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Described is a simple, efficient algorithm for determining the
pearest displayed point on a screen to an arbitrary cursor position.
The algorithm seems pParticularly appropriate for interactive systems
using a data tablet with a "smart® controller. The algorithm is-
based on partitioning the screen among the currently displayed
points and minimwally modifing this structure as points are added and
deleted. Pinding the nearest point for cursor position consists
then of moving through this partitioning structure until the region
is determined. A divide-and-conquer method is used for both
inclusion testing 4in a particular region and also for speeding the
search for the proper nearest point.
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1. Introduction size of the screen.

A basic, often encountered, problem 3. Changes in P while relatively

in interactive computer graphics concerns infrequent, with respect to
the determination of the proper picture changes in Q often occur
element "pointed to” by the user- incrementally, i.e., certain P 's
controlled cursor. This seemingly simple are deleted or moved, or new y '8
problem becomes increasingly burdensome to are added.
the system as the scene complexity grows.
Naive solutions to this pProblem cause 8. Changes in P often occur in
significant time delays in the system Clusters of points as an entire
response. For users of these kinds of graphical object may be moved,
Systems delays of even a few seconds are deleted or inserted.

distracting to the overall design tasks.
A straightforvard approach requires

Pormally this problem can te stated 0 (n) operations. Bevman nd Sgproull
simply: Given a set of points on the (1973), in their popular tex® ok describe
Screen P = {PI'Pz""Pn} vhere a technique vhich utilizes a small
Py = (x5,Y¥) and the cursor position, ®"window"™ around each P, and then <checks
=(x_,y.) find 10 for vhich vhether Q is inside specific windowe.
610,51 f = nin[d(ﬂ.?il!i-1.2,...n], vhere (Alternately a windov can be constructed
4(Q,P;) is the distance from Q to P;. around a cursor position.) This apgroach

suffers from serious limitations, e.g.,

It may be important to observe the cursor .may not lie in any square, or
certain characteristics of the if squares overlap it may lie in more than
applications in which this problem is one, thus requiring further operations to
encountered: , find a solution. (Sicilarly vwvith the

vindov drawvn around the cursor point,

1. The computation of i, bhas to there may be none or many screen points

be executed frequently for vhich lie inside it.)
changing values of ¢ with a
relatively stable set P. Another approach cuarrently used
involves marking selected data points as
2. The distance between two the only ones wvhich can be ®touched™ anad
consecutive values of Q for which tbus reducing the total number of points
the problem is to be solved is to be considered.

generally srall relative to the
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This problemr is related to one
described by Knuth(1973) as the "post
office froblem.”™ It involves
Freprocessing Py *'s in such a way that
given (Q, an approfriate i, |is found
efficiently. Solutions to ehis problem

vere given by Shamos(1975) and Lipton and
Tarjan(1977) . These solutions did not
deal wvith the characteristics of our
probler described above and +thus more
appropriate solutions may be devised to
deal with it.

2. Outline of Solution

Oour solution utilizes a structure in
a n-dimensional Euclidean space introduced
by Vecronoi, described in Rogers(1964).
This structure partitions the space into
convex polyhedra. 1In our two-dimensional
case it is a planar graph whose regions
are convex polygors each containing
exactly one of the Py 's and containing
exactly the points of the screen which ate
closer to this P, which is inside the
poelygon thar to any other P, . (See
fig. 1.) (Sharos(1975) used the Voronoi
structure to solve several related
problems.)

Figure 1. Voronoi structure
our solution involves three
components:

a. determining closest point:

given a Voroni structure for
points on the screen
Y(P, P and a cursor

veeeP )
pofiéf%n Q. "find the closest P ;

b. adding a point:
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given a V(P ,P ree«P ) and a new
point  Pp,;, ‘construct the new
V(E . F sece,E_ )3

) I 4 1

c. deleting a point:

given V(P1,Py,...P ) and an i,
1<i<n, (a point o be deleted)
construct

'“’1"2""'Pi-l’pi+1"”'Pn"‘

We shall describe each of these parts
in turn:

a. Determining closest point:

here that the structure
has already been created.
either by
and thus
reseesP )

Ve assume
V(P ,P,seeasP))
(This “can be acconmplished
iteratively applying part b)
creating V(P)),V(P,,F,) yeee, V(P
or applying an ot%-l ne algo:ith& such as
the one described in Shamos(1975).) our
approach to determine closest point is to
initally check vhether the solution to the
just-previous cursor position is still
valid -- if not, iteractively wmoving in
tovard the nev closest P,.

Specifically, the old closest F[oint
P, is still the closest point if and only
i% Q is contained in P;'s associated
Voronoi polygon. (See fig. 2.)

Voronoi structure with screen

Figure 2. A
points and successive cursor positions

To efficiently perform this
surroundedness test wve utilize a npevw
algorihm for determining inclusion of a
point in a convex polygon. (We shall from
here on refer to this as an "inclusion
test.") The algorithm is described more
fully elsevhere (Kederx and PFuchs(1978));



ve . describe it here only as it relates to
this problem.

The Voronoi polygon associated with a
point B, can be defined by a sequence
(say, counter-clockvise) of vertices
W = (V) % geeavp)e A straightforvarad
method, as described in Sutherland,
Sproull, and Shumacher(1974) to test for

inclusion would involve testing Q against "’

each line segment ¥i ¥V 133 i = 1,..., m=-1;
and mmv;. C would be inside if and
only if (Q were on the left side of all
these lines.

The number of tests, m, can be
significiantly reduced by the following
procedure: Pirst test (Q against 1line
?;ﬁi,h=r(1+rj/2l. (See fig. 3.) If Q is
to the right of this line, then if it is
inside B it must be inside the polygon
defined by (Y +% 4eeer% ). On the other
hand, 4if Q "is to the left of this line,
then if it is inside Py it must be inside
the polygon defined by (v A WA FERTERL N

Figure 3. Testing for inclusion in a
Voronoi pelygon (first step)

Thus, in one step the problem is reduced
to one which is aprroximately half the
size of the original problem. The same
divide-and-conquer approach is repeated.
Q is tested against either
;{1;.: = r (14h) /21 or if?‘.: = [ (h4m) /2.
is process is rereate until only a
"sliver™ of the original polygon
. rfemains == (!&. Vi) This will
take Tlog =1 4 1 tes kt this point wve
knov that Q is to the left of !;T and to
the right of w Y. - (See f%. 4.) a
single test agains “‘?‘:I determines
‘vhether Q is indeed inside or outside

the polygon { . It is easy to see that
such an approach is advantageous not only

for large m

tests is

(for m=100, the rumber of

reduced to 7% of the origiral),

but even for m as small as 4 -- in which

case the

nuwber of tests is already

reduced by 25%.

Pigure 4.

Last step in a inclusion test

Pigure 5.

Deterrining next polygon for
inclusion test




Thus we can very efficiently
determine whether or mnot the previous
P is still the closest point. If it is
not, then the inclusion test fails, but
still yields a very important result --
namely, that Q is inside the semi-infinite
truncated vedge <‘11.l=1 A TR (See
fig. 5.) ) | glightly different
(untruncated) wedge results in the special
case vhere (Q 1lies either to the left or

¥ ¥, to the right of H % .

This indicates the direction of the
polygon in which ¢ lies. Thus the next
polygon tested is the other polygon which
contains the edge ¥ ¥i;j. (Purther, one
edge of this nev polygon has already been
tested -- ¥ v .1). The remaining tests
are performed as before. 1In this way the
procedure "homes in®" on the proper P .
(See fig. 5.)

b. Adding a point:

Adding a new foint, B4+, into the
Yoronoi structure is accomplished by first
determining the closest point Pj according
to the just-described method (consider
‘Q = By4+1). The a nev Voronoi polygon is
wcarved out™ around this pnewv point P by
the following segquence of operations:

Figure 6. Adding a point (first step)

The polygon V¥; is partitioned into
twvo polygons by the perpendicular bisector
of Py and P4 The region in which
P lies is the new Yoronoi polygon for P; .
The other region, in which P,,; lies s
the begippipg of the Voronoi polygon for
Poo1- The rest of the polygon is
conltructed by combining regions acquired
in a "traversal®” of perpendicular

768

bisectors around P,;;, by the following
met hod. Consider the part of the
perpendicular bisector which lies within
L Por a counter-clockwise traversal
c3nside: the orientation on this bisector
line segment such the Ph+]1 is on the left
and P, is on the right. (See fig. 6.)
The hcid of this arc intersects (touches,
actually) an existing segment, Vvyvj,.,, of
the polygon of Pj. Call this point of
intersection v and let Py be the point
associated vith the polygon bounding of
?‘?I" (See again Pig. 6.) It is easy to
lil tkut v! is equidistant from the three
points P,,P ... and P,. The next stage of
the 'calving out® 5: a pelygon for
Pn+1 consists of using the perpendicular
bisector betwveen P, ,; and Py to divide the
old polygon of P, between P ,; and Py.
The bisector will start at vi. the erd of
the Just previous perpendicular bisector.
This procedure continues until the path of
the perpendicular bisectors completes its
circuit around P,4; and returns to the old
polygon of Pj. (See fig. 7.)

Pigure 7. Pormation of Voromeci polygon
for a nev point

c. Deleting a point:

Deleting a point, say P4, from a
Voronoi structure is simply the reverse of
adding one; a new Voronol structure is
constructed inside the polygon V,, using
only those points which share a conmmxon
boundary with this polygon. The region
acquired by each of these points is then
aipcndod to its previous polygon. (See
fig. 8.)

¥We note that the algorithms to test
for inclusion in a convex polygon and to

s




construct a pew Yoronoi polygon are
optimal. The proof for the first one
appears in Kedem and Fachs(1978) ; and the
elerentary steps in the latter
is egual to the nurber of line Ssegments in
the generated Voronoi Polygon,

-

o N

Deleting a point

Pigure 8.

The simple iterative nature
just-described
the possibility

of the
algorithms makes attractive
of 1nplomont1ng them in a
small dedicated Processor which would be
closely coupled to the normal display
Frocessor's merory. In this way, with
constant access to all displayed points
and the cursor position, this dedicated
Processor could easily maintain, (and
constantly update) the Closest displayed
point, indicating it on the Screen with a
special marker. (See fig. 9.). With such
a syster not only wounld perceptable delays
in hit detection be less likely, but the

system user would soon learn (through
constant cursor feedback) the minimom
Novements necessary to control the kit
detection rechanism,
hadd ‘:::l:y
wmit )
:u d-uetl-‘n ‘::::"_
tablet comtreller

Pigure 9. Syster architecture for
dedicated processor izplementation

-
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3. ZExtensions
Extensions of the

design have not

generalization

algorithne for
Yet been explored, but he
Promising. The
individual Polygons would generalize to
convex polyhedra, the pPerpendicular
bisectors generalize to plapmar tiles and
the simple traversals around a point to
obtain a new Polygon would generalize to
an appropriate "non-determnistic flooding®
of the adjacent Polyhedra.

Further extemsions are needed to take

advantage of the fourth characeristic
ment ioned in the beginning of this paper;
namely, that Changes to the set of

in clusters
a8 an entire graphical object is inserted,
moved, or remwoved. Perhaps the Yoronoi
Structure Cluster of points could
then efficiently Berged
the larger, full-screen

often occur

extracted from
structure.
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