Proceedings

EIGHTEENTH ANNUAL ALLERTON CONFERENCE
ON COMMUNICATION, CONTROL, AND COMPUTING

Gctober 8-10, 1980

Allerton House, Monticello, llinois
Sponsored by the |

Department of Electrical Engineering and the
Coordinated Science Laboratory of the
University of lllinois at Urhana-Champaign

ON FINDING SEVERAL SHORTEST PATHS IN CERTAIN GRAPHS*

(Preliminary Report)

ZVI M. KEDEM -

Department of Computer Science

S.U.N.Y. at Stony Brook

Stony Brook, New York 11794
and

HENRY FUCHS
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27514

ABSTRACT

Given a graph, the problem of finding shortest paths from cwnpv to
=~Anv for a set of pairs of vertices _Agnapv. =~nhuu | i=1,...,m} 1s
considered.

A fast algorithm for a special class of problems is presented. The
algorithm 1is applied to the Circular String-to-String Correction Problem.

*Research partially supported by NSF under Grants Number MCS-7901168 and

MCS-7902593, and facilitated by the use of Theory Net, NSF Grant Number
MCS-7801689,

677

GENERAL THEOREM

The problem of finding shortest paths in graphs has been studied ex-
tensively. Two main variants have been of interest:
1. For one pair of vertices (u,w) in the graph find a uronnuun.vmnz
from u to w.
II. For all pairs of vertices (u,w) in the graph find a shortest path
from u to w.
Well-known methods exist for dealing with these variants.
We consider in this paper another possible variant, which falls be-
tween the two variants above:
III. For several pairs of vertices Aﬁc n—u mnpuv | 1=1,...,m) in the

graph find a shortest path from nunr uy to its corresponding
_.—M Au.v .

Let then G = <V,E,L> be an undirected or a directed and acyclic,
labeled graph, where V is the set of vertices,E the set of edges, and L
the labeling function assigning to each element of E a real number (length),
which will be non-negative if G is undirected.

Variant I is normally solved by algorithms which require oﬁ_c_mu or
on_w_ - —owu _c_v operations in the tcnnn case, and variant II is normally
solved by algorithms which require oa_c_) or O(|E| - log, |V]) operations
in the worst case. (See e.g. [AHU],)

A solution of variant III may be obtained by either solving an in-
stance of variant I for each of the given pairs or by solving variant II
and extracting the required shortest paths. In this paper we will describe
a method which can be used to design efficient algorithms for solving
variant III. We restrict the development here only to directed acyclic
graphs, although the results also hold for undirected graphs. As we will
be concerned here solely with directed graphs we will refer to edges as
arcs.

For a graph G = <V,E> and V' c V we shall denote by G(V') the subgraph
of G spanned by V'. A path in G will be written as a sequence of vertices;
a path will also be considered as a subgraph of G spanned by the traversed
arcs.

Assume that shortest paths from u) to :mnﬁv for 1 = 1,2 are to be

1
found. If a shortest path P(l) from u 1) to cnﬁnu is found first then, as

we shall see, the search for a u:ounown path P(2) from v @) to ...NANv may
be limited to a subgraph of G. If one has to find more nrwa two shortest
paths, then possibly even "smaller" subgraphs of G may be considered during
the search for some paths.

678

Theorem 1: Let mo = Acp. Ups cves :vu be a shortest path from :~ to

cw _nna»qnnnnnwnwupnwnwvsn.rmn co u mcw. Upseens :vu. and let the
weak (undirected) components of nﬁci<ou be spanned by the (pairwise dis-

joint) sets of vertices ﬂ—. <~..... qﬂ. If v, € c» and vp € eu for0 <1,

J < r are such that v, 18 reachable from Vo then there exists a shortest

path P = nqh =V Wyheen, :a - cvv in G from v to Vo such that.
1a W € co u <p u cu. kml, 2000500,
yAPTREEN 1 3 Yir Y41 € co for some k = 1, 2,..., q-1,

then W "u and y =y Hmou some L =1, 2,..., p-1. |]

k+1 i+
For vo. ¢o. Vor c—. Vpr <u as in Theorem 1, oﬁmo. Vor ¢vv will denote

L

the subgraph of G to which the search for a shortest path from v_ to v, and

" a b
be limited. More formally, if V = Vov Vv .q“_ and P, Voo uov ®y con- -

mnmnm of the arcs traversed by the path P v then G(P .cn.GVV) aQ.A@n~d E)
Ac - wcuv.
Theorem 1 can be used to design efficient algorithms for finding
shortest paths for several pairs of vertices. Indeed, assume that are to
to u_ and fromv_to v

1 P a b*

mo from u, to cv has been found, one may search for a shortest path from A

to b in oﬁwo. Voo cvv only. If additional pairs of vertices are given,

find shortest paths from u Once a shortest path

then possibly even smaller subgraphs of G have to be considered. The sub-
graphs to which the search may be limited, nﬁmo. Voo <vu and the appropriate
subgraphs for the other pairs, may easily be computed in a linear number of
operations but any possible savings greatly depend on G and the given pairs
of vertices, as in the general case there is no reason to assume that these
subgraphs are “smaller" than the original graph G.
APPLICATION TO PLANAR GRAPHS

We shall now develop the use of the Theorem for certain cases in which
it can be assured that the size of the subgraphs to be considered rapidly
decreases as paths for additional pairs of vertices are found. As there
can be no path in G whose terminals lie in distinct components of a graph,
we shall assume, without loss of generality, that G consists of a single
component .

Let G now be a planar graph, which is identified with an actual embed-
ding in the plane. A sequence of vertices Acu.cn.....:qw will be called a
circuit in G 1f and only if it 1s an (undirected) walk in G and u, = u.
Each such circuit a = acu.cn.....c) defines a closed curve n on nsn plane
which is defined by the sequence of the edges "traversed”" by a. Let caau
be the set of those vertices of G which lie on or inside »n. We define nn

679

(o)

subgraph of G, to be the subgraph of G(V' *) gbrained from nﬁcAnvu by re-

moving all those edges which lie outside of L. (See Fig. 1.) A circuit a
will be called non-crossing if and only if the corresponding curve nn does
not cross itself. (It may "touch" itself.)

Without loss of generality, we may assume that an arbitrary contour is
the contour of the infinite region of G and thus the following development,
even though formulated for the contour qo of the infinite region, holds
with appropriate changes for the contour of an arbitrary region.

A sequence An—.nn‘....urv of vertices in G is a list for qo if and

only if it is a non-crossing circuit in G and h is minimal such that the
set :J_».r:..i 1s the set of all the vertices in I

Let now Auw.un.....uvv be a 1list for ﬁo and let P = Aqu:-.:n.....:nw
the graph is acyclic
z_) be a path from z toz for 1<s,t<h. Note that as grap!

P cannot "cross'" itself. Define the sequences

(z e g4l 5™V .tunw.....cunumu il R -

wo.m -
(2 W) sWgsee e oW =2, n+~.....uuv ;8>t

¥

ANUIIH.QN-:.-ﬂﬂan.—..—.-....N#INH-..-MUU ’

POr_ =

(z o' Zatl? " oZn" w.....un::u.:nnu.....twnuuu“ B>t

mu
ﬂo.e and m.ﬂr nnnsbannnoampawn»nncpnmm:nsnom:nnsunaOnoH_mnmc

G of
the contours of the infinite regions of the subgraphs oqo P and P ﬁo
G respectively. (See Fig. 2.)

Corollary 1l: Let An-.nn.....nru be a list for ao and let z, and z,
for 1<s<t<h be terminals of a shortest path P. If a and b are any integers

such that {a,b} = {s,s+l,...,t} (or {a,b} = (t,t+l,...,h,1,...,8} respect-
z t path (in
ively), and z, is reachable from Z» then there exists a shortest p

G) from z which is wholly contained in nﬁoﬁm (or om‘q

a 0 7
respectively). B

The Corollary defines in a natural way a family of problems for which

0

it can be utilized for the design of a "divide and conquer" algorithm.
in (2, ,2,40e») be a list for ﬂo. For some m > 0 let ¢ be a
B ik -ur h} and let & be a
nondecreasing function from {1,2,...,2m} to {1,2,...,

(.
function from{1,2...,m} to {0,1}. For every k, k=1,2,...,m, let z,
)
£ & :
“02mL-k)+8 (1) ($() -4 (2mi1-K)) P® nu.n,.awu g.““w“wenuv _w:
n » saey
(¢(2mt1-k)-¢(k))" (See Fig. 3) We are to :

P(k) 1s a shortest path from urapv to urhwu. (P(k) will be a shortest path

0A~l+wlru.u
680

whose terminals are z and z

#(k)

We shall now present an algorithm for finding P(1),P(2),...,P(m). We
assume that a procedure SINGLEPATH(k,T) which finds P(k) in the subgraph oﬁ

of G has already been defined. A single invocation of the algorithm
SEVERALPATHS(1,1,T) finds P(1),P(i+1),...,P(j):

Algorithm SEVERALPATHS(1,1,T)

1. k = L(i+])/2];

2. P(k) := SINGLEPATH(k,T);

3. Aif i< k then SEVERALPATHS (1,k-1,P(k)OTr);

4. 1if k < j then SEVERALPATHS (k+1,],TeP(k);

All m shortest paths P(1), P(2),..., P(m) are found as a result of a
single invocation of mm¢mu>rw»d=mA~.l.ﬂ). In this invocation, line 2 finds
a shortest path P(h) in G, -n where h = | (14m)/2]. This lets the algorithm
apply the "divide and no=a=nn= approach to finding the remaining paths.
Indeed, line 3 finds P(1),P(2),...,P(h-1) in nwArV.ﬂ and line 4 finds

P(h+1),P(h+2),..., P(m) 1n G gy . The Corollary Sssures that the algo-

will terminate with correct nmachnw.
The procedure SINGLEPATH can be easily implemented by using say,

Dijkstra's algorithm in G, and abandoning the search along any path which

crosses I'. If the data structure defining the graph is implemented suit-
ably by associating with each vertex a list of its neighbors in a counter-
clockwise order, such “"crossings" can be easily detected.

Let us now consider the time required by SEVERALPATHS (1,3,1) (I will
be wﬁu+~ueno.manrpu where P(0) and P(m+l) are null. For a connected sub-
graph H of G we shall denote by T(H) the number of operations required to
find any single shortest path in H using SINGLEPATH. If “z_ is the number
of arcs in H then we can write qazunnA_z_u for an appropriate function t.
(For Dijkstra's algorithm t(x) = oﬂu.pownsv as in a connected planar graph
the number of vertices is bounded from below and from above by linear
functions of |H|). We know that t(0) = 0 and t(x) grows at least linearly
with x and thus we shall assume that if O < X)X, then nAn)+ nﬂn)<

nnx u. Furthermore, if t grows faster than linearly, then nﬂn u + nnu
< nﬂxw¢an. for 0 < X 0¥Xpe

For ease of notation, assume that w=2" -1 for some y. One can show
that the number of operations, OPS, is bounded by the formula:

2%l -stl
oPS < M e (6] + ¥ | (32) <
8=1 =1

-1
log, (m+1)
t Qoum (1) - |G| + MN uM”

| P(23(mt1)/2%) |).
a=]

681

If | P(2J(ntl) / 2° |'s are not known (or at least no upper bound is known)
we conjecture that

0PS < mw 2+¢(|c|) = 2 log, (w+1)-c([c])

B CIRCULAR STRING-TO-STRING CORRECTION PROBLEM

In [WF] a fast algorithm to solve the String-to-String Correction Pro-
blem has been presented. Following a suggestion by M. Fischer we apply our
algorithm to solve the correction problem for "circular" strings. We assume
in the sequel that the reader is familiar with [WF]). Briefly, the paper
shows how to utilize dynamic programming to find a minimum cost edit’
sequence taking a string b|>»»~...bu to a string u..w_.un...w._. This pro-
blem can also be solved, with the same complexity, by finding a shortest
path in an appropriate planar graph.

Indeed consider the graph G= <v, g,L> where

Ve {v 0<i<y, 0<j<J},

E~

ViV € B (1,9) 4 (k,0), Osk-1<i<k<d, 0<-1<j<tad.

Then every possible edit sequence taking A to B corresponds to a path in G

from Voo tO Vv For example, the diagram:

I’
String A: x y z w t w

A NN

String B: y w x z x y

x

copied from [WF] corresponds to the path drawn in Fig. 4.
We now associate the following length function with the arcs of G, (y
is defined in [WF]).

; «A»x+u- : k=i+l, f=j+l1
—.po.u.«r-.vul i?r.!d 3 k=itl, f&=j
Y(A+B) ; k=1 , 2=j+1

Then a minimum cost edit sequence corresponds to a shortest path.
Extend naow the problem to consider circular strings. Namely, assume

that one is permitted at no cost to circularly shift each string by an
arbitrary number of positions before commencing the edit sequence. Formally
we wish to minimize the edit cost for taking

AfAiyyoe-AphpoooAy) 0 BiBL . B)B .. B,

over all possible 1 and j. This problem is transformed into finding min
{1,J} shortest paths in an appropriate planar graph, similar to the one
used in [FKU] to solve the problem of optimal surface reconstruction.

682

Define G'=(v!,E!,L)) where

<—L<—h | 0<1<21-1,0<§<3},
1

Qc.crnv €E” <= (4,§)¢(k,2), 0<k-1<1<k<2I-1,0<t-1<j<2<J, and

1

. Acd.qr..& & r?..:_-om C.._.c_r?umc.-v? (See Fig. 5.)

Let _.m for i=0,1,...,I-1 denote a shortest path in nw from vy to ¢u.+~ 3
Then a shortest path in :.o.m.n.....—.m..u_ corresponds to a minimum oou.." ;
edit sequence for the circular strings A and B. Using the algorithm
SEVERALPATHS, it can be computed in the number of operations less than _.owu
(I+1) + 2 times that required to solve the standard String-to-String

Correction Problem. (We assumed that IJ. If J<I a simple modification ia
required.)

REFERENCES

[AHU] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley (1974),

[FKU] Fuchs, H., Z.M. Kedem, and S.P. Uselton, Optimal Surface Recon-
struction from Planar Contours, CACM 10 (1977), 693-701.

[WF] Wagner, R.A. and M.J. Fischer, The String-to-String Correction
Problem, JACM 21 (1974), 168-173.

683

edge not in G..

Figure 1

Figure 2

684

Th

z (2)
ﬁ.—: Nﬁ—_-
Figure 3

685

7
1§
>

N
x

el
1=

ol AN\ _..r=r1_ |
9 NP\
Z § % 1 :11_1_
W U TN 1:..‘1
.ﬁ‘r __|_1__ 1:1‘1__
w N\ _H _1. G H.;l BN \
X 9] _1/ _1,__1.1
N_1_1L1r_1 _H \ :1
(IR

Figure 4

A,] o iy N
A, AN
H _.r .l4||__ y

1
:u._|1. ot fact B! B
Lt el) g e
’__ \ \
:v- Ay o\ L
H / | 1 1
jr (AR RN N r

Figure 5

686

