
Dallas, August 18-22 Volume 20, Number 4, 1986

F a s t C o n s t r u c t i v e S o l i d G e o m e t r y D i s p l a y
in t h e P i x e l - P o w e r s G r a p h i c s S y s t e m

Jack Goldfeather

Carleton College, Northfield, MN

Jeff P.M. Hultquist
Henry Fuchs

Universi ty of North Carolina at Chapel Hill

A B S T R A C T

We present two Mgorithms for the display of CSG-
defined objects on Pixel-Powers, an extension of the Pixel-
Planes logic-enhanced memory archi tecture, which calcu-
lates for each and every pixel on the screen (in parallel) the
value of any quadrat ic function in the screen coordinates
(x ,y) . The first a lgor i thm restructures any CSG tree into
an equivalent, but possibly larger, tree whose display can
be achieved by the second algori thm. The second algori thm
traverses the res t ructured tree and generates quadrat ic co-
efficients and opcodes for Pixel-Powers. These opcodes in-
s t ruc t Pixel-Powers to generate the boundaries of pr imit ives
and perform set operat ions using the s tandard Z-buffer al-
gori thm.

Several external ly-suppl ied CSG da ta sets have been
processed with the new tree- t raversal a lgori thm and an as-
sociated Pixel-Powers s imulator . The resulting images in-
dicate tha t good results can be obta ined very rapidly with
the new system. For example, the commonly used MBB
test pa r t (at right) with 24 pr imit ives is t rans la ted into ap-
proximate ly 1900 quadra t ic equations. On a Pixel-Powers
system running at 10MHz (the speed at which our current
Pixel-Planes memories run), the image should be rendered
in about 7.5 milliseconds.

M B B t e s t p a r t f r o m P i x e l - P o w e r s s i m u l a t o r .
The Pixel-Powers graphics sys tem should render this image
in 7.5 milliseconds.

C R C a t e g o r i e s a n d S u b j e c t D e s c r l p t o r s : 1.3.1
[C o m p u t e r G r a p h i c s] : Hardware A r c h i t e c t u r e - raster
display devices; 1.3.3 [C o m p u t e r G r a p h i c s] : P ic tu re / -
Image Generat ion - - display algorithms; J.7 [C o m p u t e r
A p p l i c a t i o n s] : Compute r -Aided Engineering - -
computer-aided design;

G e n e r a l T e r m s : algori thms
A d d i t i o n a l K e y W o r d s a n d P h r a s e s : construc-

t ive solid geometry, SIMD processor, frame buffer

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-196-2/86/008/0107 $00.75

I . I n t r o d u c t i o n

We are designing Pixel-Powers, an enhancement of the
Pixel-Planes graphics sys tem [2I[6], by replacing the mul-
t iplier tree tha t evaluated linear expressions by one tha t
evaluates quadrat ic expressions [3]. This Quadra t ic Ex-
pression Evaluator (QEE) is used to evaluate expressions
of the form A x 2 + B x y + Cy ~ + D x + E y + F simultaneously
for each pixel (z ,y) on the screen. We es t imate tha t the
QEE will calculate bi t-sequential ly a 30 bit value of this
expression for each and every pixel on the screen in under
4 microseconds. The speed at which Pixel-Powers will ren-
der convex polyhedra , as well as smooth-shaded cylinders,
cones, and ellipsoids, has led us to explore the possibi l i ty
of using Pixel-Powers for real-t lme rendering of smooth-
shaded Construct ive Solid Geometry objects constructed
from quadra t ic primit ives. A CSG object is defined by
s ta r t ing with a set of solid pr imit ives and construct ing an
expression tree in which the leaves are pr imit ives and the
non-leaf nodes are set operat ions. The CSG object is con-
s t ruc ted recursively by performing 'each set opera t ion on
the objects defined by its left and right subtrees [7].

107

S I G G R A P H '86

In this paper we describe a general method for display-
ing any CSG object using a frame buffer tha t is 128 bi ts
deep. Our method differs from other CSG display methods
[1] in tha t we compute on the fly the boundary representa-
t ion of each pr imi t ive in terms of the viewpoint . While this
can be a d isadvantage in some systems, we will show how it
can be implemented efficiently in Pixel-Powers by making
use of the Quadra t ic Expression Evaluator and the general
paral le l ism of the system. In par t icular , we will describe an
a lgor i thm for fast rendering of smooth-shaded CSG objects
based on quadrat ic primitives. Our approach, paral lel on
all pixels but processing CSG primit ives sequentially, con-
t ras ts with another sys tem by Kedem [4] tha t allocates a
processing element for each pr imit ive and renders the im-
ages sequential ly by pixel in raster-scan order.

Jus t as in the development of the Pixel-Plaues system,
we have implemented software simulators tha t enable us to
develop display algori thms before the actual chip is com-
pletely designed and commi t ted to silicon. All of the images
in this paper are from the Pixel-Powers s imulator .

I I . A S i m p l e E x a m p l e

In this sect ion we describe a method for displaying any
CSG object with the aid of a deep frame buffer. The present
working Pixel -Planes sys tem has a 72 b i t deep frame buffer.
A Pixel-Powers sys tem with a depth of 128 bi ts was our
model when we were analyzing the problem, b u t the al-
gor i thm should be implementable in any compute r with a
deep frame buffer. The memory requirements are:

• Three flag registers: F1, F2, and F3
(one bi t each)

• Two depth buffers: Z T E M P and ZMIN
(20-30 bits each)

• One color buffer: C O L O R
(24 bits)
(If double buffering is desired,
two color buffers are needed.)

We defer unt i l Sections III and IV the discussion of
the par t icu la r Pixel-Powers implementa t ion of these algo-
r i thms for CSG objects defined wi th convex pr imi t ive solids
whose bounda ry surfaces can be defined using quadra t ic or
l inear equat ions in x, y, and z (e.g. cylinders, ellipsoids,
and cones). In this section we outline a general me thod of
display tha t will work for any set of convex primit ives and
any display sys tem tha t can do bo th of the following:

(a) Scan convert front- and back-facing surfaces of each
pr imi t ive in screen space. T h a t is, a flag F at each pixel can
be set to 1 if it is inside the region on the screen de te rmined
by the project ion of the surface on the screen. Note tha t the
front and back face of a surface depends on the viewpoint .
The front surface of a cyl inder consists of all points on the
cyl inder surface (including the ends) which face toward the
viewer.

(b) Calculate and store in each pixel memory wi th F = i
the depth and color values of the front- or back-facing sur-
faces of a pr imit ive.

In Section III, a general a lgor i thm is derived based only
on the assumpt ions (a) and (b) above. We i l lustrate the
ideas behind this a lgor i thm by examining the simple cases
of union, difference, and intersect ion of two cylinders.

II.a. Cylinder1 U CylinderP

This is d isplayed by applying the s tandard Z-buffer al-
gori thm. If Front(ob3) denotes the (viewpoint dependent)
visible pa r t of an object ' s surface, then Front(Cylinder1)
will, in general , be the visible par t of the curved por t ion
of the cyl inder together wi th one of the two p lanar ends.
We begin by calculat ing the Z values and color values of
Front(Cylinder1) and storing them in ZMIN and COLOR.
Since la ter in this paper we will be decomposing more com-
p l ica ted objects into unions of s impler ones, we will describe
carefully how Cylinder2 is added to the par t ia l image:

S t e p 1: At each pixel, set the f i a t F1 if it is inside the
region de te rmined by Front(Cylinder2), and clear it other-
wise (figure in).

S t e p 2: Calculate and store Z values for Front(Cyl-
inderP) in ZTEMP.

S t e p S: For each pixel with F1 set, compare Z T E M P
to ZMIN and if Z T E M P > ZMIN then clear F1 (figure l b) .

S t e p 4: For each pixel with F1 still set, replace the
contents of C O L O R wi th the color of Front(Cylinder2) and
replace ZMIN by Z T E M F (figure lc) .

Note t ha t this a lgor i thm does not require t h a t the
unioned objects be primitive. As long as scan conversion,
dep th values, and colors can be calculated, any objects can
be unioned together by this simple method. This technique
of composing objects wi th Z-buffers has been used in many
previous systems.

II.b. Cylinder1- CylinderP

This can be displayed by first recognizing t ha t its im-
age is identical to the image of:

(Front(Cylinder1) - CylinderP) U

(Back(Cytindere) f~ Cylinder1).
The general a lgor i thm for generat ing such decomposit ions
is descr ibed in Section IV. As we saw in the union process
above, it suffices to generate the first t e rm in the union and
then add the second t e rm to this par t ia l image. The first
term, Front(Cylinder1) - Cylinder2 is rendered as follows:

S t e p 1: Set F1 for all pixels inside the project ion of
Cylinder1 onto the screen (figure 2a).

S t e p 2: For pixels at which F1 is set, store the depth
of Front(Cylinder1) in ZTEMP.

S t e p 3: Set F2 everywhere. Clear F2 at any plxel
outside CylindcrP. A pixel (x, y) is outside Cylinder2 if
its Z T E M P does not lie between the values of Front(Cyl-
inder2) and Back(Cylinder2) (figure 25). Replace F1 by
(F1 =or F2) (figure 2¢).

S t e p 4: We now transfer the value of Z T E M P to
ZMIN for each pixel at which F1 is set. For these same
pixels, we upda t e the contents of COLOR with the color of
Front(Cylinder1) at t ha t location.

Front(Cylinder1) - Cylinder2 is now finished. Next we
add Back(Cylinder2) fq Cylinder1 to this pa r t i a l image.

S t e p 5: Set F1 for all pixels inside the project ion of
Back(Cylinder2) on the screen (figure 2d).

S t e p 6: For those pixels in which F1 is set, set Z T E M P
to the dep th of Back(Cylinder2).

S t e p 7: Clear F2 everywhere. Set F2 for all pixels
which are inside Cylinder1 in a manner similar to s tep 3
(figure 2d). Replace F1 by (F1 and F2). F1 is now set
for all pixels which display the back wall of the hole which
Cylinder2 bores into Cylinder1 (figure 2e).

108

Dallas, August 18-22 Volume 20, Number 4, 1986

F i g u r e l a F i g u r e l b F i g u r e l c

S t e p 8: For these pixels, we clear F1 if ZTEMP >
ZMIN. We now transfer the value of ZTEMP to ZMIN for
each pixel at which F t remains set. For these same pix-
els, we update the contents of COLOR with the color of
Back(Cylinder2) at that location (figure 2f).

II.c. Cylinderg O Cylinder~

This can be decomposed into

(Front(Cylinder1) n Cylinder2) U

(Front(Cylinder2) N Cylinder1)
The terrrm in this union are generated in a manner similar
to the terms in the decomposition of the difference of the
cylinders.

©
F2=0

F1

F i g u r e 2b F i g u r e 2e F i g u r e 2a

F i g u r e 2d

F2=l

F2=0

F i g u r e 2e F i g u r e 2f

109

/ / • a~ s i G G R A P H '86

I I I . E x a m p l e I m p l e m e n t e d w i t h P i x e l - P o w e r s

We will see in the following sections tha t this method is
par t icu la r ly sui table for implementa t ion in a machine such
as Pixel-Powers tha t has a small fixed amount of memory
at each pixel. The dramat ic speed in Pixel-Powers is due
in large par t to the Quadra t ic Expression Evalua tor which
evaluates quadra t ic expressions in x and y s imul taneously
at each pixel. The archi tecture of this Evaluator is more
fully descr ibed in [3]. For the purposes of this discussion,
it is sufficient to assert t ha t the Pixel-Powers sys tem will
consist of a enhanced frame buffer memory. Each pixel
is located at a leaf of the Evaluator , which receives the
coefficients A,B,C,D,E, and F as input and evaluates the
expression Q(x ,y) = A x 2 + B x y + C y 2 + D x + E y + F.
The speed of Pixel-Powers is due in large par t to the fact
t ha t this calculat ion is done s imul taneously at each pixel
when the coefficients are broadcas t to the system. One bit
of the function value is ca lcula ted for each and every pixel
a t each clock cycle. As with the current Pixel-Planes chips
in 3 micron aMOS, we expect a 100 nsec clock cycle. Each
pixel will have a single-bit ALU and 128-bits of randomly-
addressable memory. This memory is also scanned out by
the video controller .

For the pa r t i cu la r a lgori thms described here, the mem-
ory is logically configured into ZMIN, ZTEMP, and C O L O R
registers, and also one-bit flags F1, F2, and F3. The Host
processes the CSG tree to produce a sequence of instruc-
tions tha t drive the Evaluator and the ALUs. All geometric
t ransformat ions and cl ipping are calculated in the host as
well as the t rans la t ing of the information in the CSG tree
into the sequence of opcodes and the quadra t ic equations.

In this section, we will describe a way to implement in
Pixel-Powers the basic operat ions l isted in Section II:

• Scan conversion of pr imit ives
* Computa t ion of dep th values
• Determina t ion of "inside" or "outside"
• Calculat ion of color

We i l lustra te the procedure with par t of the preceeding
example: Fror#(curved part of Cylinder1) -- Cylinder2. We
omit the calculat ions involving the end of the cylinder as
they are similar.

S t e p 1: Scan Conversion
We begin by wri t ing the equations of the bounding

curves of Front(Cylinder1) in screen coordinates (x, y) (fig-
ure 3a). The ell iptical ends are defined by quadra t ic equa-
tions Q i (x , y) = 0 and Q2(x ,y) = o. The lines of inter-
section of the front- and back-facing surfaces have linear
equat ions L t (x , y) = 0 and Lu(x, y) ----0. The lines L3 and
L4 indica ted in figure 3a have linear equations L3(x, y) = 0
and L i (x , y) = 0. We combine L t and L2 to create the
quadra t ic equat ion q (x , y) -- L , (x , y) L 2 (x , y) = 0, and
we combine L3 and L4 to create the quadrat ic equat ion
Qz(x , y) = L3(x, y) L , (x , y) --- O.

Each of the curves Q, Q1, Q~, Q3 separa te the plane
into pieces and a pixel can determine which piece it is in by
s imply checking the sign of the result . Different choices of
the coefficients will produce different signs for these expres-
sions, so the selection mus t be made to conform to the signs
indica ted in figure 3a. The Host computes the coefficient
sets for each of the four quadra t ic curves and broadcas ts
t hem to the Quadra t i c Expression Evaluator . Three one-
bi t flags are used to enable or disable pixels according to
the sign of the evaluated expression at tha t location.

\
F 2 = l

F1 =0

F 2 = l

F1 =1

F1 =O

\ F I = 0

F ~ 3=e

FI- -0)

F3=0 ~ ,.,

F i g u r e 3a

F i g u r e 3b

F i g u r e ~c

F i g u r e 3d

110

Dallas, August 18-22 Volume 20, Number 4, 1986

F i g u r e 3e

F i g u r e 3f

F i g u r e 4a

F i g u r e 4b

• 0

Z

Z=L-s - tQ

Z=L-~/~"

I

The specific sequence in our example is:
(a) Clear flags F1, F2, and F3 everywhere.
(b) For each pixel (x , y) , set F1 if Q z (x , y) > O, and

set F2 if Q l (x , y) > 0. Replace F1 by (E l and F2) (figures
3b and 3c).

(c) For each pixel i x, y), set F3 if Q~(x, y) < 0. Replace
F1 by iF1 or F3) (figures 3d and 3e).

(d) For each pixel (x ,y) , clear F1 if Q(x , y) < 0 (figure
a).

Note tha t this scan conversion process requires tha t
the coefficient sets for Q, Q1, Q~, and Qa be broadcas t
only once each.

S t e p 2: Z-Buffer
The equation of Fronticurved part of Cylinder1) when

solved for z is of the form z = L - ~ , where L is lin-
ear and Q is quadra t ic in x and y. (The function Q is
the same one from step 1.) Since the QEE cannot eval-
uate square roots directly, an approximat ion to v/Q must
be made. This approximat ion is of the form s + tQ where
s and t are constants , and we replace z = L - x / ~ by
Zapprox = L - a - tQ which is quadrat ic in (x, y). By
choosing s and t carefully, this approximat ion is very accu-
ra te in str ips down the length of the cylinder. Geometr i -
cally, the surface wi th equation Zapprox = L - s - tQ is
a "parabolic" cylinder. Figure 4a i l lustrates how it passes
near to the ac tual cylinder surface. The magni tude of the
error tolerance determines the size of the s tr ips in which
the approximat ion is within this tolerance.

We begin by choosing an error tolerance for the Z. ap-
proximat ion. The Host determines the number of s tr ips
needed to guarantee this accuracy across the entire scan
converted region. The constants s and t are computed for
each such s t r ip pair . Geometrically, the set of parabol ic
cylinders (one for each is, t)) forms an "envelope" of the
actual cylinder. Fur ther , as indicated in figure 4b, for each
(x , y) , the largest Zapprox is the one tha t best approxi-
mates the actual Z for tha t pixel (x ,y) . The Host simply
broadcasts the coefficients for all of the parabolic cylinder
approximat ions and each pixel (x ,y) saves in ZTEMP the
largest Zapproz for tha t pixel. Note that for back facing
surfaces, the pixel saves the smallest Zapprox.

The number of s t r ips needed depends on the size of
the object in screen space. It might seem tha t many strips
would be needed to guarantee reasonable accuracy, but in
many images tha t we have generated using the functional
s imulator , sufficient accuracy can be achieved with a small
number of s tr ips (1 to 8). This small number is due to the
fact tha t we are approximat ing a curved surface by another
curved surface, so tha t we do not need nearly as many sub-
divisions as would be necessary if we were approximat ing
the same surface with polygons.

Step 3: Subtrac t ing Cylinder2
(a) Subdivide Cylinders into s tr ips for accurate Z cal-

cula t ion as in Step 2. Compute the quadra t ic expressions
Qi t ha t represent the parabol ic cyl inder approximat ions for
these str ips.

(b) Set F2 at each pixel. For each parabol ic cylin-
der Ci, broadcas t the coefficients of Qi and clear F2 if the
Z T E M P stored at the pixel ix, y) is less than Qi (x , y) and
C~ is front-facing or if Z T E M P > Q~(x,y) and Ci is back-
facing (figure 4b).

(c) Only those pixels with both F1 and F2 stil l set are
inside Cylinder2. Replace F1 with (F1 xor F2).

111

S I G G R A P H '86

S t e p 4: Shading
If we compute the exact diffuse shade at (x, y) using the

uni t normal to the surface then the expression we have to
evaluate is of the form shade(x, y) = (L + v / ~) / t v / W where
L is linear, Q is quadratic in (x ,y) and W is a relatively
complicated expression in (x,y) that comes from turning
an arbi trary normal to the surface into a uni t vector. We
approximate the numera tor as in the Z-buffer step except
tha t we only use a single parabolic cylinder for Q. We ap-
proximate the denominator by a single constant. Although
these approximations may seem coarse, the effect is smooth
shaded.

IV . T ree R e s t r u c t u r i n g

In this section we describe a method for transforming
any CSG tree into an equivalent one that is a union of sim-
pler subtrees. (Similar work is briefly discussed in [8].) We
will then describe how each of these simple subtrees can be
displayed by further dividing them into the union of pieces
which can be displayed by s tar t ing with the boundary of a
primitive and paring it with other primitives, using the set
operations of intersection and difference. This transforma-
t ion and display process builds up the image without the
use of large amounts of intermediate information stored at
each pixel. This method is particularly appropriate for a
system like Pixel-Powers with limited memory available at
each pixel.

There are two major difficulties with trying to display
arbi t rary CSG trees without any transformation. First ,
the paring part , that is, the piece that is subtracted or
intersected with a previously constructed piece, might be
complicated. In particular, it might be hard to determine
the inside or outside in an efficient manner. Second, paring
may reveal parts of an object previously obscured. Both
of these difficulties can be overcome by the t ransformation
process tha t restructures the CSG tree into an equivalent
one in which the paring objects are always primitives.

The t ransformation produces a new tree which we call
a normal form for the tree which has the properties (i)
at every node where there is an intersection or difference
the right branch is primitive, and (ii) no node where there
is a union is on a path from a difference or intersection.
This new tree can be broken into simpler subtrees tha t
are unioned together. Although the t ransformation process
may increase the size of the tree, each of the simple snbtrees
can be displayed with a min imum of calculation and merged
into a single image using the union process described in
Section II. The simple subtrees are of the form:

Xo opl X1 op2 ... opk Xk

where each Xi is a primitive, op~ is either - or A, and the
absence of parentheses indicates tha t association is from
left to right. A normal form for a CSG tree is created using
the 8 basic equivalences in figure 5 together with the follow-
ing recursive algorithm. The execution of this algorithm is
demonstrated in figure 6.

Y Z X Y Y Z X Y X Z

X••
Y Z X Y X Z Y Z X Y

Y Z X Y X Z Y Z X Y

X Y X Z Y Z X Y X Z Y Z

F i g u r e 5. In each pair, the tree on the left can be
transformed to the equivalent form to its right. The new
tree will have the same image as the original.

112

Dallas, August 18-22 Volume 20, Number 4, 1986

W V

procedure Normalize (T) ;
begin

Redo (T) ;
case (T.type) of begin

primitive :
return T ;
break ;

U :
Normalize (T.L) ;
Normalize (T.R) ;
break ;

-~N :

while (T.type # primitive) and
(T # [3) and
(T.R.type ~ primitive) do begin

Redo (T) ;
end ;
Normalize (T.R) ;
Normalize (T.L) ;
Redo (T) ;
break;

end;
end;

procedure Redo(T)
begin

if T does not have any of the patterns
in figure 5 then begin
return T;

end else begin
restructure the top nodes of T

using equivalent patterns in figure 5;
return newT;

end;
end;

W V

X Y

V

F i g u r e 6. T h e trees on this page d e m o n s t r a t e the
execu t ion of the code above us ing the equivalences shown
in figure 5 (at left). At each step, one in ter ior node of the
t ree is r e s t ruc tu red . This process ing cont inues recurs ively
unt i l the t ree is in no rma l form.

X X W

113

S I G G R A P H '86
I

Once the tree has been normalized, the problem of dis-
play is reduced to tha t of simple trees. Let D(X) , D / (X) ,
and Do(X) denote the boundary of a solid X, the front-
facing boundary of X, and the back-facing boundary of X,
respectively. In order to display a solid X it suffices, of
course, to display D(X) . We are left then with the prob-
lem of displaying

D (X o opl X1 op2 ... opk Xk)

In order to derive the general display algorithm, it is nec-
essary to know how the CSQ operations interact with the
boundary operators D, Dy, and Db.

T h e o r e m 1: From the point of view of 2-D display:

(a) D(X) = D l (X)
(b) D (X U Y) = D i (X) u D I Y
(c) D (X n Y) = (Dr (X) N Y) u (Dz(Y) N X)
(d) D (X - Y) (D i (X) -- Y) U (Oh(Y) n X)

For example, if we want to display the tree A-B-C, we
apply Theorem 1 (d) twice and use the set identi ty X A (Y -
Z) = X n Y - Z:

D(A - B - C)

= (D / (A - B) - C) u

(Db(C) ¢q (A - B))
by applying Theorem l(d) with X = A - B and Y = C

= (D I (A) - B - C) U

(Db(B) N A - C) U

(Db(C) rq A - B)

by applying Theorem l(d) again and using the above set
identity.

The terms in the un ion are rendered one at a t ime and
merged into the part ial object being buil t up. The first
te rm is rendered by storing Dr(A) and paring it down with
the objects B and C. This is essentially how the example in
Section II was done. The other terms are rendered similarly.

We will adopt the convention that there is an opera-
tor opo equal to A preceding Xo in the simple tree Xo opl
z l op2 ... opk Xk and define for each i = 0 , k:

DpiXi) = ; D I (X) ' if opi = fq
[Db(X), i/ op, = -

Then we can apply the theorem recursively to obtain:
T h e o r e m 2: D(Xo opl X l ,.. opk Xk) is the union (i =

0,...,/c) of:

Dp(X'i) Opl X1 ... op i -1 X i - 1 opi+l X i + l ... opk ~ k

The individual terms in this union are displayed as in the
example in Section II. To summarize, the normal iza t ion
process tha t reduces an arbi trary CSG tree to a union of
simple trees together with the further subdivision using
Theorem 2 produces a decomposition that allows images
to be drawn without sending anything more complicated
than a primitive to the system. This is essential for graph-
ics systems with limited frame buffer memory.

"V. R e s u l t s

We have implemented (in C on a VAX-11/780 runn ing
4.2bsd UNIX) and show results here of (1) a tree traverser
tha t processes a union of "simple" trees and generates op-
codes and quadratic coefficients to a Pixel-Powers memory
system, and (2) a s imulator for a Pixel-Powers memory
system that accepts opcodes and quadratic coefficients and
generates for each pixel the various image buffer-related
values ((r,g,b), z, flags, etc.) for display on a conventional
raster screen. This set of software modules was exercised
with externally supplied data sets from the US Army Bal-
listic Research Laboratory and Hokkaido University [5].

We have been surprised to find no need yet for the CSG
restructur ing algorithm, so we have not as yet implemented
it. Of the handful of data sets we have received we have
found none yet whose CSG tree needed to be restructured
before processing for Pixel-Powers. That is, all the trees
were already "simple" according to the definition given in
Section IV above. Thus the tree traverser could process
all of these data sets directly and generate opcodes and
coefficients for Pixel-Powers.

We ran the tree traverser on the various data sets and
ran the Pixel-Powers simulator on the output from the tree
traverser. Table 1 gives, for various data sets, the number
of Pixel-Powers operations generated by the tree traversal
process and the est imated t ime for Pixel-Powers to generate
the images from these data sets shown in the photographs.
It is impor tant to note when considering these results, how-
ever, tha t the est imated image generation times given in the
table are for the 10MHz Pixel-Powers logic-enhanced mem-
ories themselves. It is assumed that the rest of the system,
the "front end" (the viewing transformation engine and the
tree traverser) can run fast enough to keep up with the
10MHz Pixel-Powers memories. We hope to achieve this
by transferring the implementat ion to our fast ari thmetic
processors, which are Mercury Systems ZIP 3232s.

P a r t N a m e S o u r c e P r i m i t i v e s O p c o d e s E q u a t i o n s

Union local 2 54 46
Difference local 2 182 170
Intersection local 2 178 170
Tube [Okino 84] 11 1205 1065
Cut Tube [Okino 84] 12 1969 1733
MBB [Okino 84] 24 2139 1854
Tie Rod BRL 17 2660 2309

T a b l e 1: E s t i m a t e d I m a g e G e n e r a t i o n T i m e

T i m e

.19 msec

.68

.68
4.3
7.0
7.5
9.3

114

Dallas, August 18-22 Volume 20, Number 4, 1986

U n i o n
e s t i m a t e d t ime : 0.19 msec

T u b e
e s t i m a t e d t ime: 4.3 msee

Difference
e s t i m a t e d t ime: 0+68 msec

C u t T u b e
e s t i m a t e d t ime: 7.0 msec

Intersect ion
e s t i m a t e d t ime: 0.68 msec

T i e R o d
e s t i m a t e d t ime : 9.3 msec

I m a g e s f r o m P L x e l - P o w e r s S i m u l a t o r

115

S I G G R A P H '86
i

YI. F u t u r e Work

We hope to implement a Pixel-Powers system in stages
by enhancing the next generation Pixel-Planes chips and
by casting much of the CSG tree traverser into microcode
,for our fast arithmetic processors. The enhancement to
the Pixel-Planes chips involves substituting the Quadratic
Expression Evaluator tree for the current Linear Expression
Evaluation tree and increasing the memory per chip from
the 72 bits in the present Pixel-Planes chips to 128 bits.

We also hope to develop more sophisticated algorithms
for CSG-defined objects: algorithms for generating shadows
and algorithms for calculating shadings on curved surfaces
more rapidly according to more sophisticated lighting mod-
els such as the popular one due to Phong. We also hope
to develop techniques for rendering higher order surfaces
such as cubic patches. Already two approaches for this are
evident: the quadratic expression evaluator on the memory
chip could be expanded into a cubic expression evaluator
(we can already see how to do this, but the size would be
enormous) or we can approximate each of the cubic curves
by combination of many quadratic curyes. We also plan
to implement with the CSG restructuring algorithm the
well-known "bounding-box" techniques to trim the restruc-
tured tree to the smallest possible size. For e:k~rnpje, if the
bounding boxes of A and B do not intersect, i~l~((A - B)
is equivalent to A. , t ~ .

VII . S u m m a r y ' , f ;~.~
. z " "

We have shown that CSG~dg:fi~aed: objects can be effi-
ciently rendered in a l og i c - enh~ed fra~me buffer memory
with fast quadratic expression' e/(aluation for each pixel.
Such rendering can be ei _ciently Generated by first restruc-
turing the tree, if necessary, into a: union of simple trees
and then traversing these trees to-generate a sequence of
quadratic coefficients and operation codes for the logic-
enhanced memories. Resulting images from a software im-
plementation of the tree traverser and display simulator
illustrate the methods and allow estimation of its speed
with an expected hardware implementation. The method's
speed promises real-time interactions for complex CSG ob-
jects and the ability to handle objects ofarbl t rary com-
plexity by building up the image during the traversaI of
the CSG tree.

VI I I . A c k n o w l e d g e m e n t s

We thank the other members of the Pixel-Planes team
- - particularly John Poulton, John Eyles, John Austin, and
Wayne D e t t l o f f - for stimulating discussions and sugges-
tions. We thank John Eyles also for developing a detailed
logic-level simulator of the Quadratic Expression Evaluator
and improving the QEE design in the process.

We also wish to thank our colleagues who graciously
sent us CSG data sets: Paul Stay and Paul Deitz of the
US Army Ballistic Research Laboratory and Professor Art
Requieha, Director of the Production Automation Project
at the University of Rochester. Testing our algorithms on
these externally-supplied data sets considerably increased
our confidence in the algorithms and their implementations.
Also we thank Norio Okino and his colleagues for publishing
their data.

This research was supported in part by the DARPA
contract DAAG29-83-K-0148 (monitored by the US Army
Research Office, Research Triangle Park, NC) and the NSF
Grant ECS-8300970. Jeff Hultquist was supported with a
grant from the UNC Board of Governors.

Finally, we thank Mary Hultquist for her help with the
photographs and text.

IX. References

[1] Atherton, P.R., "A Scan-line Hidden Surface Re-
moval Procedure for Constructive Solid Geometry"
Computer Graphics, Vol. 17, No. 3, pp. 73-82, 1983.
(Proceedings of SIGGI~APH '83)

[2] Fuclas, H., J. Goldfeather, J.P. Hultquist, S. Spach,
J. Austin, F.P. Brooks, Jr., J. Eyles, and J.Poulton.
"Fast Spheres, Textures, Transparencies, and Image
Enhancements in Pixel-Planes" Computer Graphics,
Vol. 19, No. 3, pp. 111-120, 1985. (Proceedings of
SIGGRAPH '85)

[3] Goldfeather, J., H. Fuchs. "Quadratic Surface Ren-
dering on a Logic-Enhanced Frame-Buffer Memory"
IEEE Computer Graphics and Applications, pp. 48-
59, January, 1986.

[4] Kedem, G., J.L. Ellis. "Computer Structures for
Curve-Solid Classification in Geometric Modelling"
Technical Report TR84-37, Microelectronic Center of
North Carolina, Research Triangle Park, N.C., 1984.

[5] Okino, N., Y. Kakazu, M. Morimoto. "Extended
Depth Buffer Algorithms for Hidden Surface Visual-
ization" IEEE Computer Graphics and Applications,
pp. 79-88, May, 1984.

[6] Poulton, J., H. Fuchs, J.D. Austin, J.G. Eyles, J.
Heinecke, C. Hsieh, J. Goldfeather, J.P. Hultquist,
and S. Spach. "PIXEL-PLANES: Building a VLSI
Based Raster Graphics System" Proceedings of the
i985 Chapel Hill Conference on VLSI, pp. 35-60.

[7] Requicha, A.A.G. "Representation for Rigid Objects:
Theory, Methods, and Systems" A CM Computing
Surveys, Vol. 12, No. 4, Dec. 1980, pp. 437---464.

[8] Sato, H., H. Ishihata, M. Ishii, M. Kakimoto, K.
Sato, K. Hirota, M. Ikesaka, K. Inoue. "Fast Image
Generation of Constructive Solid Geometry Using A
Cellular Array Processor" Computer Graphics, Vol.
19, No. 3, pp. 95-102, 1985. (Proceedings of SIG-
GRAPH '85)

116

