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ABSTFACT
One of the major drawbacks of video
display systems for line drawing
applications has been the poor image
guality they wusually produce -- "jaggy",
"staircased" line edges, moire patterns in
regions of closely spaced lines, even,
with some systems, lines disappearing
("falling in") between pixels. Correcting
these effects, wvith appropriate area-
sanpling techniques, has generally been
too computationally expensive to adopt.
A nev algorithm is

presented which

generates precise, smooth images of line
dravings and solid polygonal-shaped
objectgon multi-grey-level pixel-mapped

video systems. The method is based on an
analysis of boundary conditions at each
pixel affected by one or more lines. With
this method a nurber of previously needed
steps can be gquickly eliminated. 1he
commonality of boundary conditions between
adjacent pixels and the coherence of such
conditions in a raster-scau ordering of
such pixels allows efficient generation of
these boundary conditions. A recursive
subdivision approach allows handling of
arbitrarily complex cases by a sirfle
boundary-analyzing technique. Compared
with current line-drawving systems, a video
systemr with +¢his algorithm would also
display an improved image with respect to
certain comron visual effects -- e.g.,
distance modulaticn of 1line intensity
(vhich may be desirable), artificial small
bright clusters of detail (wbich is
undesirable).

Since the software interface to the
algorithm may be handled tbhrough already-
standard graphical subroutines, adoption
of the algorithm may be accomplisbhed
without burdening graphic system users or
graphic system-vutilizing software.
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the Mational Science Foundation under
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INTFODOCTION
The use of

has increased
years due to

video graphic terrinals
significartly in recent
their inherent flexibility
and virtually limitless display capacity.
They are unsurpassed in generation of
realistic, continuous-tone and color
images, for exarple. They have not beer
widely utiized, howvever, for interactive
line drawing applications, for wvhich
refresh line-drawing systems and storage
tube displays have traditionaly been used.
Befresh systems have much more convenient
mechanisms for moving already drawr
graphical entities and both these systenrs
and storage tubes generally have higher
spatial resolution than current video
displays. This paper presents a method of
using the video display's variable grey-
level capability to alleviate some of its
deficiencies due to its limited spatial
resolution. (Although we focus in this
paper on the application of this algorithr
to video terrinals, the basic ideas also
apply to other output devices (printers,
CRT's, even veaving loors) which carn
control the grey level of each picture
elemert in the field of interest.)

Current
generation
Sproull(1973))
binary value

metheds of digital
(see, €.g., Newman
generally assume
for each picture
(pixel); the resulting line
invariably exbhibits Jaggy, staircase
effects (fig. 1). If a small region of
the screen is examined closely, the reason
for these jaggy lines becomes apparent
(fig. 2). The "ideal" edge of a line (now
having considerable width in this close-
up) may often go through the area of a
pixel but not cover it corpletely. The
line-draving algorithm, however, makes a
binary decision for each pixel, irplying
that it is either all covered by the line
or not covered by it at all. This is
sometines done by sampling the point at
the center of the pixel; if that point is
covered, the pixel is considered covered;
if that poirt is nct covered, the pixel is
considered not covered. In the above
exarple, even a simpler, wmore direct
algorithm was wutilized. Since such an
algorithm (a symmetric DDA in this case)
simply generates a sequence of pizxel
positions which should be set to a Lol | I
its decision to put a 1 at a particular
Pizxel is somewvhat more difficult to
analyze. The obvious solution is to allow
a greater range of choices for the line-
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and
only a
element
drawing
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draving algorithm than 0 or 1 and bave the
final value reflect the percentage of the
pizel's area covered by line (fig. 3).

solution would

At first glance tbhe

appear to be one of simply adding more
precision to the 1line draving algorithm
vhich calculates the sequence of pixels
affected by a given line segment; not

simply setting them to 1 or 0, ®covered®”
or *not covered" but calculating a value
between 0 and 1 for each such pixel. 1Tbe
futility of any such sequential algorithm,
however, is easily demonstrable. 1In these
algorithms the line-segments are handled
sequentially, i.e. all the affected pixels
of one line segment are determined and
appropriately set (even if to variaktle
grey levels) before the next line segment
is considered. Let us consider tvo cases
composed of the lines in fig. 4: a) the
picture consists solely of line segments 1
and 2; or b) the picture consists solely
of line segments 1 and 3.

In either case, after the first line
segments had bLeen processed the value of
pixzel (47, 72) would be 0.5 (on a 0 to 1
scale) . On processing the second line
segment the algerithr would f£ind 0.5 at
(47, 72) but could not possibly decide
(vithout knowing about the previous 1lines
vhich caused the 0.5 value) how to alter
the pizxel. In case a) the pixel should,
of course, be set to 1.0; in case b) it
should be left at 0.5. Thus, in order to
deterrine the proper value for a pixel,
all the line segments affecting it bhave to
be considered together. This suggests an
algorithm which saves all the line segment
information, then calculates the
approximate pixel intensity values for
every pixel in the image in some
convenient (e.g., raster-scan) order, and
indeed, our solution adopts this general
approach.

PREVIOUS WORK ON THE PEROBLENM

In the past fev years, vith tbhe
increased availabiity of multi-grey-level
video displays and inexpensive LSI micro-
processors, a number of researchers have
focused on this problem, with encouraging
results.

Some early work at Xerox Palo Alto
Research Center on this topic is descrited
in Shoup (1973).

Crow(1977) explains the undesiraktle
visual effects in terms of aliasing
phenorena inherent in sarpled signals, and
suggests a pre-sanpling filter as a wvay to

elirinate higher freguencies than  the
sarfpling one. More .recent work is
reported ir Crov (1978).

Catrull(1978) of §Y Institute of
Technology described a visible surface
algorithm for 3-D scenes which precisely
calculates the value at each pixel by
considering all the visible polygons
there. This algorithm comes closest to
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our method. It's geperality, however,
prevents it from taking advantage of the
simplifying observations central to our
approach.

PROPOSED SOLUTIOHN

As mentioned above, the overall
structure of our solution is a raster-scan
type algorithm, similar to ¥atkins (1970).
Within a single pixel, a recursive
subdivision approach is utilized (sizilar
to Warnock(1969) and Sutherland (1973)) to
calculate the grey-level value for this
pixel's intensity, which is, of course,
related to the fraction of its area not
covered by polygons. (Of course, we could
just as vell have chosen to determine the
fraction of its area govered by polygonms,
since the sum of these two values must
reach unity; it turns out that the former
may be just slightly more efficient to
calculate than the latter.)

Before presenting the detailed
algorithmic structure, we'll first discuss
some of the basic elements of our
approach. '

Edges:

A line-draving image consists of a
set of line segments on the screen. 1In
our algorithm each such line segment is
converted into a (long, thin) polygon
vhose boundary is defined by edges
(fig. 5) . (In general, our algorithm can
accept any convex polygon.) An edge is
oriented, in that it has two sides, an
open side (toward the outside of the
polygon) and a closed side (toward the
inside of the polygon).

Boundary Lists:

The basic
systen is a
intersections for a given
pixel) of interest (fig. 6). In general
an open area is one free of any polygon
covering; a closed area is one covered by
one or Eore polygons. As will be seen
belov, significant geometric information
concerning the enclosed area can be
deduced from such a boundary list, thereby
avoiding more costly geometric
calculations. (Bote the difference
between the boundary of an area and the
boundary of a polygon.)

processed our

boundary

entity in

list of edge
area (e-g.,

Considering nov the boundary of
area of interest, a (fpolygon)
crossing a boundary of such an area
considered to be either a Jleading
intersectiop or a trailing intersection
(fig. 6). A leading intersection is one
through which a counter-clockvwise
traversal at the boundary enters a
polygon. A trailipg tersection is one
through vwhich such a traversal leaves a
polygon.

an
edge
is

Yertices:




A vertex of a polygon is marked on
its two defining edges, each of which is
extended to the nearest area boundary

(fig. 7). An edge extended in this way
forrs a virtual jiotersection.
Ixtent of Polygon Cover:

A solid edge covers a boundary-
defined area betveen its leading and
trailing intersections -- this coverage

extending around the
appearance of another
polygon (fig. 8).

toundary until the
edge of the same

The only enhancement needed to always
be able to calculate the extent of polygon
coverage from the boundary list is in the
situvation wvhen an area is completely
surrounded (and thus completely covered)
by a polygon. This situation is always
detectable in our raster-scan processing
order in that before reaching a completely
covered pixel the processing encounters at
least one of the left edges of the
surrounding polygon (fig. 9).

The solution adopted is to detect if the
right edge of a pizxel is completely
covered and save the identification
number (s) of the polygon(s) completely
covering this edge. A fictitious edge of
this pfpolygon is then inserted at this
right edge of the pizxel so that the
coverage of the next pixel can ke deduced
from ite own boundary list (fig. 10).

Ko special additional processing is
regquired as a result of this enbancement
since the desired effect on this nev pixel
is exactly the same as the effect achieved
by a "normal" edge being in this sanme
position covering the entire pixel's area.
¥e note also that this fictitious edge
will automatically propagate until a right
edge of the polygon is encountered.

Splittipg MAreas:

We recall that the overall goal of
processing a rixel is to calculate the
fraction of its area left uncovered by

polygonms. Be adopt a divide-and-conquer
approach to processing a single pixel, in
that, if the situation inside the pizxel
(as reflected in its boundary 1list) is
sufficiently simple (in our case tbhis
means 0 or 1 polygons present) then vwe
calculate the remaining area directly.
Othervise wve recursively subdivide the
area until we reach sufficiently simgle
cases.

We alvays attempt splitting an area
in two along a solid edge in hopes of
being able to discard the closed side
subarea. We can discard the closed side
subarea if it is entirely covered by the
splitting edge (fig. 11). (¥We can simply
throv awvay any completely covered area
since the final computation ve seek is
simply the percentage of the pizxel area
left open (i.e., uncovered by any
polygon).)

A newly split .area
completely covered if
no edge in it from the

such as this is
an only if there is
same polygon as the
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splitting edge (see again fig. 8 a and b).
Bote, this implies that in the case where
the splitting edge is "virtual™ at one or
both ends, the "closed”™ subarea is never
immediately discarded (fig. 12 a and b).

The boundary 1lists increase the
efficiency cf the splitting process in two
ways:

a. identifying a most advantageous edge
along vhich to split the area,

b. identifying precisely those edges
vbhich need to be split in two as a
result of this area splitting.

#e identify a most advantageous edge
along vhich to split the area by

calculating a "depth count™ for each edge
along the boundary; this process, sirilar
to parenthesis depth calculation, is
easily achieved in a single scan of the
boundary (fig. 13). A best edge is one
with wminimum depth count and one which
completely covers its closed side subarea.

We note that the two ends of a
splitting edge partition the boundary list
into tvo contiguous pieces. The edges
vhich are split are simply those with one
end in one group and the other end in the
other group. Again a simfle parentheses-
match type process identifies these edges.
The boundary 1list for the splitting edge
-- which will now become part of the
boundary in each of the two subareas -- is

constructed out of these edges just
identified as crossing this line.
The corplete boundary list for each

of the nev subareas is constructed out of
one of the tvo parts of the old boundary
list appended, in the proper order, to the
nevly computed boundary 1list of the
splitting edge (fig. 14).
Splitting a Virtual Edge:

Since a virtual intersection is but a
marker for an enclosed vertex, its edge
need not be extended across any splitting
boundaries (fig. 15). Thus these edges'
intersections are elirinated from one of
the two newv subareas (the one which does
not contain a vertex of that edge).

This property also implies that a
virtual edge need not be considered until

processing reaches the pixel in which its
vertex (vertices) lies (fig. 16a), and
also implies that virtual edges do not
need to be carried along from one scan
line 40 the next (fig. 16b).

SYSTEN OGANIZATION

Cur rethod was designed to fit easily
into existing video graphic systens.
These systems almost always wuse a full-
image mermory buffer (a "frame buffer")
fromw which the screer must be constantly
refreshed in order to maintain the image
on the video screer (fig. 17).

Praving lines on the

screen usually




consists of a opumbter of HOVE(X,Y) and

DEAW(X,Y) calls to low 1level procedures
which, for a single line segment,
detercine and set the affected pizxels in
the image buffer.

The overall organization of our
proposed solution involves storing away
(say, on disk) each [ (x1,Y1), (12,12))

line-segment pair as it is encountered for
processing by the current low level
procedure. Then, after all the 1line
segments for an image have been processed,
this file of saved inforration is input to
our algorithm, which calculates the wmore
accurate value for each of the pixels on
the screen vhich is affected by one or
more line segments. It is interesting to
note that adoption of our solution will be

completely transparent to the user. a
subtle visual effect may be noticed,
hovever, a fev seconds after normal ("cld

fashioned™) processing has finished: tbhis
should be sometbing of an ™ephemeral scan"
moving down the screen, adjusting the
intensity of certain pixels in its path.

ALGORITHE DESCRIPTION

We nov proceed with a description of
the overall algorithm.
1. Creating Y Buckets on Disk
As described previously each original
line segment (or other €lementary symbol)
is converted into one or more convex
polygons, each polygon being defined by
the seguence of edge intersections forming
its boundary (see again, fig. 5). e
established (usvally on disk) a tuffer for
each scan 1line and as each polygon is
processed, each one of its edges is Fut
into the 'Y' bucket according to its top
vertex. When the entire picture has been
generated in the standard ("old fashioned)
vay all the edges vill have been put into
the proper 'Y' Luckets on disk.
2. Scan Line Processing
The overall processing is done in the
standard raster scan tkasis, proceeding
fror top to bottom on the screen, and in
each scan line from left to right (as in
Watkins(1970)). As Catmull (1978) properly

notes, a scan 1line is really a finite
strip of area the width of a pixel.
(Although we continue to use the accepted

terr "scan line", we want to keep in mind
that the term refers to an area.) For
each scan line we keep two ordered lists
of polygon edge intersections, sorted on
I; one for the intersections with the top
edge 'YTOP? and another for the
intersections with the bottom edge
*XIROTTON" (fig. 18). (As will
described below, the XBOTTOM list of
scan line becomes, vith minor updates,
XTOP of the next scan line.)

be
one
the
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Be begin processing of a nev scan
line by taking the old XIBOTTOE list and
removing all virtoal edge intersections
from it -- these are precisely those edges
vhose bottor vertices were located in the
previous scan lipe.

The nev XBOTTON is composed of the
extensions of the (new) ITOP list and the
nev entries at this scan line. (This kind
of npdating is utilized in several raster-
scan visible surface algorithms see
Sutherland, Sproull, and Schumacker (1974)
for a good exposition.) Some extensions
of the ITOP edge intersections may
intersect the XBCTTOM 1line outside the
image area off the left or the right
sides of the screen. Por these edges, the
intersections vith the edges of the screen
(instead of intersections with the XIBOTTOR
line) are used. The LEPT_LIST, which
forms the left boundary of the first pizxel

on this scan 1line, is cormposed of all
those entries of the IBOTTON list with X
values of 0.0.

These operations are summarized in

the following statements:

SCAN_LINE_PROCESSING:

BUCKET &+ edges in bucket for this Y value
(probably from disk);
XTOP « REMOVE_VIRTUALS( XBOTTOM );

XBOTTOM & MERGE (XSORT (EXTEND (XTOP) ) ,XSORT (BUCKET) ) ;

LEFT_ADJUST(LEFT_LIST,XBOTTOM) ;
XMIN « MIN(LEFTMOST (XTOP),RIGHTMOST (XBOTTOM) ) ;
XMAX « MAX(RIGHTMOST (XTOP) ,RIGHTMOST (XBOTTOM) ) ;
for X=0 to 511 do
if (X<XMIN or X>XMAX)

then output (BACKGROUND_COLOR)

else PIXEL PROCESSING;
end,

§e nov describe the at

each pixel position.

Frocessing

PIXEL PROCESSING

Lreating the 'Bight' List:

As described freviously we need to
forr the pixel boundary 1list, which is
composed of a counterclockvise traversal
of the pixel. This boundary is actually
the concatenation of four lists: ‘TOP',
*LEFPT', 'BOTTOE', and "RIGHT'.

note that:

'TCP' and 'BOTTON' are already
defined between the two Fointers
carried along the *ITOP" and
*IBCTTOR' lists;

2. The *BIGHT' list of one fpixel

becomes the ‘'LEPT' 1list of the
next (except for "virtuval® edge
intersections which are dropped,
and “fictitious™ covering edges

fie
1.




which are added -- as descrited
above) .

In this fashion only one guarter of
the overall pixel boundary list needs to
be computed, the *BRIGHT® list (fig. 19).
The computation of this list can be easily
accomplished by first scanning the already
existing 3 1lists: ‘T0P°, ‘LEPT', and
*BOTTOR'. Then, since each edge has two
intersections in a closed boundary list
(the area is a convex polygon), the
entries for the 'RIGHT' list are exactly
those intersections of *TOP', 'LEPT' and
*BOTTON' which do not have matches. All
that remains to form the °*'RIGHT® list is
the calculation of these edge
intersections with the right edge of the
current pixel.

At this point there is a conplete
boundary 1list for the current pixel which
is made of four separate boundary lists,
all of ther linked in a counterclockvwise
order and ready for the actwal polygon
cover processing. The overall pizxel
processing, then, can te summarized as
follows:

PIXEL_PROCESSING:

if x>0 then

LEFT_LIST4 MODIFY_RIGHT (RIGHT_LIST);
PIXEL_LIST « FINISH_BOUNDARY (

XTOP, XTOP_POINTERS,

XBOTTOM, XBOTTOM_POINTERS,

LEFT_LI1ST )s
output ( AREA(PIXEL_LIST));

ABEA calculates the extent of polygon
cover for the area described by the
PIXEL_1IST. As mentioned previously, it
does this either by direct calculation (if
the list contains either 0 or 1 polygors)
or by recursively splitting the area until
sufficiently simple subareas are
encountered.

Recursive Function AREA (boundary_list)

if SIMPLE(BOUNDARY_LIST) then
return CALCULATE_AREA(BOUNDARY_LIST)
else
SELECT (BOUNDARY_LIST,SPLITTING_EDGE);
CUT (BOUNDARY_LIST,SPLITTING_EDGE,
OPEN_SIDE_LIST,CLOSED_SIDE_LIST);
if UNIQUE_EDGE(SPLITTING_EDGE,CLOSED_SIDE_LIST)
then return AREA(OPEN_SIDE_LIST)
else return AREA(CLOSED_SIDE LIST) +
AREA (OPEN_SIDE_LIST);

ERD AREA;

SINPLE is a predicate (Boolean
function) which determines wbether or not
the area represented by "boundary-list" is
sufficiently simple to calculate the
extent of polygon cover directly. An
affirmative answer is reached if a) there

are no polygons at all in the area or b)
there is only a sirple polygon oI fraction
thereof in the area .

CALCOLATE_ABEA directly calculates
the area cf polygon cover (in absolute
pixel units) of a sinple boundary-defined
area. :

SELECT determines a best edge to be
used for splitting the area into two
subareas.

CUT divides an area into tvo new
areas creating a newv boundary list for
each subarea. It splits the initial list
into tvo non-closed . lists and then
concatenates each non-closed list with the
boundary 1list found for the splitting
edge.

UNIQUE_EDGE determines whether or not
the "splitting_edge"'s polygon has another
edge which is in the nclosed_side_list".
(1f it doesn't, then the  entire
closed_side area is covered by the
mgplitting_edge®'s polygon.)

%e present in fig. 20 examples of the
results cof the just-described algorithm,
as compared with the same data displayed
on the same system (Genisco GCT3) using
the standard line-drawing sof tware.
CONCLUSION

We have preserted a method for
creating precise, smooth line dravings on
rulti-grey level video displays. The
method determines the proper pixel values
even in extreme cases in vhich many lines
appear within a single pixel. Geormetric
calculaticns such as lipne intersections
are nmuinimized by reliance on siogle
analyses of ordered boundary lists.

Hith conmenly available video
monitors being limited at present to about
1026 x 1024 pixels, methods such as the
one 3just [freserted may provide the least
expensive vays to achieve higher gquality
images on these disglays.
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line segment 1 line segment 2
(line segment 3 is similar)

!ign 4

line segments

edges

1-4: from application program
a-m: internally generated by system
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trailing intersection

open area

polygon

boundary of area_‘.t

leading intersection

losed area

Fig. 6

virtual edge intersections

boundary-
defined
area

polygon

cover of polygon edge
extends through area

B
|

cover of polygon ended

Pig. 8

no edge of the polygon in
this (completely covered) pixel

Pig. 9

"fictitious" edge
induced by edge A

Fig. 10

splitting edge
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splitting edge

’,best splitting edge
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splitting edge 3 1 H
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Original boundary list: MNABCDEFGHIJKLM

Boundary lists after

splitting: MNABCDEFGHP  ONIJKLM

Pig. 14
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(extended) edges
Fig. 18
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—XBOTTOM 1list L-\ " it g ’
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pointers

Fig. 20a: Standard processing
(same as Fig. 1; placed here for comparison)

[All parts of Fig. 20 are 256 x 256-pixel images]

Fig. 20b: New processing
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New processing

Fig. 20d

Fig. 20c: Standard processing

New processing

Fig. 20f

Fig. 20e: Standard processing (different line

intensities indicate different colors on monitor)
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