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A B S T R A C T  

We present  two Mgorithms for the display of CSG- 
defined objects on Pixel-Powers,  an extension of the Pixel- 
Planes logic-enhanced memory archi tecture,  which calcu- 
lates for each and every pixel on the screen (in parallel) the 
value of any quadrat ic  function in the screen coordinates 
(x ,y) .  The  first a lgor i thm restructures  any CSG tree into 
an equivalent,  but  possibly larger, tree whose display can 
be achieved by the second algori thm. The second algori thm 
traverses the res t ructured tree and generates quadrat ic  co- 
efficients and opcodes for Pixel-Powers. These opcodes in- 
s t ruc t  Pixel-Powers to generate the  boundaries  of pr imit ives  
and perform set operat ions using the s tandard  Z-buffer al- 
gori thm. 

Several external ly-suppl ied CSG da ta  sets have been 
processed with the new tree- t raversal  a lgori thm and an as- 
sociated Pixel-Powers s imulator .  The  resulting images in- 
dicate tha t  good results can be obta ined very rapidly with 
the new system. For example,  the commonly used MBB 
test  pa r t  (at right) with 24 pr imit ives  is t rans la ted  into ap- 
proximate ly  1900 quadra t ic  equations.  On a Pixel-Powers 
system running at 10MHz (the speed at which our current  
Pixel-Planes memories run),  the  image should be rendered 
in about  7.5 milliseconds. 

M B B  t e s t  p a r t  f r o m  P i x e l - P o w e r s  s i m u l a t o r .  
The  Pixel-Powers graphics sys tem should render  this image 
in 7.5 milliseconds. 

C R  C a t e g o r i e s  a n d  S u b j e c t  D e s c r l p t o r s :  1.3.1 
[ C o m p u t e r  G r a p h i c s ] :  Hardware  A r c h i t e c t u r e -  raster 
display devices; 1.3.3 [ C o m p u t e r  G r a p h i c s ] :  P ic tu re / -  
Image Generat ion - -  display algorithms; J.7 [ C o m p u t e r  
A p p l i c a t i o n s ] :  Compute r -Aided  Engineering - -  
computer-aided design; 
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I .  I n t r o d u c t i o n  

We are designing Pixel-Powers,  an enhancement  of the 
Pixel-Planes graphics sys tem [2I[6], by replacing the mul- 
t iplier  tree tha t  evaluated linear expressions by one tha t  
evaluates quadrat ic  expressions [3]. This Quadra t ic  Ex- 
pression Evaluator  (QEE) is used to evaluate expressions 
of the  form A x  2 + B x y  + Cy  ~ + D x  + E y  + F simultaneously 
for each pixel ( z ,y )  on the screen. We es t imate  tha t  the 
QEE will calculate bi t-sequential ly a 30 bit  value of this 
expression for each and every pixel on the  screen in under 
4 microseconds. The speed at  which Pixel-Powers will ren- 
der convex polyhedra ,  as well as smooth-shaded cylinders,  
cones, and ellipsoids, has led us to explore the possibi l i ty 
of using Pixel-Powers for real-t lme rendering of smooth-  
shaded Construct ive Solid Geometry  objects constructed 
from quadra t ic  primit ives.  A CSG object  is defined by 
s ta r t ing  with  a set of solid pr imit ives and construct ing an 
expression tree in which the leaves are pr imit ives and the 
non-leaf nodes are set operat ions.  The CSG object is con- 
s t ruc ted  recursively by performing 'each set opera t ion  on 
the objects  defined by its left and right subtrees [7]. 
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In this paper  we describe a general method  for display- 
ing any CSG object using a frame buffer tha t  is 128 bi ts  
deep. Our  method  differs from other CSG display methods  
[1] in tha t  we compute  on the fly the boundary  representa-  
t ion of each pr imi t ive  in terms of the viewpoint .  While this 
can be a d isadvantage in some systems, we will show how it 
can be implemented efficiently in Pixel-Powers by making 
use of the Quadra t ic  Expression Evaluator  and the general 
paral le l ism of the  system. In par t icular ,  we will describe an 
a lgor i thm for fast rendering of smooth-shaded CSG objects  
based on quadrat ic  primitives.  Our approach,  paral lel  on 
all pixels but  processing CSG primit ives sequentially, con- 
t ras ts  with another  sys tem by Kedem [4] tha t  allocates a 
processing element  for each pr imit ive  and renders the im- 
ages sequential ly by pixel in raster-scan order. 

Jus t  as in the  development  of the Pixel-Plaues system,  
we have implemented  software simulators  tha t  enable us to 
develop display algori thms before the actual  chip is com- 
pletely designed and commi t ted  to silicon. All of the images 
in this paper  are from the Pixel-Powers s imulator .  

I I .  A S i m p l e  E x a m p l e  

In this  sect ion we describe a method  for displaying any 
CSG object  with the  aid of a deep frame buffer. The present  
working Pixel -Planes  sys tem has a 72 b i t  deep frame buffer. 
A Pixel-Powers sys tem with  a depth  of 128 bi ts  was our 
model  when we were analyzing the problem,  b u t  the  al- 
gor i thm should be  implementable  in any compute r  with a 
deep frame buffer. The  memory  requirements  are: 

• Three  flag registers: F1,  F2,  and F3 
(one bi t  each) 

• Two depth  buffers: Z T E M P  and ZMIN 
(20-30 bits  each) 

• One color buffer: C O L O R  
(24 bits)  
(If double buffering is desired, 
two color buffers are needed.) 

We defer unt i l  Sections III  and IV the discussion of 
the par t icu la r  Pixel-Powers implementa t ion  of these algo- 
r i thms for CSG objects  defined wi th  convex pr imi t ive  solids 
whose bounda ry  surfaces can be defined using quadra t ic  or 
l inear equat ions in x, y, and z (e.g. cylinders,  ellipsoids, 
and cones). In this section we outline a general  me thod  of 
display tha t  will work for any set of convex primit ives and 
any display sys tem tha t  can do bo th  of the  following: 

(a) Scan convert  front- and back-facing surfaces of each 
pr imi t ive  in screen space. T h a t  is, a flag F at  each pixel can 
be set to 1 if it is inside the  region on the screen de te rmined  
by the project ion of the  surface on the screen. Note tha t  the  
front  and back face of a surface depends on the viewpoint .  
The  front  surface of a cyl inder  consists of all points  on the 
cyl inder  surface (including the ends) which face toward  the 
viewer. 

(b) Calculate  and store in each pixel memory wi th  F = i  
the depth  and color values of the  front- or back-facing sur- 
faces of a pr imit ive.  

In Section III, a general  a lgor i thm is derived based only 
on the  assumpt ions  (a) and  (b) above. We i l lustrate the 
ideas behind this a lgor i thm by examining the simple cases 
of union, difference, and intersect ion of two cylinders.  

II.a. Cylinder1 U CylinderP 

This is d isplayed by applying the s tandard  Z-buffer al- 
gori thm. If Front(ob3) denotes the (viewpoint dependent)  
visible pa r t  of an object ' s  surface, then Front(Cylinder1) 
will, in general ,  be the  visible par t  of the curved por t ion  
of the  cyl inder  together  wi th  one of the  two p lanar  ends. 
We begin by calculat ing the Z values and color values of 
Front(Cylinder1) and storing them in ZMIN and COLOR.  
Since la ter  in this paper  we will be decomposing more com- 
p l ica ted  objects  into unions of s impler  ones, we will describe 
carefully how Cylinder2 is added to the par t ia l  image: 

S t e p  1: At  each pixel,  set the f i a t  F1 if it is inside the  
region de te rmined  by Front(Cylinder2), and clear it other-  
wise (figure in). 

S t e p  2: Calculate  and store Z values for Front(Cyl- 
inderP) in ZTEMP.  

S t e p  S: For each pixel with F1 set, compare  Z T E M P  
to ZMIN and if Z T E M P  > ZMIN then  clear F1 (figure l b ) .  

S t e p  4: For each pixel with F1 still set, replace the  
contents of C O L O R  wi th  the  color of Front(Cylinder2) and 
replace ZMIN by Z T E M F  (figure lc ) .  

Note  t ha t  this  a lgor i thm does not  require t h a t  the  
unioned objects  be primitive.  As long as scan conversion, 
dep th  values, and colors can be  calculated,  any objects  can 
be unioned together  by this simple method.  This technique 
of composing objects  wi th  Z-buffers has been used in many  
previous systems.  

II.b. Cylinder1- CylinderP 

This can be displayed by  first recognizing t ha t  its im- 
age is identical  to the image of: 

(Front(Cylinder1) - CylinderP) U 

(Back( Cytindere) f~ Cylinder1). 
The general  a lgor i thm for generat ing such decomposit ions 
is descr ibed in Section IV. As we saw in the union process 
above, it  suffices to generate  the first t e rm in the union and 
then add the second t e rm  to this par t ia l  image. The  first 
term,  Front(Cylinder1) - Cylinder2 is rendered as follows: 

S t e p  1: Set F1 for all pixels inside the  project ion of 
Cylinder1 onto the  screen (figure 2a). 

S t e p  2: For pixels at which F1 is set, store the depth  
of Front(Cylinder1) in ZTEMP.  

S t e p  3: Set F2 everywhere. Clear  F2 at  any plxel 
outside CylindcrP. A pixel (x, y) is outside Cylinder2 if 
its Z T E M P  does not  lie between the values of Front(Cyl- 
inder2) and Back(Cylinder2) (figure 25). Replace F1 by 
(F1 =or F2) (figure 2¢). 

S t e p  4: We now transfer  the value of Z T E M P  to 
ZMIN for each pixel at which F1 is set. For  these same 
pixels, we upda t e  the  contents  of COLOR with  the  color of 
Front(Cylinder1) at t ha t  location.  

Front(Cylinder1) - Cylinder2 is now finished. Next we 
add Back(Cylinder2) fq Cylinder1 to this pa r t i a l  image. 

S t e p  5: Set F1 for all pixels inside the  project ion of 
Back(Cylinder2) on the screen (figure 2d). 

S t e p  6: For those pixels in which F1 is set, set Z T E M P  
to the  dep th  of Back(Cylinder2). 

S t e p  7: Clear F2 everywhere.  Set F2 for all pixels 
which are inside Cylinder1 in a manner  similar  to s tep 3 
(figure 2d). Replace F1 by (F1 and F2).  F1 is now set 
for all pixels which display the back wall of the hole which 
Cylinder2 bores into Cylinder1 (figure 2e). 
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F i g u r e  l a  F i g u r e  l b  F i g u r e  l c  

S t e p  8: For these pixels, we clear F1 if ZTEMP > 
ZMIN. We now transfer the value of ZTEMP to ZMIN for 
each pixel at which F t  remains set. For these same pix- 
els, we update  the contents of COLOR with the color of 
Back(Cylinder2) at that  location (figure 2f). 

II.c. Cylinderg O Cylinder~ 

This can be decomposed into 

(Front(Cylinder1) n Cylinder2) U 

(Front(Cylinder2) N Cylinder1) 
The terrrm in this union are generated in a manner  similar 
to the terms in the decomposition of the difference of the 
cylinders. 

© 
F2=0 

F1 

F i g u r e  2b F i g u r e  2e F i g u r e  2a 

F i g u r e  2d 

F2=l  

F2=0 

F i g u r e  2e F i g u r e  2f 
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I I I .  E x a m p l e  I m p l e m e n t e d  w i t h  P i x e l - P o w e r s  

We will see in the following sections tha t  this method  is 
par t icu la r ly  sui table  for implementa t ion  in a machine such 
as Pixel-Powers tha t  has a small  fixed amount  of memory  
at  each pixel. The  dramat ic  speed in Pixel-Powers is due 
in large par t  to the Quadra t ic  Expression Evalua tor  which 
evaluates quadra t ic  expressions in x and y s imul taneously  
at  each pixel. The archi tecture  of this Evaluator  is more 
fully descr ibed in [3]. For the  purposes  of this discussion, 
it is sufficient to assert  t ha t  the  Pixel-Powers sys tem will 
consist of a enhanced frame buffer memory.  Each pixel 
is located at  a leaf of the  Evaluator ,  which receives the  
coefficients A,B,C,D,E,  and F as input  and  evaluates the  
expression Q(x ,y )  = A x  2 + B x y  + C y  2 + D x  + E y  + F.  
The speed of Pixel-Powers is due in large par t  to the  fact 
t ha t  this calculat ion is done s imul taneously  at  each pixel 
when the  coefficients are broadcas t  to the system. One bit  
of the  function value is ca lcula ted  for each and every pixel 
a t  each clock cycle. As with  the current  Pixel-Planes  chips 
in 3 micron aMOS,  we expect  a 100 nsec clock cycle. Each 
pixel will have a single-bit  ALU and 128-bits of randomly-  
addressable  memory.  This memory  is also scanned out by 
the video controller .  

For the  pa r t i cu la r  a lgori thms described here, the mem- 
ory is logically configured into ZMIN, ZTEMP,  and C O L O R  
registers,  and also one-bit  flags F1, F2, and F3. The  Host 
processes the  CSG tree to produce a sequence of instruc- 
tions tha t  drive the  Evaluator  and  the ALUs. All geometric 
t ransformat ions  and cl ipping are calculated in the  host  as 
well as the  t rans la t ing  of the  information in the CSG tree 
into the  sequence of opcodes and the quadra t ic  equations.  

In this section, we will describe a way to implement  in 
Pixel-Powers the  basic operat ions  l isted in Section II: 

• Scan conversion of pr imit ives  
* Computa t ion  of dep th  values 
• Determina t ion  of "inside" or "outside" 
• Calculat ion of color 

We i l lustra te  the  procedure  with par t  of the preceeding 
example:  Fror#( curved part of Cylinder1) -- Cylinder2. We 
omit the  calculat ions involving the end of the cylinder as 
they are similar.  

S t e p  1: Scan Conversion 
We begin by wri t ing the  equations of the bounding 

curves of Front(Cylinder1) in screen coordinates  (x, y) (fig- 
ure 3a). The  ell iptical ends are defined by quadra t ic  equa- 
tions Q i ( x , y )  = 0 and Q2(x ,y )  = o. The lines of inter-  
section of the  front- and  back-facing surfaces have linear 
equat ions L t ( x ,  y) = 0 and Lu(x,  y) ----0. The  lines L3 and 
L4 indica ted  in figure 3a have linear equations L3(x,  y) = 0 
and L i ( x , y )  = 0. We combine L t  and L2 to create  the 
quadra t ic  equat ion q ( x , y )  -- L , ( x , y ) L 2 ( x , y )  = 0, and 
we combine L3 and L4 to create the quadrat ic  equat ion 
Qz(x ,  y) = L3(x, y ) L , ( x ,  y) --- O. 

Each of the  curves Q, Q1, Q~, Q3 separa te  the  plane 
into pieces and a pixel can determine which piece it is in by 
s imply checking the sign of the result .  Different choices of 
the  coefficients will produce different signs for these expres- 
sions, so the  selection mus t  be made to conform to the signs 
indica ted  in figure 3a. The Host computes  the coefficient 
sets for each of the  four quadra t ic  curves and broadcas ts  
t hem to the  Quadra t i c  Expression Evaluator .  Three one- 
bi t  flags are used to enable or disable pixels according to 
the  sign of the evaluated  expression at tha t  location. 

\ 
F 2 = l  

F1 =0 

F 2 = l  

F1 =1 

F1 =O 

\ F I = 0  

F ~  3=e 

FI- -0  ) 

F3=0 ~ ,., 

F i g u r e  3a  

F i g u r e  3b  

F i g u r e  ~c 

F i g u r e  3d  
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F i g u r e  3e 

F i g u r e  3f  

F i g u r e  4a  

F i g u r e  4b  

• 0 

Z 

Z=L-s - tQ  

Z=L-~/~" 

I 

The  specific sequence in our example is: 
(a) Clear flags F1, F2, and F3 everywhere. 
(b) For  each pixel ( x , y ) ,  set F1 if Q z ( x , y )  > O, and 

set F2 if Q l ( x , y )  > 0. Replace F1 by (E l  and F2) (figures 
3b and 3c). 

(c) For each pixel i x, y), set F3 if Q~(x, y) < 0. Replace 
F1 by iF1 or F3) (figures 3d and 3e). 

(d) For each pixel (x ,y) ,  clear F1 if Q(x , y )  < 0 (figure 
a). 

Note tha t  this scan conversion process requires tha t  
the  coefficient sets for Q, Q1, Q~, and Qa be broadcas t  
only once each. 

S t e p  2: Z-Buffer 
The equation of Fronticurved part of Cylinder1) when 

solved for z is of the  form z = L - ~ ,  where L is lin- 
ear and Q is quadra t ic  in x and y. (The function Q is 
the same one from step 1.) Since the QEE cannot  eval- 
uate square roots  directly, an approximat ion  to v/Q must  
be made.  This approximat ion  is of the form s + tQ where 
s and  t are constants ,  and we replace z = L -  x / ~  by 
Zapprox = L - a - tQ which is quadrat ic  in ( x, y). By 
choosing s and t carefully, this approximat ion  is very accu- 
ra te  in str ips down the length of the  cylinder.  Geometr i -  
cally, the  surface wi th  equation Zapprox = L - s - tQ is 
a "parabolic" cylinder.  Figure 4a i l lustrates how it passes 
near to  the ac tual  cylinder surface. The magni tude  of the 
error tolerance determines the size of the s tr ips  in which 
the approximat ion  is within this tolerance. 

We begin by choosing an error tolerance for the Z. ap- 
proximat ion.  The Host determines the number  of s tr ips  
needed to guarantee  this accuracy across the  entire scan 
converted region. The constants  s and t are computed  for 
each such s t r ip  pair .  Geometrically,  the set of parabol ic  
cylinders (one for each is,  t)) forms an "envelope" of the  
actual  cylinder.  Fur ther ,  as indicated in figure 4b, for each 
( x , y ) ,  the  largest Zapprox is the one tha t  best  approxi-  
mates  the actual  Z for tha t  pixel (x ,y) .  The Host simply 
broadcasts  the coefficients for all of the parabolic  cylinder 
approximat ions  and each pixel (x ,y )  saves in ZTEMP the 
largest Zapproz for tha t  pixel. Note that  for back facing 
surfaces, the  pixel saves the smallest  Zapprox. 

The number  of s t r ips  needed depends on the size of 
the object  in screen space. It might  seem tha t  many  strips 
would be needed to guarantee reasonable accuracy, but  in 
many images tha t  we have generated using the functional 
s imulator ,  sufficient accuracy can be achieved with a small  
number  of s tr ips  (1 to 8). This small number  is due to the 
fact tha t  we are approximat ing  a curved surface by another  
curved surface, so tha t  we do not  need nearly as many  sub- 
divisions as would be necessary if we were approximat ing  
the same surface with polygons. 

Step 3: Subtrac t ing  Cylinder2 
(a) Subdivide Cylinders into s tr ips  for accurate  Z cal- 

cula t ion as in Step 2. Compute  the  quadra t ic  expressions 
Qi t ha t  represent  the  parabol ic  cyl inder approximat ions  for 
these str ips.  

(b) Set F2 at each pixel. For  each parabol ic  cylin- 
der Ci,  broadcas t  the  coefficients of Qi and clear F2 if the 
Z T E M P  stored at  the pixel ix, y) is less than  Qi (x , y )  and 
C~ is front-facing or if Z T E M P  > Q~(x,y)  and Ci is back- 
facing (figure 4b). 

(c) Only those pixels with both  F1 and F2 stil l  set are 
inside Cylinder2. Replace F1 with (F1 xor F2). 
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S t e p  4: Shading 
If we compute the exact diffuse shade at (x, y) using the 

uni t  normal to the surface then the expression we have to 
evaluate is of the form shade(x, y) = (L + v / ~ ) / t v / W  where 
L is linear, Q is quadratic in (x ,y )  and W is a relatively 
complicated expression in (x,y) that  comes from turning  
an arbi trary normal to the surface into a uni t  vector. We 
approximate the numera tor  as in the Z-buffer step except 
tha t  we only use a single parabolic cylinder for Q. We ap- 
proximate the denominator  by a single constant.  Although 
these approximations may seem coarse, the effect is smooth 
shaded. 

IV .  T ree  R e s t r u c t u r i n g  

In this section we describe a method for transforming 
any CSG tree into an equivalent one that  is a union of sim- 
pler subtrees. (Similar work is briefly discussed in [8].) We 
will then describe how each of these simple subtrees can be 
displayed by further dividing them into the union of pieces 
which can be displayed by s tar t ing with the boundary  of a 
primitive and paring it with other primitives, using the set 
operations of intersection and difference. This transforma- 
t ion and display process builds up the image without the 
use of large amounts  of intermediate information stored at 
each pixel. This method is particularly appropriate for a 
system like Pixel-Powers with limited memory available at 
each pixel. 

There are two major difficulties with trying to display 
arbi t rary CSG trees without any transformation.  First ,  
the paring part ,  that  is, the piece that  is subtracted or 
intersected with a previously constructed piece, might be 
complicated. In particular,  it might be hard to determine 
the inside or outside in an efficient manner.  Second, paring 
may reveal parts of an object previously obscured. Both 
of these difficulties can be overcome by the t ransformation 
process tha t  restructures the CSG tree into an equivalent 
one in which the paring objects are always primitives. 

The t ransformation produces a new tree which we call 
a normal form for the tree which has the properties (i) 
at every node where there is an intersection or difference 
the right branch is primitive, and (ii) no node where there 
is a union is on a path from a difference or intersection. 
This new tree can be broken into simpler subtrees tha t  
are unioned together. Although the t ransformation process 
may increase the size of the tree, each of the simple snbtrees 
can be displayed with a min imum of calculation and merged 
into a single image using the union process described in 
Section II. The simple subtrees are of the form: 

Xo opl X1 op2 ... opk Xk  

where each Xi is a primitive, op~ is either - or A, and the 
absence of parentheses indicates tha t  association is from 
left to right. A normal form for a CSG tree is created using 
the 8 basic equivalences in figure 5 together with the follow- 
ing recursive algorithm. The execution of this algorithm is 
demonstrated in figure 6. 

Y Z X Y Y Z X Y X Z 

X•• 
Y Z X Y X Z Y Z X Y 

Y Z X Y X Z Y Z X Y 

X Y X Z Y Z X Y X Z Y Z 

F i g u r e  5. In each pair, the tree on the left can be 
transformed to the equivalent form to its right. The new 
tree will have the same image as the original. 
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W V 

procedure Normalize (T) ; 
begin 

Redo (T) ; 
case (T.type) of begin 

primitive : 
return T ; 
break ; 

U : 
Normalize (T.L) ; 
Normalize (T.R) ; 
break ; 

-~N : 

while (T.type # primitive) and 
(T # [3) and 
(T.R.type ~ primitive) do begin 

Redo (T) ; 
end ; 
Normalize (T.R) ; 
Normalize (T.L) ; 
Redo (T) ; 
break; 

end; 
end; 

procedure Redo(T) 
begin 

if T does not have any of the patterns 
in figure 5 then begin 
return T; 

end else begin 
restructure the top nodes of T 

using equivalent patterns in figure 5; 
return newT; 

end; 
end; 

W V 

X Y 

V 

F i g u r e  6. T h e  trees on this page  d e m o n s t r a t e  the  
execu t ion  of the  code  above  us ing the  equivalences  shown 
in figure 5 (at  left).  At  each  step,  one in ter ior  node  of  the  
t ree  is r e s t ruc tu red .  This  process ing cont inues  recurs ively  
unt i l  the  t ree  is in no rma l  form.  

X X W 
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Once the tree has been normalized, the problem of dis- 
play is reduced to tha t  of simple trees. Let D(X) ,  D / ( X ) ,  
and Do(X) denote the boundary  of a solid X, the front- 
facing boundary  of X, and the back-facing boundary  of X, 
respectively. In order to display a solid X it suffices, of 
course, to display D(X) .  We are left then with the prob- 
lem of displaying 

D ( X o  opl X1 op2 ... opk Xk)  

In order to derive the general display algorithm, it is nec- 
essary to know how the CSQ operations interact with the 
boundary  operators D, Dy, and Db. 

T h e o r e m  1: From the point  of view of 2-D display: 

(a) D(X)  = D l ( X  ) 
(b) D ( X  U Y)  = D i ( X )  u D I Y  
(c) D ( X  n Y) = (Dr (X)  N Y) u (Dz(Y)  N X)  
(d) D ( X -  Y )  ( D i ( X )  -- Y )  U (Oh(Y) n X)  

For example, if we want to display the tree A-B-C, we 
apply Theorem 1 (d) twice and  use the set identi ty X A  ( Y -  
Z) = X n Y - Z: 

D( A - B - C) 

= ( D / ( A - B ) - C )  u 

(Db(C) ¢q (A - B)) 
by applying Theorem l(d)  with X = A - B and Y = C 

= ( D I ( A ) - B - C )  U 

(Db(B) N A -  C) U 

(Db(C) rq A - B) 

by applying Theorem l(d)  again and using the above set 
identity. 

The terms in the un ion  are rendered one at a t ime and 
merged into the part ial  object being buil t  up. The first 
te rm is rendered by storing Dr(A)  and paring it down with 
the objects B and C. This is essentially how the example in 
Section II was done. The other terms are rendered similarly. 

We will adopt the convention that  there is an opera- 
tor opo equal to A preceding Xo in the simple tree Xo opl 
z l  op2 ... opk Xk and define for each i = 0 .... , k: 

DpiXi)  = ; D I ( X ) '  if opi = fq 
[ Db(X),  i/ op, = - 

Then  we can apply the theorem recursively to obtain:  
T h e o r e m  2: D(Xo opl X l  ,.. opk Xk) is the union (i = 

0,...,/c) of: 

Dp(X'i) Opl X1  ... op i -1  X i - 1  opi+l X i + l  ... opk ~ k  

The individual terms in this union are displayed as in the 
example in Section II. To summarize,  the normal iza t ion 
process tha t  reduces an arbi trary CSG tree to a union of 
simple trees together with the further subdivision using 
Theorem 2 produces a decomposition that  allows images 
to be drawn without  sending anything more complicated 
than  a primitive to the system. This is essential for graph- 
ics systems with limited frame buffer memory. 

"V. R e s u l t s  

We have implemented (in C on a VAX-11/780 runn ing  
4.2bsd UNIX) and show results here of (1) a tree traverser 
tha t  processes a union of "simple" trees and generates op- 
codes and quadratic coefficients to a Pixel-Powers memory 
system, and (2) a s imulator  for a Pixel-Powers memory 
system that  accepts opcodes and quadratic coefficients and 
generates for each pixel the various image buffer-related 
values ((r,g,b), z, flags, etc.) for display on a conventional 
raster screen. This set of software modules was exercised 
with externally supplied data  sets from the US Army Bal- 
listic Research Laboratory and Hokkaido University [5]. 

We have been surprised to find no need yet for the CSG 
restructur ing algorithm, so we have not as yet implemented 
it. Of the handful  of data  sets we have received we have 
found none yet whose CSG tree needed to be restructured 
before processing for Pixel-Powers. That  is, all the trees 
were already "simple" according to the definition given in 
Section IV above. Thus the tree traverser could process 
all of these data  sets directly and generate opcodes and 
coefficients for Pixel-Powers. 

We ran the tree traverser on the various data  sets and 
ran the Pixel-Powers simulator on the output  from the tree 
traverser. Table 1 gives, for various data  sets, the number  
of Pixel-Powers operations generated by the tree traversal 
process and the est imated t ime for Pixel-Powers to generate 
the images from these data  sets shown in the photographs. 
It is impor tant  to note when considering these results, how- 
ever, tha t  the est imated image generation times given in the 
table are for the 10MHz Pixel-Powers logic-enhanced mem- 
ories themselves. It is assumed that  the rest of the system, 
the "front end" (the viewing transformation engine and the 
tree traverser) can run fast enough to keep up with the 
10MHz Pixel-Powers memories. We hope to achieve this 
by transferring the implementat ion to our fast ari thmetic 
processors, which are Mercury Systems ZIP 3232s. 

P a r t  N a m e  S o u r c e  P r i m i t i v e s  O p c o d e s  E q u a t i o n s  

Union local 2 54 46 
Difference local 2 182 170 
Intersection local 2 178 170 
Tube [Okino 84] 11 1205 1065 
Cut Tube [Okino 84] 12 1969 1733 
MBB [Okino 84] 24 2139 1854 
Tie Rod BRL 17 2660 2309 

T a b l e  1: E s t i m a t e d  I m a g e  G e n e r a t i o n  T i m e  

T i m e  

.19 msec 

.68 

.68 
4.3 
7.0 
7.5 
9.3 
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U n i o n  
e s t i m a t e d  t ime :  0.19 msec  

T u b e  
e s t i m a t e d  t ime:  4.3 msee  

Difference 
e s t i m a t e d  t ime:  0+68 msec  

C u t  T u b e  
e s t i m a t e d  t ime:  7.0 msec  

Intersect ion 
e s t i m a t e d  t ime:  0.68 msec  

T i e  R o d  
e s t i m a t e d  t ime :  9.3 msec  

I m a g e s  f r o m  P L x e l - P o w e r s  S i m u l a t o r  
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YI.  F u t u r e  Work  

We hope to implement a Pixel-Powers system in stages 
by enhancing the next generation Pixel-Planes chips and 
by casting much of the CSG tree traverser into microcode 
,for our fast arithmetic processors. The enhancement to 
the Pixel-Planes chips involves substituting the Quadratic 
Expression Evaluator tree for the current Linear Expression 
Evaluation tree and increasing the memory per chip from 
the 72 bits in the present Pixel-Planes chips to 128 bits. 

We also hope to develop more sophisticated algorithms 
for CSG-defined objects: algorithms for generating shadows 
and algorithms for calculating shadings on curved surfaces 
more rapidly according to more sophisticated lighting mod- 
els such as the popular one due to Phong. We also hope 
to develop techniques for rendering higher order surfaces 
such as cubic patches. Already two approaches for this are 
evident: the quadratic expression evaluator on the memory 
chip could be expanded into a cubic expression evaluator 
(we can already see how to do this, but the size would be 
enormous) or we can approximate each of the cubic curves 
by combination of many quadratic curyes. We also plan 
to implement with the CSG restructuring algorithm the 
well-known "bounding-box" techniques to trim the restruc- 
tured tree to the smallest possible size. For e:k~rnpje, if the 
bounding boxes of A and B do not intersect, i~l~((A - B) 
is equivalent to A. , t ~  . 

VII .  S u m m a r y  ' , f ;~.~ 
. z "  " 

We have shown that CSG~dg:fi~aed: objects can be effi- 
ciently rendered in a l og i c - enh~ed  fra~me buffer memory 
with fast quadratic expression' e/(aluation for each pixel. 
Such rendering can be ei _ciently Generated by first restruc- 
turing the tree, if necessary, into a: union of simple trees 
and then traversing these trees to-generate a sequence of 
quadratic coefficients and operation codes for the logic- 
enhanced memories. Resulting images from a software im- 
plementation of the tree traverser and display simulator 
illustrate the methods and allow estimation of its speed 
with an expected hardware implementation. The method's 
speed promises real-time interactions for complex CSG ob- 
jects and the ability to handle objects ofarbl t rary  com- 
plexity by building up the image during the traversaI of 
the CSG tree. 
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