
DISTRIBUTING A VISIBLE SURFACE ALGORITHM OVER MULTIPLE PROCESSORS* 

Henry Fuchs 
The University of Texas at Dallas 

Richardson, Texas 

ABSTRACT 

Described is a procedure for executing a visible surface algorithm in a new multi-microprocessor system 
which utilizes distributed image and depth ("Z") buffers. It is shown that despite image distribution over 
a large number of processing and memory units, object coherence can still be maintained and used to reduce 
the number of calculations needed to generate a continuous-tone visible surface image. 

Key words and phrases: Visible surface algorithms, multi-processing, microprocessors, three-dimensional 
computer graphics 

CR Categories: 8.2, 6.22, 6.35, 4.32 

INTRODUCTION 

Visible surface algorithms which generate contin- 
uous-tone, most often video, images have always 
been computationally expensive. It is easy to see 
why this is so. Such an algorithm has to calculate 
an appropriate intensity value for each picture 
element ("plxel") in the image array. 

In order to do this, it first has to determine 
which object in the scene is closest to the 
viewer of all the objects which cover that particu- 
lar pixel. (It is this closest object which will 
be visible and will obscure any objects behind it.) 
Once this closest object is found, the intensity 
of the plxel is calculated, based on i) the shade 
assigned to that closest object surface, 2) the 
angle of the surface to the viewer, and 3) the 
illumination to the object surface. (This proce- 
dure is most lucidly explained in Blinn (1976).) 

To find the object which is closest to the viewer 
at a particular picture element, all the object 
definition components -- usually planar tiles 
("polygons") -- are sorted, in order, along all 
three axes: X and Y, the horizontal and verti- 
cal directions in the image, and Z, the distance 
away from the image. Sutherland (1973) has 
classified many of the major visible surface 
algorithms based largely on the order of the 
axes in which this sorting is performed. The 
classic algorithm by Watklns (1970), for example, 
uses a Y, X, Z sort, first sorting all the object 
polygons along Y -- from top to bottom of the image, 
according to the tops of each polygon, then for all 
the polygons which intersect a particular Y value 

This work was supported in part by NSF Grant 
MCS-77-03905 

(a scan line) it sorts along X, left to right, by 
the position at which each polygon first "appears." 
~len, for a particular X value of interest along 
the scan line, it sorts by Z all polygons which 
appear there, from front to back. The polygon 
at the head of this list is the one visible at the 
particular plxel at this X,Y location. 

Sutherland (1973) notes that the major efficiency 
gained by these algorithms is the reliance on a 
high degree of picture coherence; that is, the 
structure and appearance of the image at a given 
pixel or line is almost always very similar to its 
structure and appearance at an adjacent pixel or 
line. ~lis fact, together with the ease of up- 
dating the sorted list values at the previous 
pixel or line, allows the closest-object sort to 
be executed not from the beginning at each plxel, 
but simply as a modification of the sort's result 
at a previously calculated adjacent pixel or line. 
In general, for a Watkins-type algorithm (as well 
as for the one to be described below) this update 
consists of I) updating all the polygon elements 
in the sorted list from the previous pixel to ob- 
tain each element's Z value at the new pixel loca- 
tion, 2) culling this sorted list to remove all 
those polygons for which a terminal edge has been 
encountered and which thus do not appear in the 
current pixel, and 3) merging this culled, but 
still sorted list with the sorted list of all 
those object polygons which have an entering edge 
here and thus begin to appear at this current 
plxel. Minimizing the number of steps in this 
update process is crucial to the effectiveness of 
the resulting algorithm. It will be shown that 
the new distributed algorithm can also perform 
such efficient updating, and in fact needs to up- 
date only a single polygon at any one time. 

449 



level of complexity. Once the particular threshold 
is exceeded, the hardware cannot keep up with the 
video scan, and the resulting image degrades rather 
rapidly. 

This distributed algorithm, since it generates 
the image into a buffer, never suffers from image 
degradation, it may simply take longer to complete 
a more complex scene than a less-complicated one. 
Further, if high speed image generation is desired, 
with the last completed image in one half of each 
memory unit constantly being accessed by the video 
scan generator, while the new image is created in 
the other half of the memory unit. A single 
system line could be utilized to switch between 
the two halves whenever the entire scene -- i.e., 
all the polygons -- were completed. 

If the scene complexity were found to cause execu- 
tion time to be longer than desired, the system 
could be reconfigured with additional processing 
elements. The new configuration, with fewer 
memory units attached to each processing element, 
would execute precisely the same algorithm, but 
taking less time to process each polygon, thus 
less time to process the entire scene. Alternate- 
ly less expensive configurations could be con- 
structed with fewer memory processing modules, 
with a resulting sacrifice in speed of execution 
and/or spacial resolution. Thus it may now be 
possible to have the same basic architecture, as 
well as identical software, and thus basic compati- 
bility between the large, fast real-time systems 
and the desk-top terminals in offices and labora- 
tories. 

ACKNOWLEDGEMENTS 

The author wishes to thank Brian Johnson for many 
helpful discussions, and David Rowe for implement- 
ing the initial designs of the memory and process- 
ing units. 

REFERENCES 

[1] Blinn, J. F., and Newell, M. E. Texture and 
reflection in computer generated images. 
Con. ACM 19, I0 (October 1976), 542-546. 

[2] Catmull, E. A. Computer display of curved 
surfaces. Proc. Conf. on Comptr. Graphics, 
Pattern Recognition, and Data Structure, 
May 1975, pp. 11-17 (IEEE Cat. No. 75CH0981- 
iC). 

[~] Fuchs, H and Johnson, B. W. A multi-micro- 
processor system for video graphics. Tech. 
Pep. MMS-31, Mathematical Sciences, U. of 
Texas at Dallas, Richardson, Texas, September 
1977. 

[4] Sutherland, I. E., Sproull, R. F., and 
Schumaker, R. A. A characterization of ten 
hidden-surface algorithms. Computin$ Surveys 
~, i (March 1974), 1-55. 

[5] Watkins, G. S. A real-time visible surface 
algorithm. Tech. Pep. UTEC-CSC-70-101, Dep. 
Comptr. Sci., U. of Utah, Salt Lake City, 
Utah, June 1970. 

Host CPU 

Central I 
Broadcast 
Controller 

Processing Image & Z 
Elements Buffers 

video 
I Scan 
Generator 

Figure i: Distributed System Architecture 

Processing Elements 

Image Buffers 

Pixel Arrangements 

IA 

5E 

3C 

7G 

IA 

5E 

3C 

7G 

2B 9A 10B 

6F 13E 14F 

4D IIC 12D 

8H 15G 16H 

2B 9A 10B 

6F 13E 14F 

4D IIC 12D 

8H 15G 16H 

(each square=l pixel) 

Video 
Scan 
Generator 

Figure 2: Image Interlacing 

45o 



The algorithm for the new distributed system is 
most similar to a "Z buffer" algorithm, as des- 
cribed by Catmull (1974). Such an algorithm uses 
two buffers, each containing a cell for each pixel 
in the image: the "image" or "frame" buffer con- 
tains the intensity of the image at each pixel, the 
other, the "Z" buffer contains at each pixel the 
distance from the viewer of the closest object sur- 
face which has so far been encountered for that 
particular pixel. The "image" buffer is initialized 
to some arbitrary background intensity -- usually 
white or black. (Generalizations to color images 
are not included in this discussion, but they are 
straightforward.) The Z buffer elements are each 
initialized to the maximum possible value. In 
this algorithm no sorting is necessary; rather, the 
polygons can be treated individually, in any order. 
For each polygon, each pixel which is covered by 
the polygon is considered. The Z value of the poly- 
gone at this pixel is calculated. It is compared 
with that pixel's current value in the Z buffer. 
If the new polygon's value if greater, then there 
must have been a previous polygon which covered 
this pixel which was closer to the viewer; so 
processing of tile current polygon at this pixel is 
aborted and processing continues with the calcula- 
tion of the polygon's Z value at the next pixel. 
If, however, the new polygon's Z value is smaller 
than the value in the Z buffer, then this new poly- 
gon is closer than the closest previously encounter- 
ed one; thus, l) the new polygon's value is stored 
in the Z buffer, and 2) an intensity for this 
polygon's surface at this pixel is calculated and 
stored in this pixel's image buffer. After all the 
pixels covered by the current polygon are consider- 
ed, another polygon is processed. After all the 
polygons have been processed, the Z buffer contains, 
at each pixel, the distance of the closest poly- 
gonal surface at that pixel, and the image buffer 
contains the intensity of this closest -- and thus 
visible -- surface. 

SYST~I~ ARCHITECTURE AND ALGORITHM STRUCTURE 

The multi-processor system on which the algorithm 
is to be implemented is based on a variable number 
of processing elements and a variable number of 
memory units over which the image and Z buffers 
are distributed. The system architecture and im- 
plementation are described in detail in Fuchs and 
Johnson (1977). In this paper only those details 
necessary to understand the algorithmwill be 
described. 

The system (see Figure i) consists of a number of 
processing elements -- usually a power of 2 -- 
and a number of memory units, usually some power 
of 2 multiple of the number of processing elements, 
some of which make up the image buffer, and others 
which make up the Z buffer. The spatial resolu- 
tion desired for the image determines the number 
of memory units which are needed. The image buffer 
memory units are dual ported with alternate accesses 
allocated to the video scan generator which con- 
stantly displays onto a video monitor the current 
contents of the distributed image buffer. The re- 
maining memory cycles can be utilized by the pro- 
cessing element connected to the memory unit. 

Each processing element contains a CPU, local 
program and data store and is connected to some 

number of memory units. All the processing ele- 
ments simultaneously receive data, in the form of 
polygon vertices, from the central broadcast con- 
troller which is the system's sole interface with 
the host computer. Upon receiving a polygon's 
definition, each processing element performs a Z 
buffer-like algorithm on the parts of the image 
which are covered by this polygon and are under 
the processing element's control. When a process- 
ing element has completed its calculations for the 
current polygon, it signals the central broad- 
caster by raising the value on a one-bit output 
"done" line. This line, controlled by an open- 
collector gate at each processing element, will 
only go high after all the processing elements 
have signalled "done." Since a polygon will 
generally occupy a slightly different number of 
pixe@~in the various processing elements' buf- 
fers, the processing completion times will be 
staggered. When the broadcast controller detects 
that the "done" line has gone positive, it will 
begin to transmit the vertices of the next polygon 
to all the processing elements. This over-all 
sequence is repeated until all the polygons have 
been processed and the entire image generated. 
(Slightly less overall waiting may occur between 
transmission periods if more than one polygon 
description is transmitted at one time. The poly- 
gons are then stored by each processing element 
in its local memory and processed in sequence, 
with the processing element signalling "done" only 
after completing all the polygons.) 

Clearly the execution time of this system is de- 
pendent on the number of steps needed by the most 
burdened processing element for a particular poly- 
gon. Therefore the processing elements and their 
associated buffers have been interlaced according 
to the lowest bits of the X and Y image addresses. 
Figure 2 gives a sample organization of an 8-pro- 
cessor, 16-image-memory system and its image 
interlacing scheme. Since no two adjacent pixels 
are located in the same buffer and since no two 
buffers with adjacent pixels are assigned to the 
same processing element, it is easy to see that 
all polygons greater than one pixel in size will 
be processed by more than one processing element. 
In general, if a polygon encloses a square region 
of some modest size -- whose area is approximately 
the number of processing elements -- then all the 
processing elements will be guaranteed to partici- 
pate in the polygon's pixel calculations. 

The regularity of the interleaving pattern allows 
the system to retain the advantages of picture 
coherence discussed in the introduction. Thus a 
processing element can calculate its own next 
candidate pixel by simply updating its current 
pixel's X, Y and Z values with increments which 
are standard for the entire system. 

This kind of system has the additional advantage 
that it doesn't fall into the usual rigid dichoto- 
my of real-time or non-real-time implementations. 
Current systems tend to fall into one of those two 
categories because software implementations are 
usually much tooslow for real-time (1/30 second) 
image generation and thus only very specialized 
hardware systems can perform image generation "on 
the fly." Even these systems, however, can only 
perform with such speed for scenes under a certain 

451 


