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related processing, it is sufficiently simple that, in
our current layout, the total silicon area is only
about double that of unenhanced memories.
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a smart memory-based raster graphic system ! gq. A 1 &5
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These chips identify the pixels that are inside each
polygon, identify the subset of these pixels
unobstructed by previous polygons. and smoothly
color the visible pixels.
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Two versions of Pixel-planes have been designed
and fabricated. The first. Pixel-planes I. was a very
simple version. a mere 4 pixels per chip. The
second. shown in Figure 1. is a more extensive
version, with a compact layout containing 64 16-bit
pixels. Testing is under way.
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Figure 1

Photomicrograph of Pixel-planes 11
(Melgar Photographers).
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Image Generation Overview

The rapid generation of realistic images of 3D
scenes has been one of the central problems in
computer graphics since the mid-1960's [Newman
and Sproull, 1979]. In this section we give a brief
overview of this problem.

The canonical steps for generating such an image
are shown in Figure 2. The data base contains a
scene description of one or more objects, each of
which is described by a set of convex polygons that
approximates its surface. Polygons are processed
sequentially in any order. Each polygon is
described by a sequence of vertices whose X,y,z
coordinates are in the ‘world" coordinate system.
Associated with each vertex is the triple R,G,B
specifying the color of the polygon at that vertex.
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Figure 2
Digital Scene Generation
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Processing of a polygon begins with the
coordinates of its vertices being transformed to the
coordinate system associated with the current
viewing position and direction. The polygon is
then clipped to the viewing pyramid., eliminating
portions of the polygon outside the field of view.
Next the transformed and clipped polygon, now in
viewing coordinates, is scaled for an appearance of
perspective and re-expressed in the coordinates of
the display device.

Lighting calculations are performed in which the
precise color at each vertex is calculated, based on
the direction and distance to the light source(s), the
(original) vertex color. surface reflectivity, and
perhaps other factors. These calculations result in
a new R.G,B triple for each vertex representing the
light reflected by the object toward the viewer.

Finally the visibility calculations need to be
performed. These are the most computationally
intensive steps. These calculations must find the
polygon that is visible at each pixel in the image.
The shading and color of each pixel is then
computed from the color of the vertices of the
appropriate polygon.

The computational burden of visibility and pixel
calculations is so formidable that real-time systems
that need these capabilities, such as the digital
scene generators in flight simulators, sell for $1M.
The systems that don’t need them. such as the
vector or “calligraphic™ systems, can be sold for
$50K. The goal of the Pixel-planes system is to
utilize the potential of VLSI technology to
overcome this bottleneck [Mead and Conway,
1980].

Pixel Calculation Algorithms

Pixel-planes is designed to interface to a graphic
host that performs the geometic transformations,
clipping. perspective, and lighting calculations on
each polygon before passing it to Pixel-planes.
Thus the input to Pixel-planes is a set of polygons
in image space.

The visibility calculations can be structured in
many different ways; there is a sizable literature of
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Figure 3: Enable flags and f(x.y) values during early phases of processing a polygon.
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c) Enable flags and Zmin values
after visibility calculations for
current polygon.

¢) Image buffer after current
polygon’s processing.
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work on the problem (e.g.. [Sutherland, et al.,
1974), [Parke., 1980]. [Weinberg, 1981], [Whitted,
1981]). We have structured our approach to fit
easily into existing graphic systems and to be able
to handle complex scene descriptions — ones with
arbitrary many polygons. Such a goal argues for
an approach in which polygons are processed
sequentially and the image built up incrementally,
rather than an approach in which the polygons are
all buffered. sorted and the image generated all at
once.

Further, this polygon-at-a-time approach dictates
an image buffer (““frame buffer”) in which the
image is built up as the polygons are processed.
Pixel-planes not only includes an image buffer, but
enhances it with sufficient processing circuitry to
do virtually the entire visibility and pixel painting
process in the image buffer,

The steps needed to process each polygon are
a) identify all pixels that lie within the polygon,

b) determine the subset of visible pixels. that is,
those not obstructed by some previous polygon,
and

¢) determine the proper color for each visible
pixel.

The spced of Pixel-planes is achieved by having all
these operations performed at every pixel
simultaneously, The preprocessor receives the
polygon, and broadcasts a series of commands to
the “smart” image buffer. This image buffer
consists of the array of pixel cells, each of which
contains

1) the usual image memory for the RGB color
values,

2) a register Zmin whose value is the distance of
the closest polygan so far encountered at this
pixel,

3) a one-bit Enable flag: this is set at the
beginning of each polygon’s pixel processing
and it may be cleared during various stages of
the pixel processing. A pixel stops responding
to most commands except Reset once its Enable
flag has been set to 0,

JANUARY 27, 11:00 A.M.

FUCHS et al.

4) a one-bit comparator circuit, and
5) a one-bit full adder.

The central simplification is that all the above three
steps can be performed by computing variations of
the expression f(x,y) = Ax+By+C in which x,y is the
address of a pixel in the image.

The above three steps, a. b, ¢, are achieved by the
following computations:

a) To determine the pixels that are inside the
current polygon. the preprocessor broadcasts
the coefficients A,B.C for each edge of the
polygon. Any negative f(x,y) sets its pixel's
Enable flag to 0. Since each polygon is convex,
a pixel is inside if and only if f(x,y) is positive
for all edges. Operationally. a pixel is inside a
polygon if and only if its Enable flag is 1 after
all the edges have been broadcast (Figure 3).

b) To determine the visible pixels. the
preprocessor broadcasts the coefficients of the
plane of the current polygon, ie.,
z=1f(x.y)=Ax+By+C. Each pixel whose Enable
flag is still 1 compares its f(x,y) with the value of
its Zmin register. The pixel is visible if and
only if f(x,y) < Zmin. Enabled pixels with
fix,y)>=Zmin set their Enable flag to 0. The
preprocessor rebroadcasts the 7 coefficients, A,
B, C, so that the still-enabled pixels can store the
new Zmin values (Figure 4).

¢) To determine the proper color for each pixel
the preprocessor broadcasts three sets of
coefficients, one for each primary color
component, so

Red=fu(xy)=Ax+By+C,,

Green = fy(x,y)=Agx + Bgy + Cg,

Blue= fip(x,¥) = Apx + Bpy + Cb'
The pixels already found to be visible, that is,
ones with Enable =1, store the new RGB values.
This process can achieve not only “flat” shading
of polygons but also a limited version of
“smooth™ shading in which the rendering of
adjacent polygons is blended to give a smooth
rather than a faceted appearance [Gouraud,
1971] (Figure 5).

1982 CONFERENCE ON ADVANCED
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Pixel-planes Design

A naive implementation of the above concepts
would have a multiplication and summation unit at
each pixel. Fortunately there is a more compact
way to implement the needed computations
without significant loss of processing speed.

Figure 6a illustrates our basic computing structure,
a node of a binary tree with a extra input coming
from the side. similar to a serial multiplier [Lyon,
1976]. Both inputs and both outputs are bit-serial
and synchronous with the system clock. The left
descendent-is the top input with a one clock cycle
delay. The right descendent is the delaved sum of
the top and side inputs. The node contains a carry
flag so the two input values can be added in bit
serial fashion.

With C = ¢y, ¢g.1. ... €1. ¢o. input to the top and
A = ay, a.]. ... @), ap. input to the side, the left
descendent produces C, the right descendent
produces A+C. If we precede A with a single zero,
in effect making it 2*A. the right descendent
produces 2*A+C. If we combine three such nodes
into a two-level tree as in Figure 6b. we obtain
from the four output nodes, starting from the left-
most node, C, A+C,2A+C, 3A+C. If we build such
a tree to n levels. input C on top and n-1 0's
followed by A on the side, the 2™ outputs produce
C, A+C, 2A+C, .., 2"™DA+C.

Let us now consider the 2D grid of pixel cells
forming the “smart” image memory. We place a
binary tree of the above design above this grid with
an output line above each column of pixel cells
and run the line down through the columm. We
note that if the pixel x.y addressing starts with 0 at
the lower left pixel, the vertical line through each
pixel contains the value Ax+C — although, of
course, we have not input anywhere.

We place another copy of such a “multiplier” tree,
rotated 90° counter-clockwise, to the left of the
pixel array with a sequence of 0s input to its root
and coefficient B=by, by.1.....b},b. preceded by n-1
0's. input to its “side”. We run each output line
horizontally through each row of pixel cells. The
value on the horizontal lines. starting from the
bottom one, will be 0, B, 2B, 3B, ..., 2"-1)B. If we

1982 CONFERENCE ON ADVANCED
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one-hit time)
a Figure 6 b

A multiplier tree
from one-bit serial adders

connect the horizontal and vertical lines running
through a pixel cell to the inputs of the one-bit
adder, its output will be (Ax +C)+ By. the value we
need for all our computation steps (Figure 7).

In summary then, the components of the design
are

1) The preprocessor,
2) The X- and Y-multiplier trees, and
3) The smart image memory pixel cells.
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Figure 7

Calculating Ax + By + C
with two multiplier trees
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Implementations

The first chip (Pixel-planes 1) implementing these
ideas was designed in December 1980 and
fabricated in mid-1981. Figure 8 is a photo of that
chip. It contains 4 pixels in a 2x2 array with single
level X and Y trees on the top and left sides. Each
pixel contained a one-bit serial adder, a one-bit
comparator. an Enable bit and four 4-bit registers:
Z. Temp, and two image registers for double-
buffering.

Figure 8
Photomicrograph of Pixel-planes |
(Melgar Photographers).

Making the Implementation Practical

The main deficiency of Pixel-planes 1 was the
mefficient utilization of silicon area: not only were
all the memory elements shift registers, but most of
the combinational logic was implemented with
PLA's and the sequential logic with PLA-based
finite state machines. To make this design practical
it had to compare favorably with current systems,
those using large-scale dynamic RAMs. Rather
than refine the first implementation, we modified
the coriceptual design as suggested in [Fuchs and
Poulton,  1981]. To understand  these
modifications, let us consider, for example, the
basic organization of a 4x4 pixel system (Figure 9).
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A 4 x 4 pixel system

We first switch C to come through the top of the
Y-multiplier tree rather than the X-multiplier tree,
a minor change. We next replicate the X-
multiplier tree so there is one for each row of
pixels. as in Figure 10.

Y Muluplier Tree

HH
HH

Figure 10
4 x 4 Pixel system
with duplicated X-multiplier trees
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By reorganizing the multiplier trees. the adder can
be removed from the pixel cells. Since all pixels
within the same X-multiplier tree are adding the
same value on their horizontal line, we take each
horizontal line and connect it to the top of its own
X-multiplier tree, as in Figure 11. The bits of A
have to be input later than those of B and C to
compensate for the travel time of By+C through
the Y-multiplier tree. We next reorient the X-
multiplier trees and their associated pixels so the
entire system fits into a single column, as in Figure
12

B X Multiplier Trees

T
]
S e g e
@05 e |
—
(e O i
6 i Bl B S |
Figure 11

Rerouting Y-tree output to \-tree roots
to eliminate the adder in each pixel cell

We now have a single one-dimensional tree that
achieves a 2D 4x4 configuration by having the A
coefficient (instead of B) going into the adders at
the two lowest levels of the tree. In general, the
configuration is determined by the selection of the
coefficient for each level of the tree. (For instance,
an 8 column by 2 row configuration is achicved by
having A used at the lowest three levels of the
tree.) Each adder now selects one of the two
coefficients either by having one or the other
“wired in" or according to the value of an
“ABselect” flag.

The multiplier tree is implemented in a single
column of nodes with the two outputs on the same
side as the top input. as in Figure 13.
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Fortunately the number of non-terminal nodes in a Pixel-planes 11 Device Specifications
binary tree is one less than the number of terminal i

nodes. so we can place an adder next to each pixel Pixel Cells: 64 _
cell. ~ The pixel cell now contains only a Internal Memory: 1K dynamic RAM -
comparator, the Enable flag and the pixel memory 16 bits per Pixel Cell

for RGB and Zmin. Since all the operations are Clocking: 2-phase with precharge
performed in parallel. all control lines run Estimated Static Power: 130mW @ 5.0 VDC

vertically through the entire circuit. _ _ (no pads)

Project Size: 1380Ax2819A, 2.7x5.6 mm
Figure 14 shows the general layout of our latest (A=2.0p)
design. Pixel-planes II. and Figure 1 is a Project Area: 15.6 sq mm

photomicrograph of this chip.

Future Enhancements

T T
L Two aspects of the design still need to be specified
— — - 4 before a full-scale system using Pixel-planes can be
built by
:' ) implementing the system with multiple
! chips, and
! fiwignn iy b) generating output to a standard video
::E Olves display.
i < =z O|Btout Implementing the system with multiple chips
| Lo . 20 §§ O|strips . . . . .
| 88 g,g &% Implementing a multi-chip version of Pixel-planes
| 22 3 Ojstries appears straightforward because the link between
' O|strips pixels is the multiplier tree. Since this link
WILAN 1NYI 0O |strip2 involves only a one-bit adder at each level of the
O lswor tree, we _repllca_te a ‘_‘path" of the connecting tree in
each chip, as in Figure 15
E1|stripo
0 |Read This path involves either a delay or a one-bit adder
Ol wrie at each level. depending on the location of the chip
i nu in the interconnect tree. The conceptual
Ofno realization of this on each chip is a row of the
—— — —— Oja regular tree nodes. with a bit of a register selecting
T O]az one or the other of the output branches for the
",:‘%) 0(as next level's input (Figure 16).
o
o Olcna The composite value in these one-bit registers
Ooo0oDOoooooon specifies the x.y location of the chip's pixels in the
S¥ 3z F o290 ¢ 3 overall image. This then is the address register of
- 2% g § the chip. During system initialization. both this
g § g g address register and the ABselect flags are loaded
® into each chip to determine the configuration of
Figure 14 the individual pixels in each chip as well as the
Pixel-Planes II floorplan. position of each chip in the overall image.

1982 CONFERENCE ON ADVANCED
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Figure 15
Interchip tree connecting an 8-chip system

(=1 [ Address Register )

C u u
u u
@ ABselect flags
A
B
Figure 16

Chip address configuration control

Scan-Out Circuitry

The main timing constraint of all video graphic
systems is the need to refresh the video screen at
no less than 30 Hz. We foresee that chips in a
large multi-chip system will each be configured as
one tall column, an M by 1 pixel region. The
advantage of this configuration is that during any
one scan-line interval on the display, only one
pixel is needed from each chip.

1982 CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.L.T.

145

Meeting this requirement of reading out one pixel
from each chip in approximately 63uS is not
difficult, and we are currently considering a
number of feasible alternatives.

Relation to Other Work

A number of systems have been constructed over
the years for digital image generation. The
commercial visual simulators of Evans and
Sutherland. General Electric. and Singer-Link are
each physically (and financially) immense systems
with significantly more capabilities than the
current  Pixel-planes; many of them allow
transparent polygons, perform anti-aliasing and
simulate fog effects, for instance. We are working
on including some of these effects in future
versions of Pixel-planes.

In the realm of VLSI design for 3D graphics.
James Clark’s “Geometry Engine™ [Clark, 1980,
and Marc Hannah and Clark’s Image Processors
[Clark and Hannah. 1980] are designs that have .
been implemented. The Geometry Engine, being
a transformation unit. would fit well into Pixel-
planes, sitting between the graphic data base and
the preprocessor. Their image processors,
however. perform some of the same basic functions
as Pixel-planes. but with fewer units. They
generate lines and polygons in a sequential fashion
similar to the distributed multi-microprocessor
system described in ([Fuchs. 1977]. [Fuchs and
Johnson. 1979]). These designs are a significant
improvement over single processor image
generation systems, since each of the many
processors can work largely independently. Since
there may only be a few dozen processors in the
system, however, each one is responsible for
thousands of pixels and as such. larger polygons
lake longer to process. The system may not be
able to keep up with the transformation module
pipeline.

A recent design for an image processing (in
contrast to image generating) machine [Blank et al.,
1981] bears some similarities to the distributed
processor nature of Pixel-planes. It is a SIMD
(Single Instruction. Multiple Datastream) machine
with a processor at every pixel and connections to
its four neighbors. It differs from Pixel-planes in
that it needs these connections for access to its

JANUARY 27, 11:00 A.M.
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image data, thereby constraining both the physical
layout of cells and the pinout as increasing number
of cells are integrated into a single chip. Its
processing task needs different capabilities for
image processing, so the simple multiplier trees of
Pixel-planes do not suffice for the processing
circuitry,

Summary

We have described a raster graphic system for
solving  the  long-standing computational
bottleneck in the real-time digital image
generation pipeline — the visibility and pixel
painting calculations. The key concepts are

1) each pixel in the buffer can be enhanced
with processing circuitry for doing most of its
own processing,

2) the processing circuitry at each pixel can be
simplified by formulating all the computations
as Ax+By+C for pixel address x.y,

3) calculating Ax+By+C at all pixels can be
done easily with a binary tree of one-bit adders,

4) the entire smart image buffer can be folded
into a standard dynamic RAM array design by
considering a pixel to be a column of bits in
many words rather than a selected word within
the RAM array,

5) multiple chip systems can easily be
constructed out of identical chips by replicating
on each chip a small amount of connecting

circuitry.
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