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Abstract

In this paper, we present approaches toward an interactive visualization of a real time input, applied to 3D���������	����
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reconstructs a regular 3D volume and renders it.  Rendering is done by an incremental image-order ray-casting algorithm
which stores and reuses the results of expensive resampling along the rays for speed.  The second is our first experiment���A3�	���8���	���7-�����.6�3GH�'132I���	:���������������8�	���6���������	����
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interactive rate using a parallel volume rendering code running on the graphics multicomputer Pixel-Planes 5.

1. INTRODUCTION

We have been working toward an ‘ultimate’ 3D ultrasound system which acquires and displays 3D volume data in real
time.  Real-time display can be crucial for applications such as cardiac diagnosis which need to detect certain kinetic features.
Our ‘ultimate’ system design requires advances in both 3D volume data acquisition and 3D volume data display.  Our
collaborators, Dr. Olaf von Ramm’s group at Duke University, are working toward real-time 3D volume data acquisition 36,
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The first area is presented in 22, which used a stochastic technique with a priori information (e.g., continuity) to detect the
locations and orientations of surfaces in 2D ultrasound echography images.  On the second area, we have been studying a
virtual environment for 3D ultrasound imaging 1.  The system uses video see-through head-mounted display (HMD), which
involves the merging of computer generated images with real-world images captured by video camera mounted on a helmet
worn by a user.  Our video see-through HMD system displays ultrasound echography image data acquired in real time (e.g., an
image of a fetus in a uterus) in the context of real (3D) objects (e.g., an image of a pregnant woman).  This is a part of our
continuing see-through HMD research, which includes both optical see-through HMD and video see-through HMD.

On the third area, since the only real-time data scanners available today are 2D ultrasound scanners, we try to
approximate our ‘ultimate’ system by incrementally acquiring and visualizing a 3D volume.  A volume is acquired as a
streaming sequence of 2D data slices, which is reconstructed and rendered by the system as each slice arrives 30, 31.  This
incremental system works with data sets acquired by a 2D echography scanner and a 3-degree-of-freedom (DOF) mechanical
arm tracker which captures the location and orientation of each 2D slice.  We have implemented an incremental  visualization
algorithm, which we have been testing off-line.  The reconstruction algorithm used for the incremental system is extendible
to 6 degrees of freedom, e.g., a 3D translation and a 3D rotation, at greater computational cost.  We have implemented aG8�B1B20�Va+�7�V�+�b�c+��+�=�c�+�d�e�<�<#�+�(�c�e�+�<�c�c+���<�c�++�>�c�c�+.f�<�;�g�++�+->�c�+�<�e�<.h�<�+�c�<���b!+�b�c�<.;"ji^�d�e�<�+�+�<�e�<���c�+�g�>�<�b�+�c��+�=G8�,1B2
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reconstruction is straightforward.
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2. PREVIOUS WORK IN 3D ULTRASOUND IMAGING

The advantages of ultrasound echography are that it is relatively safe compared with other imaging modalities and that
images are generated in real time 41.  This makes it the preferred imaging technique for fetal examination, cardiac study, and
guided surgical procedures such as fine-needle aspiration biopsy of breast tumors 6.  Ultrasound echography offers the best
real-time performance in 3D data acquisition, although slower imaging modalities such as MRI are improving.  The



drawbacks of ultrasound imaging include a low signal to noise ratio and poor spatial resolution.  Intern folklore states
“Ultrasound is when you unplug the TV antenna.” 12.  Ultrasound images exhibit “speckle” which appears as grainy areas in
images.  Speckle arises from coherent sound interference effects from tissue substructure.  Information such as blood flow can
be derived from speckle but in general speckle is hard to utilize 38.  Other problems with ultrasound imaging include
attenuation that increases with frequency, phase aberration due to tissue inhomogeneity, and reflection and refraction artifacts
12.  These issues present challenges in 3D visualization of ultrasound echography images.

2.1  3D Ultrasound Image Acquisition

Just as ultrasound echography has evolved from 1D data acquisition to 2D data acquisition, work is in progress to
advance to 3D data acquisition.  Dr. Olaf von Ramm’s group at Duke University is developing a 3D scanner which will
acquire 3D data in real time  35, 36, 40.  The 3D scanner uses a 2D phased array transducer to sweep out an imaging volume.  A
parallel processing technique called Explososcan is used on return echoes to boost the data acquisition rate.

Since such a real-time 3D medical ultrasound scanning system is not yet available, prior studies on 3D ultrasound
imaging known to the authors have tried to reconstruct 3D data from imaging primitives of a lesser dimension (usually 2D
images).  To reconstruct a 3D image from images of a lesser dimension, the location and orientation of the imaging
primitives must be known. Coordinate values are explicitly tracked either acoustically 2, 16, 27, mechanically 9, 10, 14, 25, 30, 34,

37, or optically 26.  In other systems, a human or a machine makes scans at predetermined locations and/or orientations 4, 11,

15, 17, 23, 28, 39.

A particularly interesting system under development at Philips Paris Research Laboratory is one of the closest yet to a
real-time 3D ultrasound scanner 4.  It is a follow on to earlier work which featured a manually guided scanner with mechanical
tracking 14.  This near real-time 3D scanner is a mechanical sector scanner, in which a conventional 2D sector scanhead with
an annular array transducer is rotated by a stepper motor to get a third scanning dimension.  In a period of 3 to 5 seconds, 50
to 100 slices of 2D sector scan images are acquired.  Currently the annular array transducer in this system provides better
spatial resolution, but less temporal resolution, than the real-time 3D phased array system by von Ramm et al., mentioned
above.  A commercial product, the Echo-CT system by Tomographic Technologies, GMBH, uses the linear translation of a
transducer inside a tube inserted into the esophagus to acquire parallel slices of the heart.  Image acquisition is gated by
respiration and an EKG to reduce registration problems 39.

2.2  3D Ultrasound Image Display

One should note that 3D image data can be presented not only in visual form, but also as a set of calculated values,
e.g., a ventricular volume.  The visual form can be classified further by the rendering primitives used, which can be either
geometric (e.g., polygons) or image-based  (e.g., voxels).  Many early studies  focused on non-invasively estimating of the
volume of the heart chamber 2, 11, 34, 37.  Typically, 2D echography (2DE) images were stored on video tape and manually
processed off-line.  Since visual presentation was of secondary interest, wire frames or a stack of contours were often used to
render geometrical reconstructions.

An interesting extension to 2D display is a system that tracks the location and orientation of 2D image slices with 6
DOF 16.  On each 2D displayed image, the system overlays lines indicating the intersection of the current image with other
2D images already acquired.  The authors claim that these lines help the viewer understand the relationship of the 2D image
slices in 3D space.  Other studies reconstructed 3D gray level images preserving gray scale, which can be crucial to tissue
characterization 28 4, 14, 17, 25, 32, 39.  Lalouche 17 is a mammogram study using a special 2DE scanner that can acquire and�(����>� ��� �<������<�	���7�����h ��<���	�7���<�F�(�7�7�	�	�,�	�'W`.6. �7���7�	�>���<���[";D �������.8�h�7�,���	�	����(�7�����	�7�	�mS�!m�	��S����<-��( ����7���h�7�����<�� �����<���7��m�	���m�����<�
volume rendered.  MacCann 25 performed gated acquisition of a heart’s image over a cardiac cycle by storing 2DE images on
video tape and then reconstructing and volume rendering them.  ‘Repetitive low-pass filtering’ was used during reconstruction
to fill the spaces between radial slices, which suppressed aliasing artifacts.  Tomographic Technologies Echo-CT 39 provides
flexible re-slicing by up to 6 planes as well other imaging modes.  Collet-Billon 4 uses two visualization techniques: re-
slicing by an arbitrary plane and volume rendering.  The former allows faster but only 2D viewing on a current workstation.
The latter allows 3D viewing but often involves cumbersome manual segmentation.  The reconstruction algorithm uses
straightforward low pass filtering.

3. INCREMENTAL VOLUME VISUALIZATION

In an incremental, interactive 3D echography (3DE) system, a user-guided scanhead mounted on a 3-degrees-of-freedom
(DOF) mechanical tracking apparatus will acquire a series of 2D image slices as well as the corresponding geometry, i.e.,
location and orientation, of each slice.  Using this geometric information, a regular 3D volume data sampled along a uniform
grid is reconstructed from a series of 2D images with irregular geometry.  In the incremental system, the reconstruction and



       

θ

Ultrasound 
2DE

Scanner

RS170 video
30frames/s

Conventional 
2DE

video display

Workstation
console

(x, y, θ)
...

x
y

3DOF 
mechanical

motion tracker

2DE scanner 
head Digitized image

~5frames/s
(at 256x400pixels)

Disks

SUN-4 Workstation

Video
Digitizer

A/D
Converters

32MB

Ethernet

Figure 1.  Incremental 3D volume data acquisition system using conventional 2D echography scanner
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Figure 2.  Incremental volume visualization steps.  Irregular data slices are first reconstructed into a regularly sampled 3D
volume data using truncated Gaussian kernels.  The volume data go through standard volume rendering process, but the
processing is limited to inside the neighbor of the last slice.

following volume rendering process take place incrementally, as each new 2D image slice arrives.  Each newly acquired 2D
image affects the final rendered image without waiting for the rest of the slices to arrive.
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Each 2DE image slice is video-digitized, while the location and orientation of the slice is acquired by the arm.  It is sent to
the disk to be stored for later visualization experiments.

Figure 2 outlines the process of the incremental visualization from 2D slices.  Acquired 2DE image slices, read from
files, are incrementally reconstructed by a finite support filter kernel into a regularly sampled 3D volume.  As the data
reconstructed from the slices accumulates into the 3D volume, rendering takes place, which shows the build-up of the 3D
image of the object.  The rendering algorithm is a modified front-to-back image-order volume rendering algorithm as
developed by Levoy 20.  The reconstructed 3D volume is classified (non-binary classification) and Phong shaded, and then is
ray-cast from each pixel on the 2D screen.  Note that data in world space is transformed once into a 3D screen coordinate data
structure, which is called the ray-cache, and then composited into 2D screen image.  This makes the ray-sampling process
incremental, reducing the rendering time per input 2D image slice.

In the following, we explain the reconstruction algorithm we have used for the incremental volume reconstruction,
followed by a brief description of incremental volume rendering algorithm, and a description of a simulated parallel�c.h #�c�V.h�V�+� �V�c�c+�0+�r��AB#�>\#�b�c�V� �c+�&" �B�V�b�V�e�c #�c�c+�0�c�r�c�#�c�d�b�V�V�c�c#�r�c�d�#�V�+�V�c+ #�V�r.h#�b�c�c!r�e#� *h�,1B2@�b!#�b�c�V.h)hS+�+�=S#+�c�
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3.1  Incremental volume reconstruction

Several different approaches are possible to visualize an irregularly sampled volume data.  Such data can be rendered
directly by certain rendering algorithms 8, 24, 29.  Instead, we chose to reconstruct a regular 3D volume.  This is mostly due to
the nature of scanning, which is user controlled and does not have a clear terminating point.  Keeping all the 2D input slices
of a human-guided scan for rendering would not be practical.  At the same time, a regular 3D array allows for efficient
rendering algorithms to be applied.

We assume the object being imaged does not change over time.  But since the scanning is incremental, we have a
provision to take any temporal change into account.  The temporal part of reconstruction will be explained later.  Spatially,
the reconstruction algorithm should satisfy two criteria.  First, the reconstruction result and its derivative must be reasonably
smooth.  Continuity in its derivative is necessary since the shading step in the rendering process calculates the local
approximation of the gradient for shading.  If there are discontinuities among gradient vectors from voxel to voxel, they are
quite visible in the rendered image.  Second, we want the reconstruction kernel to be finite so that we can limit the
computation to the proximity of the input slice.

Spatial reconstruction of a slice is done by a 3D convolution of the input 2D slice with a 3D reconstruction kernel.
Note that even though the input is 2D, each sample point is a volume sample in terms of reconstruction.  When an i’th
image slice is to be inserted into the 3D reconstruction buffer, samples oi(u,v,0)  are convolved with a 3D reconstruction
kernel f (u,v,n).  Each voxel of the reconstruction buffer has three entries; 1) the reconstruction value ri(x,y,z),  2) the weight
wi(x,y,z) , and 3) the age ti(x,y,z) .  The last will be explained later.  The first two entries, ri(x,y,z) and wi(x,y,z)  are defined
as follows;

ri(x,y,z)=ri−1(x,y,z)+ oi(u,v,0) f (u− ′u ,v− ′v ,0− ′n )
′u , ′v , ′n ∈Dom( f )

∑

wi(x,y,z)=wi−1(x,y,z)+ f (u− ′u ,v− ′v ,0− ′n )
′u , ′v , ′n ∈Dom( f )

∑

where

(x,y,z)=Ti( ′u , ′v , ′n )

Here (u,v,n)  is the coordinate of the voxel in the 3D coordinate system attached to the input image plane.  (u,v)  are the
in-plane axes and n  is the off plane axis, thus n is always 0 in oi(u,v,0) .  (x,y,z) is the coordinate of the reconstruction
buffer.  These two coordinates are related for i’th slice by a 3D coordinate transformation matrix Ti , which is derived from the
locations and orientations of the transducer and other geometric information.  When slice i is inserted, a ri(x,y,z) entry
collects contributions from all the input samples oi(u,v,0)  from slice i whose kernel support covers the voxel, which is added

to the present value ri−1(x,y,z) .  Notation ′u , ′v , ′n ∈Dom( f ) means that the summing should be done for all the input samples
under the support of the filter kernel f centered around (u,v,0).  This is repeated for multiple slices.  Reconstructed value
ik (x,y,z)  after the insertion of k’th slice is obtained by re-normalization,

ik (x,y,z)= rk (x,y,z)

wk (x,y,z)

2Z�7�������=*;�7�7�7���(�7���	�7�<�H�7���9��.8 ��7�<.8�	���7�	�7�7��;��%�7���7�����<�	����(�7�����<�7�7��;.6�<�7����;�7� *��B132C" $l���9���<�	����(�7�����<�7�7�� S+�������<��)F�=*��
array, accumulates the result of convolution from multiple slices, while the weight buffer accumulates the weight of the filter
kernel.  A truncated Gaussian function is used for the filter kernel, so that the domain of convolution is limited to the ����a��7.6����!6��l�����3�����(�������	�6�����7���	)O�� � �(����S��+"BP3����3�����	�M�7���3A'�	�������M�	���8�����3S��������	���L�	���3���K����l�����3*6�31'2I��!������	.m"����8�����3GH�'132
reconstruction described in Section 6, every voxel has a weight as well as a reconstruction value entry.

With this reconstruction algorithm, the smoothness criteria mentioned translate to the following two characteristics of
the filter kernel: 1) the amplitude of filter at the edge of the support must be (approximately) zero, and 2) the gradient
amplitude of the filter at the edge of the support must also be zero.  We chose a 3D Gaussian kernel for the reconstruction,
since its shape resembles the point-spread function (PSF) of the ultrasound echography, and both the Gaussian and its
derivation fall off quickly to zero which makes the Gaussian practically a finite support filter.  A Gaussian function has
another nice property of minimizing the product of bandwidth in space and (spatial) frequency 13, 18.  It is also a separable
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Figure 3.  2D image slices are reconstructed into the 3D volume by a truncated Gaussian kernel.
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implemented as 2 separate stages of 1D and 2D convolutions.

A Gaussian is of course a low-pass filter with a Gaussian spectrum, which blurs the image being reconstructed.
Theoretically, if we knew all the locations of sample points we will have, we could have used one of several extended
sampling theorems which handles non-uniform sample locations (for example, Clark et al 3).  This would give us a form of
Sinc(x)=sin(x)/ x  function for reconstruction.  In practice, the Sinc(x)  function requires a very large support, which is not
welcome for our spatially incremental computation.  Since knowing all the sample locations into the future is not possible in
an incremental scanner anyway, this was not one of our choice.

Parameters of the Gaussian filter can be determined from the resolution of an ultrasound scanner and a few error criteria.
The resolution of an ultrasound scanner is not a simple matter to talk about: its PSF’s 3D shape is asymmetrical; it is
spatially variant; it depends on the tissue type; and so on.  Obtaining those parameters are not easy.  We assumed that the
PSF is spatially invariant over the imaging plane, but accommodated the asymmetry by making it possible to set the width
of the PSF in each of (u,v,n)  axes separately.  The resolutions of an echography scanner are sometime given in half-width
half maximum (HWHM) resolution values.  This can be converted to the standard deviation of the Gaussian by

σ = h

log(4)
≈0.849322⋅h

The size of filter support d can also be calculated given error criteria and the standard deviation σ.  Three of the error
criteria we have considered are the amplitude of the Gaussian at the edge of the support Ea, the total energy error (or leakage)
Ee, and the amplitude of the derivative of the Gaussian at the edge of the support Eg.  These three errors and the σ can bound
the support width, by solving the following equations for d;

Gauss(d,0,σ)= Ea ,    where   Gauss(x,µ,σ)= 1

σ 2π
exp

−(x−µ)2

2σ 2






,

Ee(σ,d)=1− Erf
d

2σ






    where   Erf (x)= 2

π
exp(−t 2 )dt

0

x

∫
DGauss(d,0,σ)= Eg ,    where   DGauss(x,µ,σ)= −(µ + x)

σ 3 2π
exp

−(x−µ)2

2σ 2







The first two become linear functions of σ and errors.  The last one is not so simple.  To observe its behavior and
relation with the others, we solved the last equation numerically at many points and interpolated with a polynomial.  Figure 5
is the iso-error plot of all three of the errors with error values 0.01.  All seem to behave well, and the errors can be bounded
nicely if we know the error tolerance.
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We have performed reconstruction experiments in 1D with several error support widths.  The original signal is modeled
by a sum of Gaussians.  It is sampled at randomized intervals σ(1+ Random())/2, where Random()  is a pseudo uniform
random number with range [0,1], to simulate human-guided scanning.  Figure 6 and 7 shows that if we use energy leakage Ee
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Figure 8.  Three ray-caching schemes experimented; linear ray-cache, 1-level HRC, and 2-level HRC.

as criteria, Ee=0.1 is definitely not enough, while Ee=0.01 and Ee=0.001 look smooth.  Ee=0.01 corresponds to the support
d =2.57583⋅σ , while Ee=0.001 corresponds to d =3.29053⋅σ .

Even though we have assumed the object does not change over time, we have some provisions to accommodate the
change.  The age ti(x,y,z)  entry of a voxel is updated to the time stamp of the inserted slice every time it is affect by it.  We
wish the older data in the buffer to be overwritten by the new data from the most recent sweep of the volume by the
transducer, while the newer slices to accumulate to form a coherent image.  We compute the decay factor d(x,y,z,tslice) that
decreases from 1 to 0 as the time difference of the current slice’s time stamp tslice  and the time stamp ti(x,y,z)  stored in the
voxels at (x,y,z) increases.  It is then used to weight the blending of both the weight and convolved value, as in the
following formulae;

ri(x,y,z)=d(x,y,z,tslice)ri−1(x,y,z)+(1−d(x,y,z,tslice)) oi(u,v,0) f (u− ′u ,v− ′v ,0− ′n )
′u , ′v , ′n ∈Dom( f )

∑

wi(x,y,z)=d(x,y,z,tslice)wi−1(x,y,z)+(1−d(x,y,z,tslice)) f (u− ′u ,v− ′v ,0− ′n )
′u , ′v , ′n ∈Dom( f )

∑

Except for the decay factor, these are the same as the reconstruction formulae presented before.  We have implemented
two decay functions.  One is a simple exponential exp(−at) where a is a decay parameter which corresponds to 1st order low-
pass filter.  The other is non-linear; it waits for a predetermined amount of time before starting the exponential decay.

3.2  Incremental volume rendering

The reconstructed 3D image is incrementally volume rendered.  Our volume rendering algorithm is an image-order, ray-
casting algorithm based on Levoy’s 19.  Only the voxels in the proximity – within the support of the 3D spatial
reconstruction filter – of the new 2D slice (called a slab) are Phong shaded and sampled.  This incremental computation
reduces the computation per generated image by taking advantage of the incremental nature of the input.  We keep the result
of each incremental ray-sampling in a 3D array in a 3D screen space called the ray-cache to reuse them.  Since sampling with
tri-linear interpolation is more costly than a compositing step, separating the ray-sampling from the compositing reduces the
computation significantly.  The ray-caching is a time-space trade-off; it takes a large memory space to realize.

Since we reported the original idea of incremental ray-casting with the ray-cache 30, we have devised a few additional
techniques to improve the performance of the rendering process.  In slice-by-slice incremental volume rendering, clipping rays
to the slab surrounding the latest 2D slice for every slice became dominant in the rendering time.  To reduce this time, we
have developed the D-buffer algorithm 31, which uses the efficiency of polygon scan conversion.  It perform intersection
calculations only on the rays that actually intersect the slab.  The D-buffer stores two intersections distances - entrance and
exit of the rays with the slab - in a similar manner as the popular Z-buffer polygon rendering algorithm 5.  To improve the
ray-compositing performance over simple ray-caching, we introduced the idea of tree-structured Hierarchical Ray-Cache (HRC)
31.  It stores the ray-samples in its leaves, and partially composites the results in its non-leaf nodes.  By reusing the partially
composited values in the non-leaf nodes, HRC reduces the compositing cost.  We also added image adaptive ray-casting 21,
where the density of the ray is modulated depending on the change in the rendered image.

Figure 8 shows three of the ray-cache algorithms we have implemented.  The first one is the original Linear Ray-Cache
(LRC), where all the samples along the ray per pixel are stored in a 1D array.  After updating the entries with the new
samples from the new slab, all the samples are composited along the entire span of the ray.  Second is the 2-level HRC; in
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Figure 9.  Block diagram of the parallel algorithm simulated on a workstation.
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addition to the 1D array  (N entries) of ray-samples found in the LRC, there is 2nd level array with N/p entries.  Here p is the
arity of the tree.  An entry in the 2nd level array caches the compositing result from its p child nodes (leaves) for reuse.  We
have chosen the fixed 2 level tree since it is easier to manage and has less overhead than the  variable height tree HRC for the
cache size N we have (around 16 to 256).  The third one is the 1-level HRC, which is an attempt to reduce the memory
consumption of the HRC; it caches only the 2nd level.  For a cache entry, every time one or more samples of its p children
are updated, p new resamplings are done complete with tri-linear interpolation.

We have a program running on a workstation that simulates a parallel implementation for a large-grain MIMD
multicomputer.  It implements all the improvements mentioned above; the D-buffer, image-adaptive ray-casting, as well as
three flavors of ray-caches.  The algorithm is parallelized in world-space (as opposed to screen space), where the reconstruction
buffer is divided into rectangular sub-volumes by planes parallel to the x-y plane, and assigned to multiple reconstruction and
rendering processors (RRPs).  The global processor filters the input image in 1D (u), and distributes to the RRPs.  Each RRP
reconstructs, shades, samples, caches, and (locally) composites the sub volume assigned.  Global compositing, which requires
proper global view-dependent ordering, takes place in a separate global compositing  processor (GCP).  (Please note that these
RRPs and the GCP are currently “virtual”, i.e. they are sharing a CPU on a workstation.)  Message communication is not
expected to be very costly.  The major communications necessary include distribution of the input 2D image, and the
collection of locally composited 2D images to the GCP where they are globally composited.
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(ray-sampling and compositing combined) both in the master GCP and multiple RRPs.  The program simulates data copy
overhead among GCP and RRPs, but does not include the transmission delay over the network.

Figure 10 shows the average time from an image insertion to the rendered image generation, including global 1D
reconstruction, local 2D reconstruction, shading, local ray-casting (which includes ray-sampling, caching and compositing) as
well as global compositing.  For this viewpoint, the combination of adaptive ray-sampling and 2-level HRC reduced the ray-



Figure 12.  X-y slice of the reconstruction buffer, opacity buffer (gradient of the reconstruction result) and the rendered��.6�����%����%������O���	�������	�H�����TA3�����	�Y���	��\H�	�C���	������!� ��	���������	�O���������	�CA'�����������������!��,.6.r�������	�����	�e"

casting time - sum of ray-sampling and ray-compositing time - by 30%.  The compromise approach, 1-level ray-cache, did
not gain much in terms of performance.  This suggests that the cost of ray-sampling is the dominant factor.  Breakdown of
the cost of ray-sampling and ray-compositing is hard to obtain because the two interact under image adaptive ray-casting.  But
execution traces indicates that about a half of the best case (image adaptive ray-sampling with 2-level HRC) is spent in tri-
linear interpolated resampling.

The image generation time changes depending on the input image, classification parameters, as well as the viewpoint.
For example, the image of Figure 12 took on average 3.4s to generate per input slice.  Figure 11 shows the effect of the arity
of tree to the performance in case of 2-level HRC.  Optimal arity depends on various factors, including the support width and
the machine itself.

4. VISUALIZATION OF 6 DOF DATA

As we stated above, the incremental reconstruction and rendering algorithm is not running at interactive speed (e.g.,
more than a frame/second) on a workstation yet.  To see the effectiveness of interactive volume rendering, we used a real-time
volume renderer VVEVOL 42 running on the Pixel-Planes 5 7 graphics multicomputer, and rendered the data reconstructed off-�7�7�+� �+�(�7�+� � �3�<���b�(�7�<� �>�<�	+���(�c���+�	�c�7�� \+�<���+�	�s"n$l�+� � �7a��<�7- � �7�<���<� � �<��+�(�7�(�c�h��,�� E�7 *� ��,�( ���+�7�<�̀ � ��G���hAB�7�7� � � � ��
.6�	.6���!h ��	�]Q � N3)5�	�̀ A3�	���J�	�̀ .6�������� ����,�	�����	!��T/bW ���HaIW ���h�	�	�	��4]��]�	���(���.?WtS����JQ � N3�V"����3k��31�� �������������h�� � ��a��	��- � ���	���	� �
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about a second if the viewpoint remains unchanged.  This section describes our initial experiment in interactive rendering of
3D echography image.

Since VVEVOL accepts only a regular rectilinear grid samples, a series of 2D image slices must be reconstructed into�7���I�>�	�+���7�	�3��+�7��.8�O" $l���I�>�	�<����(�7�>���<�7�7�� �	�7��+���7�7��. �	.8 +�7�!��<� ���<�>�I�7�6�7���<���7�7�<�	�t�7 �7�+�I*��31B2 �7���<���<.8�<���7�	�t���<�<����(�7�>���	�7�7+�
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age buffer; reconstruction here assumes no temporal component in the data.  One major change in this reconstruction�	�7����>�7����.?�7�H�7���<�C�7�7�H�7�� ������(���7�<�	�����	���=G��31B2]"E2M��%�7���7�H�>�	�<�(���)l�7���=A3�<�7�����C�<�	�<��.6���7�<�7��+� S����>���	�%�7���	�(�(��	�7�<�7�	�;A3�7�7� �<���	��!
���a��	�e"hi ���	�=�H�(���7�	�H���%�7���(�	���7�	�=������=�H�������.6�	)Z�����HGH�3132;���	�	������������	���7��=�	�������������.@�	a��7�������	�T�	�	�	�=�(���7�	�H������=���������.6�	)Z�	���
resamples this extruded slice or slab into the regular grid.  This slab has a thickness, which is the truncation width of the
Gaussian kernel.  Standard deviation and the truncation width of the Gaussian are determined using the criteria developed in
Section 3.  Though the off-image-plane axis (n) interpolation is Gaussian, in-plane (u,v)  interpolation is linear.  The linear
interpolation is faster, and it is acceptable since the sampling rates in the 2D image plane is usually a few times higher than
in the off-plane one.  To traverse all the voxels that sit inside the slab, a digital differential analyzer (DDA) is employed,
which traverses the voxels inside the slab along one of the three major axes of the reconstruction buffer.  Starting and ending
points for the DDA are initialized by calculating the intersections of lines parallel to the axis of traversal with the slab.  This



Figure 13. a) A sectional image of a left thigh of a healthy male.  Strong shadowing effect by the (upper surface of) femur
is obvious.  (Up is anterior; Left is distal.)  b) Anterior view of the part of the thigh reconstructed from 46 slices.  (Up is
superior; left is distal.).

intersection calculation is done using the ray-object intersection code from a common ray tracer.  Current implementation of�����%G,�'1'2=�����	������������	����������������������.qA3���\��C���H�%S��	�����H.6���� � �����O�����%�������	���������%���	������������������	�H������H�%�������.6�TS��	������T���������	�������HS�!
VVEVOL starts.

i �3���	���3�����8�����3�	��������7����. ��8�����3���	���3�	�	:��������	�8S�!8�����3*H�'132I�	��:��������7������8���	���� 8�	a� ����	�����	�8��� � ���	������8*�)#�	�tA'�	���M�	�t�����
���	�7�6�	�<:����7���	�IA3�7�7�IGH�3132 ���(����� � � ������	.8����������7���	�	\ 33 as a tracking device.  The image and coordinate acquisition withG��3132d�7�H������=���(�7��� �=�(��S��(�	�C��T�7���p�(!��(�7�	. ���	�(�	�>��S��<� �7� 1.  General Electric Medical Systems Model 3600 ultrasound
echography scanner is used, whose transducer is mounted on a rigid Plexiglas mounting device along with a Polhemus
receiver.  A geometric calibration procedure 1 determines the geometric relation of the Polhemus and the transducer, which
enables us to know the location and orientation of the transducer.  Due to various system constraint, the image acquisition���<�7�9�7���(�7+A@�<���<S�����L���(�<�	���� �7�����<.8�9�7���<���+���7���;�7�+�9�7��.8�9�7 �(�7��>�9�7���9�7.8�	���9�7���7 �7���9���7�(\ ���7�7�9��+�	�'�7���9���<�7A3��>\Y"dD3�L�7���7�
acquisition rate, maintaining proper spatial sampling rate is quite difficult.
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reconstruction algorithm on a HP9000/700 workstation with 64 MB of memory, we resampled our dataset into a 1283
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CPU utilization, with a large number of page fault.  This is due to the scattered memory reference pattern of the program, as
well as the physical memory allocation limit imposed by the operating system.  The timing is expected to improve if we
allocate more physical memory, and devise an implementation with better memory reference pattern.

Figure 13a shows one of the original 2D images, a (near) sagittal section which shows upper surfaces of the left femur
(near apex of the fan, to the left) and a major blood vessel (a bright tubular structure to the right and down from the femur).
This image also shows strong shadowing under the upper surface of the femur.  Figure 13b show the reconstructed and
rendered image, after refinement which takes about a second after fixing a viewpoint.  Please note that, due mostly to the slow
image acquisition speed, the dataset is significantly under-sampled in off-plane direction (×2 under-sampling is typical).  3D
relations of the bone and blood vessel become much easier to recognize when the image is rotated interactively, even though
the quality of image being rotated is significantly lower than that of the refined image..  This experience is an encouraging
case for the interactive visualization; an interactive rendering seems to help understand the structures in noisy 3D images.



5. CONCLUSION

We have presented the incremental visualization algorithm with the emphasis on the reconstruction algorithm.  The
reconstruction algorithm uses a Gaussian filter to reconstruct a 3D volume from a stream of 2D image slices located at
irregular locations and orientations.  We have also discussed the incremental rendering algorithm, which takes advantage of the
incremental nature of the input to reduce image generation cost per input slice.  It renders a volume in a small increment
thereby enabling quick image generation from the acquisition of each 2D image slice.  Several techniques to improve
incremental rendering performance, such as hierarchical ray-caching and image-adaptive ray-casting, are discussed, with some
performance evaluation results.  The algorithm, if implemented on an appropriate parallel machine, is expected to run at an
interactive rate.

i �3���	���3�	����6 ����	���	�����	�8�' ����	����.6��������!8���	 �����M��6�����3G,�31'2I�	a����	���(����8��l�����3��!�������. "3i �3���	���3�	�	:��������	�6�3���	�������t��l���
��.8�����	�̀ A3�����pGH�'132M)MA'�����	�p���̀ ���	�	������������	�7���p�����-��������	)5�	���p���	���������	�p���Y�������	���	�	���7���,�� ��	�	�h��h�, ������	���7���Y�������.8�,���	�����	���	�F��h�7���
graphics multicomputer  Pixel-Planes 5.  The reason for the off-line reconstruction is partially due to the slow image
acquisition rate, which we intend to improve in the near future.  Current work includes a custom built fast video digitizer�+�7�>�<�	�c�7!d�<��+ ��c�<�d�7d�7�+� � �ca��<�7- � �c�<���<� � AB���7�<�dAB�7�c�%�	�c�7+A ���=*�6�>���<.h�<� �7�=�7.h�<���;�<�	:+���c�(�7�c�7+�d���<�c� �7d�c���;� ��G� � �=.h�	.h��>!�"
Modifying the reconstruction algorithm to make it incremental should not be difficult, which can then be combined with the
parallel volume renderer code to produce a truly incremental volume visualization system.
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