees; they also allow very high quality rendering
directly.

Multiple Pass Refinement

There are undoubtedly hundreds of implementations of what we
will call the two pass approach. In the two pass approach, the
user initially manipulates a crude (typically wire-frame)
representation of the object and selects a particular view. A
more time-consuming, high quality rendering of the scene is
then performed. A problem with this approach is that the crude
representation may not provide enough information for
positioning. Moreover, the higher quality rendering must
usually complete in a reasonable amount of time, and hence is
frequently not chosen to be of the highest quality possible. The
quality levels are determined a priori by the graphics system
implementor. We prefer to let the user determine when the
image is sufficiently detailed.

Forrest [FORREST85] proposed a system with a predefined
number of quality levels. A scene is first rendered at level zero,
the lowest quality level. If the scene parameters do not change,
the scene is then progressively rendered at levels one, two, and
so forth. He noted that in some cases the higher levels can be
achieved with a small amount of additional computation. The
first three of his five quality levels for lines are 1) whatever the
hardware can draw, 2) anti-aliased lines without readback, 3)
anti- al iased lines with readback. He noted that for
smooth-shaded 3-D objects anti-aliasing is needed only in
silhouette edges. In addition, he presented a fact that forms a
foundation for our work; if the user is working on a personal
workstation, there is no reason not to take advantage of idle
CPU cycles to improve the quality of the image. We are
extending this approach to allow automatically a continuum of
quality levels without user definition, to allow efficient image
improvement by cutting down on the amount of data remaining

for each successively higher level routing (flat, Gouraud, Phong
shaders), and suggest refinement methods without any fixed
highest level.

Numerous rendering systems first generate a low resolution
image, then refine it. For instance, UNC graduate student
Andrew Glassner has implemented arbitrary slicing through a
3D density distribution (typically an anatomical structure
described by a stack of CT images), by generalizing Crow's
sum tables [CROW84]. His algorithm first generates a crude
64x64-pixel image, then refines it to 128x 128, then refines that
to 256x256 pixels. In general, rendering algorithms that
compute pixels independently (e.g., ray tracers) are well suited
to this type o f operation, while others such as list priority
algorithms are not.

The UNC Pixel-Planes project [FUCHS85] proposed a multiple
pass approach to anti-aliasing. The image is initially sampled at
display resolution. In subsequent passes, the image is also
sampled at display resolution, but with samples taken at
subpixel offsets from the original samples. The samples at the
end of each pass are merged with previous samples to form an
anti-aliased image.

An alternative approach to anti-aliasing is described in
[BLOOMENTHAL83]. Edges detected using image-processing
methods are smoothed during a post-processing step. This
post-processing edge inference is useful because they render a
variety of object types (polygons, quadrics, patches) and
keeping track of pixels to be anti-aliased is difficult in such
circumstances.

Objects in the UNC vibrating ("varifocal") mirror system
[FUCHS82, MILLS84] are represented as a large set of points.
It was noted that the general position of the object can be
determined by a small fraction of the points. The system takes
advantage of this by rendering the data set in a random order. If
the user moves the joystick, a new image is started. If the
joystick remains stationary, the image continues to fill in until
the entire data set has been rendered.

Adap t ive Rende r ing

Efficient rendering techniques adapt to scene characteristics to
minimize the amount of computation performed. Whitted, Lee,
Redner, and Uselton [WHITTED80, LEE85] descr ibed
techniques for adapting the number of rays cast by a ray-tracer
to the complexity of the area being sampled.

Cook [COOK84] described a shading system in which a
separate shader may be associated with each surface. This
permits arbitrarily complex shading computations to be applied
where required, without performing extra computation on
surfaces where a very simple model is sufficient. Our method
also adapts the renderer to the complexity of the surface, with
the binding is done at the individual polygon and pixel level.
The decision is made on the fly, depending on time available for
the rendering process. A single surface of polygons may have a
fraction of its polygons flat-shaded, another fraction Gouraud
shaded, and another fraction Phong shaded.

The Brown Graphics Group [STRAUSS84] uses a scene format
that can be interpreted by a variety of rendering systems. This
permits a different renderer to be used on the same data on
different workstations [VANDAM86]. The Cornell testbed
[HALL83] similarly permits various rendering modules to be
interfaced to a common modeler.

30

Dallas, A u g u s t 18-22 V o l u m e 20, N u m b e r 4, 1986

3. O u r M e t h o d s

Our new methods concentrate on the rendering process itself,
rather than on object representation techniques. We do this
because our applications of medical imaging and molecular
modeling impose severe restrictions on the use of certain
techniques such as procedural data set generation and multiple,
hierarchical representations.

From the user's perspective, the quality of the image from a
standard renderer improves with time roughly as shown in one
of the curves in Figure 1. Of course, the "quality" of a synthetic
image is not easy to quantify, and we do not propose any metric
for it here; we simply note that certain operations improve the
quality of the image and certain renderers generate higher quality
images than others. Any rendering process improves the image
quality in time as the rendering progresses to completion; the
image then remains constant. Two problems are immediately
apparene

1) the image may not be useful in early stages when perhaps
only a few polygons or a few seanlines have been
rendered, and

2) the image doesn't improve (obviously) once the rendering
is complete.

Our approach seeks to ameliorate both of these weaknesses.
For the early phases of the rendering, we restructure the tasks
to display some results (vertices, edges) on the screen as soon
as possible. The renderer then begins shading the object by
scan-converting the object polygons and optionally, the
precomputed shadow polygons. The polygon data structure is
traversed more frequently than is usual; it is traversed each time
there is either more data to display (for instance, polygon edges
instead of merely vertices) or a more refined rendering to be
performed (for instance, Gouraud instead of flat shading). Our
rendering techniques adapt to the specific data set being rendered
by performing operations only on "needed polygons" and
"needed pixels." This technique prevents the implementation
from becoming simply a sequence of increasingly sophisticated
renderers; such a naive structure's execution time would be the
sum of the times of all the renderers in the sequence.

The next section details our currently implemented techniques.
These techniques address only the first of the two problems
listed above, that of generating useful images as early as
possible. They do not address, for we are still investigating,
the second problem -- the renderer never stops, but "keeps
improving the image forever."

We have adopted the following guidelines:

we try to follow the image quality curves of various
renderers (Figure 1) by always doing whatever (we
estimate) improves the image most at that particular point
in time-- painting another point, another edge, another
polygon with Phong highlighting, etc.,

• we start a new image whenever new user input is received
in order to achieve fast user interaction,

we perform only necessary work at each phase before
going on to the next: Gouraud shading only those
polygons that are not "fiat", Phong shading only those
polygons that have high specular component, anti-aliasing
only pixels around which the color changes significantly,

• we use results from previous phases to reduce
calculations in later phases, and

• we aim to use all available CPU cycles (a picture is never
finished -- "a renderer's work is never done")

4. Implementation

We first preprocess the three dimensional data set by randomly
ordering the polygons and converting to a winged-edge data
structure format [BAUMGART75]. From the winged-edge data
structure, our testbed builds a polygon list, an edge llst, a vertex
list, and a vertex normal list. The normals require a separate
list, since multiple normals may be associated with each vertex,
depending on the polygons (flat and/or smooth-shaded) to
which the vertex belongs. This format enables fast traversal of
the data set for vertices and points, and also provides necessary
connectivity information.

IMAGE QUALITY

11
Z-buffer renderer with Phong

shading, shadows and anti-aliasing

renderer

Z-buffer renderer with
flat-shaded polygons

I I
Polygon-edges rendering done

Vertices-only rendering done

Flat-shaded polygon rendering done

rendering polygon
edges only

rendering vertices
only

I '~ RENDERING TIME
Phong, anti-aliased & shadows rendering done

Figure 1: "Image Quality" vs. Rendering Time

31

~. S I G G R A P H '86

In addition to this permanent, viewpoint independent
information, our data structure provides storage for values
calculated during the rendering process. For example, we save
the transformed vertices during vertex display so that
transformation need not be repeated during subsequent
processing.

Our rendering system provides standard viewing and lighting
features. The user can select the view position, viewing angle,
hither/yon clipping planes, and light source position, along with
the user-specified rendering options detailed in the steps below.
The renderer displays shadows if precomputed shadow
polygons are provided in the original data set.

Our adaptive rendering system proceeds as follows (Figure 2):

1) Vertex display We transform the vertices, build the
6-bit, three-dimensional Cohen-Sutherland clip code
[NEWMAN73], and display (with depth cueing) the
resulting visible points.

2) Edge display We clip the edges of the visible polygons
as line segments. The visible edges are displayed with
depth cueing using the workstation hardware vector
draw.

3) Flat shading We complete polygon clipping by joining
the clipped edge segments. We then scan-convert the
polygons with flat shading using a Z-buffer for hidden
surface elimination. A polygon identifier buffer is
built to identify the polygon visible at each pixel. This
buffer is used by later scan conversion and shadow
processing phases. The user may set parameters that
control the display of back facing polygons and
dithering of color values at each pixel (to enhance the
display on workstations with a limited number of
colors).

4) Shadow display If the data set contains precomputed
shadow polygons, we scan-convert these shadow
polygons. A pixel is in shadow if the shadow polygon
identifier matches the value stored in the polygon
identifier buffer. We attenuate the intensity of that pixel
by a user specified scaling factor. We also mark that
the pixel is in shadow in a pixel attribute buffer (a
bit-map which may be stored in either main or
non-displayable frame buffer memory). This allows
us to adjust the shadow intensity during later
processing.

5) Gouraud shading We perform Gouraud shading only on
those polygons where the range of intensity of a
polygon's vertices exceeds a user-specified threshold.
We include only the ambient and diffuse components
of our lighting model at this stage. Since visibility has
already been performed at earlier stages, the process
here merely checks the polygon identifier buffer to
determine whether or not to display the current
polygon at a particular pixel.

6) Phong shading We perform Phong shading on those
polygons for which the direction of the specular
reflectance (highlight) vector at any vertex is within a
user-specified tolerance of the direction of maximum
highlight. Ideally, this threshold is chosen so that
Phong shading is performed only on polygons with
noticeable highlights.

7) Anti-aliasing We compute a threshold pixel-map that
designates which pixels need to be anti-aliased. A

pixel is anti-aliased if the maximum range of variance
in intensity in the three by three pixel neighborhood
around it exceeds a pre-defined threshold. We then
build polygon fragments for the designated pixels and
perform anti-aliasing with the A-buffer hidden surface
algorithm [CARPENTER84].

We note that with some enhancements to the irnplementation, the
above order could be modified under user control.

I viewing "~
parame!ers ~
may arrive /
from input J
devices at /
any time J

3D data set - object
descriptions J

J

(ind. perspe¢live) vertices

[
t t ""o" I line segments) edges

I complete polygon I
clipping (most
work done in
earlier phase)

I (~ls~i~ail~°~ns I J 3 . render polygons I q wi "a'shading I

L 4. render visible
transform and J, I I c p shadow polygons I i'~ parts of shadow polygons

I examine intensities I J S. if needed, J
~.J pedorm Gouraud J at each J shading I polygon's vertices

[
I ex'in'"tex I "" - - I normals and light perform Phong

source position shading

tag pixels for
anti-aliasing

~...!1 7. perform I anti-aliasing
on tagged J --1 pixels

Figure 2: Rendering pipeline modified for adaptive refinement

5. Experimental Results

Since this conference paper is but the first report on this work,
the results thus far are very tentative. However, we already find
useful the display of even a small fraction of the vertices
whenever these points are updated fast enough for perceptible
motion.

We have also found useful the partially completed images early
in the rendering process, with polygon edges and a few
flat-shaded polygons -- such as the scene illustrated in Figure 3.

32

Dallas, August 18-22 Volume 20, Number 4, 1986

6. E x t e n s i o n s

We hope to add textures and transparency as a later phase
similar to the one just described for shadows. We are also eager
to try these techniques with some high-speed hardware to see if
they could apply in a more structured setting than in our current
general purpose workstation environment. In particular, we
hope to use some of these techniques on the Pixel-planes system
currently under construction [POULTON85, FUCHS85].

Our ultimate goal in this exploration is to find what we call a
"golden thread", a single step that if repeated a few times will
generate a crude image, one which repeated many times will
generate a high quality image, and one which could be repeated
indefinitely to yield ever higher quality images. Our current
hope is that some form of ray-tracing [WHrVI'ED80,LEE85]
with an ever increasing number of rays (and ever deeper "ray"
trees) will yield such a "golden thread." Although these notions
are purely speculative at the moment, we're encouraged that
some of the current calculations may prove useful: the initial ray
casting is essentially done by the Z-buffer, and the anti-aliasing
bit-map indicates pixels likely to need the most rays.

F igure 3: Image in early rendering phase,
showing polygon edges and a few flat-shaded
polygons (view of lobby of UNC's future
Computer Science building).

We have been surprised that the threshold settings for Gouraud
and Phong shading have such a major effect on the amount of
work being done; the fraction of pixels displayed with Phong
shading can easily vary from 5 to 50% depending on the
threshold setting. Unfortunately we have not yet had time to
characterize these results. We have already found, however, that
since the light source direction strongly effects the number of
pixels needing Phong shading for specular light component
calculations, the user needs to be able to control easily and
interactively the location and orientation of the light source in
the three-dimensional scene.

The software runs on three different configurations, all running
under UNIX: a Masscomp MCS 500 workstation, a DEC
VAX-780, and an 1-11:'-9000 Series 500. All images except
Figures 14 through 19 were p.hotographed directly from the
Masscomp screen. The execuUon times vary from one frame
per second (user set) for a fraction of the vertices to about 20
minutes for the Phong shaded image. Figures 14 through 19
show images generated from the implementation running on the
HP-9000.

7. C o n c l u s i o n s

Image generation by adaptive refinement provides an
encouraging combination of rendering speed, user convenience,
and high quality pictures. The major cost appears to be the large
amount of main memory required to store the data set and the
intermediate values. With increasing memory capacity for
workstations, however, the techniques presented in this paper
should become increasingly easy to adopt. Indeed, with more
personal, dedicated workstations having spare computing
cycles, one may yet develop a renderer whose work is never
done.

Acknowledgements

We thank Fred Brooks, Stephen Pizer, and Turner Whitted for
many stimulating and useful discussions and for their leadership
of many cooperating projects. We thank Julian Rosenman,
Edward Chaney, and George Sherouse of the UNC School of
Medicine, Department of Radiology for the CT data of the head,
and Brian Whitney and Sukumar Ramanathan for generating the
polygon description of the Head from the CT data. We thank
Dana Smith and Greg Abram for the building data.

We gratefully acknowledge the support of this work in part by
the Defense Advanced Research Projects Agency Contract
DAAG29-83-K-0148 (monitored by the US Army Research
Office, Research Triangle Park, NC), the National Institutes of
Health Grant R01-CA39060, and the National Science
Foundation Grant ECS-8300970.

33

S I G G R A P H '86

References

[ATHERTON78] Atherton, Peter, Kevin Weiler, and Donald
Greenberg Polygon Shadow Generation. Computer
Graphics, 12, No. 3 August 1978 pp. 275-281.

[BAUMGART75] Baumgart, Bruce G. A Polyhedron
Representation for Computer Vision. NCC 1975, pp.
589-596.

[BLOOMENTHAL83] Bloomenthal, Jules Edge Inference with
Applications to Antialiasing. Computer Graphics, 17,
No. 3 July 1983 pp. 157-162.

[CARPENTER84] Carpenter, Loren The A-buffer, an
Antialiased Hidden Surface Method. Computer
Graphics, 18, No. 3 July 1984 pp. 103-108.

[CATMULL74] Catmull, Edwin E. A Subdivision Algorithm
for Computer Display of Curved Surfaces. Ph.D. Diss.
University of Utah December 1974.

[CLARK76] Clark, James H. Hierarchical Geometric Models
for Visible Surface Algorithms. Communications of
the ACM, 19, No. 10 October 1976 pp. 547-554.

[COOK84] Cook, Robert L. Shade Trees. Computer
Graphics, 18, No. 3 July 1984 pp. 223-231.

[CROW84] Crow, Franklin C. Summed-Area Tables for
Texture Mapping. Computer Graphics, 18, No. 3 July
1984 pp. 207-212.

[FORREST85] Forrest, A.R. Antialiasing in Practice in
Fundamental Algorithms for Computer
Graphics, Ed. Earnshaw, R.A. in Proc. of NATO ASI
Series. Springer-Verlag, 1985 pp. 113-134.

[FOURNIER82] Fournier, Alain, Don Fussell, and Loren C.
Carpenter Computer Rendering of Stochastic Models.
Communications of the ACM, 25, No. 6 June 1982
pp. 371-384.

f ~

[FUCHS82] Fuchs, H., S.M. Pizer, E.R. Heinz, L.C. Tsai,
and S.H. Bloomberg Adding a True 3-D Display to a
Raster Graphic System. IEEE Computer Graphics
and Applications, 2, No. 7 September 1982 pp.
73-78.

[FUCHS85] Fuchs, Henry, Jack Goldfeather, Jeff P.
Hultquist, Susan Spach, John D. Austin, Frederick P.
Brooks, Jr., John G. Eyles, and John Poulton Fast
Spheres, Shadows, Textures, Transparencies, and Image
Enhancements in Pixel- Planes. Computer Graphics,
19, No. 3 July 1985 pp. 111-120.

[HALL83] Hall, Roy A., and Donald P. Greenberg A Testbed
for Realistic Image Synthesis. IEEE Computer
Graphics and Applications, 3, No. 8 November
1983 pp. 10-20.

[HILL83] Hill, F.S., Jr., Sheldon Walker, Jr., and Fuwen Gap
Interactive Image Query System Using Progressive
Transmission. Computer Graphics, 17, No. 3 July
1983 pp. 323-330.

[HUNTER78] Hunter, G.M. Efficient Computation and Data
Structures for Graphics. Ph.D. Diss. Princeton
University 1978.

[JACKINS80] Jackins, C., and Tanimoto, S.L. Oct-trees and
Their Use in Representing Three-Dimensional Objects.
Computer Graphics and Image Processing, 14,
No. 3 November 1980 pp. 249-270.

[KNOWLTON80] Knowlton, Ken Progressive Transmission of
Grey-Scale and Binary Pictures by Simple, Efficient, and
Lossless Encoding Schemes. Proceedings of the
IEEE, 68, No. 7 July 1980 pp. 885-896.

[LANE80] Lane, Jeffrey M., Loren C. Carpenter, James F.
Blinn, and Turner Whitted Scan Line Methods for
Displaying Parametrically Defined Surfaces.
Communications of the ACM, 23, No. 1 January
1980 pp. 23-34.

[LEE85] Lee, Mark E., Richard A. Redner, and Samuel P.
Uselton Statistically Optimized Sampling for Distributed
Ray Tracing. Computer Graphics, 19, No. 3 July
1985 pp. 61-67.

[MACDOUGAL84] MacDougal, Paul D. Generation and
Management of Object Description Hierarchies for
Simplification of Image Generation. Ph.D. Diss. Ohio
State University August 1984.

[MEAGHER80] Meagher, D. Octree: A New Technique for the
Representation, Manipulation and Display of Arbitrary
3-D Objects by Computer. Technical Report
iPL-TR-80-111. Rensselaer Polytechnic Institute. 1980.

[MILLS84] Mills, Peter H., Henry Fuchs, and Stephen M.
Pizer High-Speed Interaction on a Vibrating Mirror 3D
Display. Proceedings of SPIE, 507 August 1984 pp.
93-101.

[NEWMAN73] Newman, William M. and Robert F. Sproull
Principles of Interactive Computer Graphics 1st
Edition, McGraw-Hill 1973 pp. 123-124.

[POULTON85] Poulton, John, Henry Fuchs, John D. Austin,
John G. Eyles, Justin Heinecke, Cheng-Hong Hsieh,
Jack Goldfeather, Jeff P. Hultquist, Susan Spach
PIXEL-PLANES: Building a VLSI-Based Graphic
System Proceedings of the 1985 Chapel Hill
Conference on VLSI Computer Science Press pp.
35-60.

[SAMET84] Samet, Hanan The Quadtree and Related
Hierarchical Structures. ACM Computing Surveys,
16, No. 2 June 1984 pp. 187-260.

[SLOAN79] Sloan, Kenneth R., Jr., and Steven L. Tanimoto
Progressive Refinement of Raster Images. I E E E
Transactions on Computers, c-28, No. 11
November 1979 pp. 871-874.

[STRAUSS84] Strass, P., M. Shantis, and D. Laidlaw SCEFO:
A Standard Scene Format for Image Creation and
Animation. Brown University Graphics Group Memo,
1984.

[VANDAM86] Van Dam, A. Personal communication. 1986.

[WHITTED80] Whitted, Turner An Improved Illumination
Model for Shaded Display. Communications of the
ACM, 23, No. 6 June 1980 pp. 343-349

34

Dallas, August 18-22 Volume 20, Number 4, 1986
I m i l l !

Figure 4: User with image after vertex-display phase.

Figure 5: 10% of vertices displayed at -1Hz. update rate. Figure 6: All 8,029 vertices displayed.

Figure 7: User with image after "flat-shaded polygons" phase.

35

/ / ~. S I G G R A P H '86

Figure 8: Image after "flat-shaded polygons" phase. Figure 9: "Cost image" showing computation cost at each
pixel for generating Figure 8.

Figure I0: Image after "Gouraud-shaded polygons" phase.
Figure 11: "Cost image" showing computation cost at each
pixel for generating the image of Figure 10. Recall that Gouraud
shading is performed on a polygon only if the intensity
difference among its vertices exceed the user-defined threshold.

Figure 12: Image after "Phong-shaded polygons" phase.
Figure 13: "Cost image" showing the computation expense at
each pixel for generating Figure 12. In this case, the
user-defined threshold for proceeding with Phong shading
passed about 50% of the front-facing polygons.

36

Dallas, August 18-22 Volume 20, Number 4, 1986

Figure 14: Rendering of the UNC "Old Well" through the
Phong-shading phase. 125,459 pixels rendered within the 400
x 400 pixel image.

} i '

Figure 15: Extreme closeup of one of the column bases
showing the deleterious effects of simple, non-anti-aliased
rendering.

Figure 16: Anti-aliasing map of Figure 14, showing the
13,037 pixels (about 10% of those originally rendered) that will
receive anti-aBasing computations.

Figure 17: Extreme closeup of the anti-aliasing map, showing
same area as Figure 15.

Figure 18: Image of Figure 14 after anti-aliasing computations
on the pixels shown in Figure 16. These computations generated
50,722 fragments for the A-buffer -based anti-aliasing.

Figure 19: Extreme closeup of Figure 18, showing the same
area as Figures 15 and 17.

37

