SPECIALIZED COMPUTER ORGANIZATION
FOR RASTER GRAPHICS DISPLAY

Henry Fuchs
Gregory D. Abram

Computer Science Department
University of North Carolina at Chapel Hill

The generation of images by computer has been both an interesting and a com-
putationally expensive task for over thirty years [7]. The availability of LSI
building block devices have enabled graphic system designers to build special-
purpose systems for various classes of applications from "glass teletypes" to
drafting tools to real-time 3D scene generators. Recent emergence of custom
VLSI design capabilities are stimulating developments of even more radical solu-
tions. We review the organization of a number of existing systems, describe
several experimental designs, and outline some remaining problems and suggest
some possible solutions.

I. INTRODUCTION

A. Motivation

i

1. The Use of Images As increasing processing power becomes available, a'sue-
cessively larger share of the overall problem of computer usage becomes not
how fast the computer can calculate the task, but how easily the user can
specify the input and comprehend and evaluate the results. The visual medium
is perhaps the most effective interface.

2. Current Problems Many applications of computer-generated images call for
user interaction with the image, so generating the image within a fraction of a
second is often crucial for the effectiveness of the application. For example, a
crystallographer interactively fits a residue chain inside its 3-dimensional
volume, and pilot trainees practice landing on simulated runways under adverse
conditions. Unfortunately, graphics systems that serve these needs are often

quite expensive, decreasing the cost/performance of such systems remains a
major topic of study in computer graphies.

\\
)

B. Problem Statement

The goal of these systems is to generate images in a small fraction of a
second. These images may consist of 20,000 or more line segments or several
thousand polygons. (A longer range goal is for some or all of these polygons to be
curved patches, but this seems beyond attainment in the next few years.) For
many applications such images should be generated in 1/30 of a second. The
image generation consists of two major phases: transforming the database
(geometric operations on the data such as rotations, transformations, scaling
and clipping) and painting the resuiting lines and polygons. Since these
geometric operations are done adequately using existing hardware!, further dis-
cussion will focus on systems whose goals is to paint the lines and polygons
quickly.

C. Taxonomy of Solutions

Long term interest in this problem, coupled with rapidly developing tech-
nology, has inspired much recent activity. In this paper we review of some of
this work and outline certain shared principles that may help to predict future
trends. Although the work we shall review is principally "polygon based" we shall
use the lessons learned there to outline a possible approach to fast line genera-
tion on raster display, a topic which has not received much attention in the
technical lierature.

Before embarking on a review of individual systems, we outline here the
various general approaches to the problem.

The major problem in image generation is calculating the the 750,000-
3,000,000 individual pixel values 30 times a second. Since no current single pro-
cessor can do this, the prolem becomes finding ways to partition this task
among a great many different processing elements. Several approaches to this
partitioniing task have been and are continuing to be explored.

1. Dividing the algorithm The traditional method pof speeding up image gen-
eration has been to partition the overall algorithm among a number of special
purpose processing units. For example, moderately priced systems often
include specialized geometric transformation hardware, to handle this process
in parallel with other tasks. Flight simulators carry this notion much further
with additional special hardware, often connected together in a pipeline.

2. Dividing the input or output data Either subsets of the input data or the
output pixels can be partitioned over may processing elements.

Distinctly different solutions are possible when the system is restricted to
standard components than if custom ICs are allowed.

1 Clark, in [4], describes a design for a VLSI-based transformation and clipping unit that makes
use of several identical, pipelined floating point processor chips to prcmde these functions at lower
cost than the current board-level subsystems.

a. Standard components The most promising solutions appear to be based on
partitioning the output image among multiple units. The various solutions
organize the memory in different ways in appempting to balance the image gen-
eration load among the many processors without interfering with the video-san
refresh.

b. Custom ICs The flexibility of custom ICs allows more radical solutions. Two
promising approaches are based on 1) assigning a processor per input datum,
and 2) designing image buffer emory chips themselves with more smarts so
higher than pixel-level read /write commands can be executed on them.

II. POLYGON-BASED IMAGE GENERATION

A. Introduction

Rendered images composed of thousands of polygons are among the most
realistic images that can currently be generated by computer and their realism
makes them useful for many applications. (Strictly speaking, the most realistic
images may be those that also allow curved surface patches in addition to planar
tiles; display of these images, however, is so time consuming that they have not
been feasible for applications needing fast display.) Real-time systems are
extremely expensive; other systems can either generate very limited images in
interactive time -- several images per second, the rate necessary for effective
manipulation of an object by joystick or sliders -- or they take several minutes
or more to generate images of quite complex scenes.

B. Current Systems
1. Flight Simulators

a. Definition and historical background Since the early 1960’s, the driving
application in real-time rendered image systems has been to generate out-the-
window views of flight simulators for pilot training. These systems typically cost
over a million dollars due to the very high performance requirements [17].

b. Typical organization These systems have enormous computational burdens,
with tens of thousands of polygons in the world data base of which several
thousand may be visible at any one time. They need to calculate lighting effects
that may include transparecy, textured surfaces, fog, and shadows. Not even
the most powerful general-purpose computer is likely to be able to handle this
task. Even in a moderate resolution image of 512x512 pixels, there are 250,000
pixels to calculate 30 times a second, each with red, green and blue com-
ponents; 22 million values must be calculated in a second, or about 50
nanoseconds per value.

In general, such performance has been accomplished by dividing the pro-
cessing into a pipeline of 5-10 different kinds of special-purpose units, such as
geometric processors, sorting processors, polygon extent calculators, and paint-
ing units. In some situations, a stage of the pipeline consists of several copies of
the same unit operating in parallel in order to keep the pipeline running at the
required rate. These systems are reasonably large; Schachter reports that a
recent GE system contains 1.4x10%**5 ICs. [16] Another system, a middie range
Evans and Sutherland CT-5 with 6 channels and 500,000 pixels per channel, uses
80,000 chips in ten racks, of which 10,000 are 18K RAM chips [18].

The database is often hand-tuned in order to minimize processing time and
reduce the possibility of bottlenecks. When bottlenecks do occur, rather ela-
borate recovery procedures must be used to recover gracefully, for example,
automaticallty substituting less complex descriptions of certain objects in the
scene.

2. Image Buffer-based Systems The other extreme in image generation
hardware are the ubiquitous "frame buffer'-based displays. These consist funda-
mentally of sufficient solid-state memory to store an image from which the video
screen is constantly refreshed, and into which image values are stored as they
are calculated by a general-purpose computer. These systems, with retail cost
beween $5,000 and $100,000, may include microprocessors, transformation
units, color maps, and other devices to speed the image generation process.
Because these systems are programmable, virtually any algorithm can be imple-
mented on them, but executing slowly, taking seconds or minutes to generate
each image.

A few systems have recently been introduced (by Megatek and Ikonas, for
example) with some special hardware features to speed up the polygon (and
line) generation task by parallel writing of consecutive pixels.

C. Experimental VLSI-Oriented Systems

1. Introduction: VLSI, Regularity and Parallel Processing In the last few
years, there has been increasing interest in bringing to bear the capabilities of
VLSI to solve this computationally massive task. The task seems a natural can-
didate for solution by VLSI systems; the problem has great regularity and unifor-
mity and there is a large potential market for low cost systems. Regretably our
review here does not include experimental systems of commercial vendors, as
details of these syetems are closely guarded secrets of the individual com-
panies.

Published research efforts fall into two categories: using parallelism in the
input, and using parallelism in the output. Specifically, the input data can be
distributed many processors by assigning a processor for each polygon in the
input data, or alternately, the screen can be divided among the many proces-
sors.

2. Distributing input data among multiple processors Cohen and Demetrescu,
in [5], have proposed a system that assigns a processor to each potentially visi-
ble polygon in the image space (i.e., already transformed world model polygon).
These, processors are connected as a pipeline and are operated in sync with the
video generation. For each pixel on the screen, a token passes through the

pipeline which carries the shade and depth of the closest point found so far.
This depth is the distance from the viewing position of the closest polygon so far;
thus the shade is the best guess so far of the color seen at this pixel. Each pro-
cessor in turn tests whether the pixel lies inside its polygon. If the point lies
inside, the processor compares this depth with its polygon’s depth at this point.
If the polygon’s depth is closer, its depth and color replace the token’s data.
Tokens pass in raster-scan order and travel at video rates; that is, each proces-
sor must make each decision in one pixel time.

An elegant feature of this approach is that the pixels stream out of the end
of the pipeline in raster-scan order and each value represents the color of the
absolute nearest polygon at that pixel; thus the data can be routed directly onto
a video display screen.

Weinberg, in [22], proposes an elaboration on this design which addresses
the problem of anti-aliasing by passing multiple depth-sorted tokens for each
pixel along with subpixel masks. Each processor then determines the portion of
the pixel covered by its polygon, and compares with the token's mask when the
correct position in the depth order is found. If preceding polygons do not com-
pletely obscure it, it is added to the token chain. Subsequent tokens are then
examined to see if the new polygon completely obscures them, deleting those
that are. A filter section at the output uses this data to determine an output
shade for each pixel.

This general approach features great modularity; it consists of identical
processors hung together in a simple pipeline. It is easily expandible by simply
adding more processor chips. The design costs are held down by the fact that
only a single IC needs to be developed; manufacturing costs are held down by
the simple structure. The only difficulties may be 1) implementing enough pro-
cessors so that there is one for each and every polygon in the most complex
scene in the intended application and 2) making each processors’sufficiently
fast to complete all its calculations for a pixel in one pixel time.

3. Output Parallel Systems Several proposals have been made for restructur-
ing the frame buffer memory in ways to facilitate the division of the screen
among many processors. These fall in two classes: 1) systems that use special
configurations of standard memory chips to allow parallel access from many
processors, and 2) a smart image memory system which integrates the memory
and processing elements in each pixel.

a. Standard memory systems Fuchs proposed in [8] and Fuchs and Johnson
elaborated in [9], a system which distributes the pixels in an interlaced fashion
in both the x and y directions so that if there are MxN processors in the system,
each processor is assigned every Mth pixel on every Nth scan line. The polygons
are processed sequentially and are broadcast to all the processors simultane-
ously. Since a polygon covers a contiguous region of the image, it is guaranteed
to be distributed among many processors, with each processor responsible for
only a small fraction of any polygon’s pixels.

Parke, in [15] points out that in a distributed system such as the one above
all the processors must perform the polygon startup overhead calculations for
every polygon. He proposes an alternate design in which the processors are
assigned fixed contiguous areas of the screen, and are arranged at the leaves of
a binary tree that has a polygon splitter at each non-terminal node. Polygons in
sequence enter at the root of the tree and trickle down to the appropriate pro-
cessors, depending on their location in the image. Although this organization

responsible for regions with many polygons become clogged while processors in
other areas of the image lie idle. Parks, in [18] compares the interlaced and
contiguous area approaches and reports expected execution times for several
"real" 3D scene descriptions.

Clark and Hanna, in [3]. describe a 64 processor interlace design in an 8x8
pattern similar to the design in [8] and [9]. This system has an additiona] layer
of 8 interlaced column processors that shields the 64 lower level Processors
from the polygon startup calculations,

b. Smart memory systems The Pixel-Planes system, as described by Fuchs
and Poulton in [10] and by Fuchs, Poulton, Paeth and Bell in [11], differs from
the above systems in that it incorporates the actual image buffer memories in
the design rather than using standard large RAM chips. This allows the system

to perform each calculation at the highest possible level, thereby achieving the
effect of a processor at every pixel, with only a small fraction of an actual pro-
cessor at each pixel.

ability to handle advanced tasks such as anti-aliasing, complex lighting and tex-
tured surfaces. In addition, not even the most advanced commercial systems
can yet handle true curved surface objects (the curved surfaces are approxi-
mated by planar tiles).

IIl. LINE-GENERATING SYSTEMS

We now turn to the topic of line-drawings on raster displays. Since, tradi-
tionally, lines are done on random stroke displays, there is relatively little
literature on fast line drawing on raster devices; further, since drawing lines on
raster displays is a special case of drawing polygons, we will discuss how the
ideas from polygon-based systems can be used for this special application.

Line graphics, the earliest approach to computer-generated graphical
images, remains a very important part of the industry. Used in a wide range of
applications, line-drawn graphics can easily be handled both by the user and by
the graphics system designer. It presently is the only choice for real-time
interactive graphics for most users,

A. Problems With Current Solutions (Stroke Graphics) :

In the past, high performance Iine-drawing displays have useqd random-scan
technology to create images. This approach has severa] benefits: such systems
can draw a large number of very high-quality lines in real-time. With appropri-
ately fast transformation hardware, this approach can allow rotation, translation
and scaling in real-time,

Random-scan approaches also have Several problems. The random-scan
monitor itself is quite expensive (often in the range of $5,000 - $10,000), particu-
larly in comparison to raster scan video monitors, which which takes advantage
of lessons learned from the enormous television industry. The cost of these dev-
ices is most apparent in color Systems; where a fu]] color stroke monitor may
cost $25,000 or more, color video displays are often $5000 or less.

SO that theupdate rate (the rate at which a new frame is Prepared) can be
independent of the refresh rate, Thus raster scan devices can display arbij-
trarily complex line drawn images, while random-scan systems have an inherant

C. Problems With Raster

Raster devices have their own set of problems, which must be éddressed if
they are to replace random-scan devices.

buffer systems generate lines at about 1 microsecond per pixel. Even with spe-
cial purpose hardware enhancements, they run no faster (today) than160
Nnanoseconds per pixel. Assuming a 1024x1024 pixel image, this rate is almost an
order of magnitude slower than current stroke systems (12,500 1" lines to
95,000 1/10" lines at 30 Hz.).

2. Resolution Raster-scan systems also suffer from their low resolution, which
causes the phenomena of staircasing, the rastering effect caused by a low sam-
pling rate of the actual Screen points along the true line, This problem has two
solutions, both of which are costly. The display can be calculated at higher reso-
lution (note that the number of points to determine along the line rises as a

D. Solution: A Sketch

The lessons learned in the designs for polygonal systems may also be
applied in designing a line-oriented raster system.

1. Organization For fast line generation, several processors must be used to

'share the image generation task. Since the number of lines displayed by a typi-
cal line-generating system is much higher than the number of polygons pro-
cessed by even the most sophisticated polygon system, a processor-per-input
approach is impractical. We are therefore left with an image-area subdivision
approach. Vertical interlacing of processors shares the scan-conversion of most
lines among many processors. Horizontal interlacing of the pixels along the
scan-line alows parallel access to several adjacent pixels along the scan-line,
covering the intersection of the true line with the scan-line (the "span") in fewer
memory cycles.

In this organization each processor can compute the extent ("span”) of the
line along each of the scan lines under its control. The pixels in these spans can
then filled quickly by taking advantage of the parallel access to adjacent pixels.

2. Anti-Aliasing This organization expands simply to higher resolution displays
without image generation time cost. Although doubling the resolution of the
display quadruples the number of memory chips required, we need only double
the number of processors. The increased number of memory chips allows us to
double the number of pixels in a scan-line that can be accessed in parallel to fill
a span. Therefore, although twice as many scan lines intersect the desired line,
twice as many processors are computing spans. Although spans may be twice as
long, twice as many pixels can be stored in parallel. Thus, doubling the resolu-
tion should not significantly affect the line drawing rate. .

IV. CONCLUSIONS AND SUMMARY

The most promising way to speed up the image generation task is to distri-
bute the task among a great many processing units. The two ways that this has
been done are 1) distributing the input among the units, and 2) distributing the
image to be calculated among many processors. The major distinction for any
of these solutions is the degree to which custom-designed VLSI components can
be used. For systems restricted to using standard components, the most
promising approach appears to be to distribute the output image among the
processors, since no designs have been demonstrated which effectively distri-
bute the input among standard components. The bottleneck of such systems is
the large-scale RAM, being able to change only a single value in each chip in one
memory cycle time.

If custom ICs are allowed, this bottleneck can be overcome with custom IC
chips tht include some on-board processing circuitry at each pixel. Alternately,
one could design small, special-purpose processors among which the input data
can be efficiently distributed.

When the above problems are solved and techniques for inexpensive real-
time generation of arbitrarily curved, textured and shadowed surfaces are
developed, we shall be close to realizing Ivan Sutherland’s 1965 vision of having
an effective window into an imaginary world within everyone’s reach [19].

Acknowledgements

We are grateful for assistance from Michael Pique of our department,
Robert Schumacker of Evans and Sutherland Computer Corporation, Sang Lee
and Jerry Kennedy of Advanced Electronic Design, Inc., and Mitchell Reis of
Megatek Corporation.

References

[1] A. Bechtolsheim, and F. Baskett, "High-Performance Raster Graphics for
Microcomputer Systems", SIGGRAPH '80 Proceedings, {(July 1980).

[2] T. Blank, Mark Stefik, and Willem vanCleempu, "A Parallel Bit Map Processor
Architecture for DA Algorithms", ACM IEEE Fighteenth Design Automation
Conference Proceedings, (June 1981).

[3] J. Clark, and M. Hannah, "Distributed Processing in a High-Performance
Smart Image Memory", VLSI Design, Vol.I, No. 3, 4rd. Quarter.s {1980).

[4] J. Clark, "The Geometry Engine: A VLSI Geometry System for Graphics", SIG-
GRAPH '82 Proceedings, (July 1982).

[5] D. Cohen and S. Demetrescu, Presentation at SIGGRAPH '80 Panel on Trends
on High Performance Graphic Systems (1980).

[6] F. Crow, "A Frame Buffer System With Enhanced Functionality"”, SIGGRAPH
'81 Proceedings, (August 1981).

[7] R.R. Everett, "The Whirlwind I Computer”, Review of Electronic Digital Com-
puters, Joint AIEE-IRE Conference, 70, (February 1952) (quoted in [Newman and
Sproull, 1979]).

[8] H. Fuchs, "Distributing a Visible Surface Algorithm Over Multiple Proces-
sors", Proceedings of the 1977 ACM Annual Conference (1977).

[9] H. Fuchs and B.W. Johnson, "An Expanded Multiprocessor Architecture for
Video Graphics”, Proc. of the 6th Annual Symposium on Computer Architecture,
ACM Inc., New York, NY (1979).

[10] H. Fuchs and J. Poulton, "PIXEL-PLANES: A VLSI-Oriented Design for a Raster
Graphics Engine", VLSI Design, Vol.IlI, No. 3, 3rd. Quarter (1981).

[11] H. Fuchs, J. Poulton, A. Paeth and A. Bell, "Developing Pixel Planes, A Smart
Memory-Based Raster Graphics System", Proc. Conference On Advanced
Research in VLSI, Massachussetts Institute of Technology, Cambridge, MA.,
(January 1982).

[12] S. Gupta, and R. Sproull, A VLSI Architecture for Updating Raster-Scan
Displays", SIGGRAPH '81 Proceedings, (August 1981).

[13] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley.

[14] W.M. Newman, and R.F. Sproull, Principles of Interacive Computer Graphics,
McGraw-Hill, 2nd edition (1979).

[15] F.I. Parke, "Simulation and Expected Performance Analysis of Multiple

Processor Z-Buffer Systems", SIGGRAPH '80 Proceedings, (July 1980).

[18] J.K. Parks, "A Comparison of Two Graphics Computer Designs", University of
North Carolina at Chapel Hill Computer Science Department Tech. Report TR82-
001 (1982). -

[17] B. Schachter, "Computer Image Generation for Flight Simulation", JIEEE
Computer Graphics and Applications, Vol. 1, No. 4. (1981).

[18] R.A. Schumacker, personal communication (1982).

[19] LE. Sutherland, L.E., "The Ultimate Display,” summary in Praceedings of the
IFIP Congress 1965, Vol. 2, pp. 506-509 (1965).

[20] L.E. Sutherland, R.F. Sproull, and R.A. Schumaker, "A Characterization of
Ten Hidden Surface Algorithms", ACH Computing Surveys, Vol. 8, No. 1 (1974).

[R1] C.P. Thacker, E.M. McCreight, B.W. Lampson, R.F. Sproull, D.R. Boggs, "ALTO:
A Personal Computer”, in Siewiorek, Daniel P., C. Gordon Bell, and Allen Newell
(1982), Computer Structures: Principles and Ezamples, McGraw-Hill, 549-572
(1979).

[22] R. Weinberg, "Parallel Processing Image Synthesis and Anti-Aliasing", SIG-
GRAPH '81 Proceedings, (August 1981).

[23] D. Whelan, "A Rectangular Area Filling Display System Architecture"”, SIG-
GRAPH '82 Proceedings, (July 1982).

[24] J.T. Whitted, "Hardware Enhanced 3-D Raster Display System", Proceedings

of the 7th Canadien Man-Computer Communications Conference, Waterloo,
(June 1981). :

