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ABST£ACT 

This paper describes a new algorithm 
for solving the hidden surface (or line) 
problem, t o  m o r e  rapidly generate 
realistic images of 3-D scenes composed of 
polygons, and presents the development of 
theoretical foundations in the area as 
well as additional related algorithms. As 
in many applications the environment to be 
displayed consists of polygons many of 
whose relative geometric relations are 
static, we attempt to capitalize on this 
by pre processing tile environment,s 
database so as to decrease the run-time 
computations required to generate a scene. 
This preprocessing is based on generating 
a "ninary space partitioning" tree whose 
inorder traversal of visibility priority 
at run-time will produce a lineaL" order, 
dependent upon the viewing position, on 
(parts of) the polygons, which can then be 
used to easily solve the hidden surfac6 
problem. In the application where the 
entire environment is static with only the 
viewing-position changing, as is common in 
simulation, the results presented will be 
safficient to solve completely tlae llidden 
surface proulem. 

;_N~a~OUCZZON 

One of the long-term goals of 
computer graphics has been, and continues 
to be, the rapid, possibly real-time 
generation of £ealistic images of 
simulated 3-D environments. "Real-time," 
in current practice, has come to mean 
creating an image in 1/30 of a second-- 
fast enough to continually generate images 
on a video monitor. With this fast image 
generation, there is no aiscernable delay 
between specifying parameters zor an image 
(using knobs, switches, or cockpit 
controls) and the 
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image's appearance on the monitor's 
screen. Systems which can achieve this 
kind of performance are currently so 
expensive ($1M and up) that very few users 
can afford them. Users with more modest 
budgets have to be content with severely 
more limited performance--either a lower 
quality image (,wire frame" instead of 
solid-object modeling) or slower 
interaction (a time lag of several seconds 
to several minutes for a solid-object 
image). 

PROBLEM STATEMENT 

The problem to be solved is: 

Given 

I. a data oase describing a 3-D 
environment in terms of, say, a few 
thousands tiles (polygons) describing 
the surfaces of the various objects in 
the environment, one or more light 
sources and 

2. the (simulated) viewing position, 
orientation , and field of view, 

Generate a color video image of the 
environment as it would appear from the 
given viewing position and orientation. 

This image generation task consists, 
broadly, of the following three steps: 

I. transforming points into the image 
space, 

2. clipping away polygons outside the 
field of view, 

3. generating the image from the polygons 
that remain. Generating the image 
consists of determining the proper 
color (intensities of red, green, and 
Olue) for each of perhaps 250,000 
picture elements (approximately 500 
rows of dots, with 500 dots in each 
row). For each picture element 
("pixel"), 

a) find the polygon closest to the 
viewing position. (This will be the 
visible polygon at this pixel, the 
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polygon which obstructs all others.) 

D) given tne visible polygon, determine 
the proper color for the pi~el by 
evaluating a lighting model formula, 
see, e.g., (Newman and Sproull, 
1979) . 

PROPOSZD ~OLUTIO~ 

Since current moderately-priced ($~0- 
80k) l eal-time line-drawing systems (e.g. 
Evans and Sutherland Picture System 2, 
~ector General ~odel 3~0~) can easil~ 
perform steps 1 and 2, we shall 
concentrate on solutions to step 3. New 
solutions to this remaining step could 
then ~e combined with already available 
solutions to produce a complete system. 
Further, we believe step 3b can be 
effectively solved by distributing the 
individual pixel calculations among many 
small processors (Fuchs and Johnson, 
1979). We thUS concentrate in this paper 
on step 3a, determinin 9 the visible 
polygon at each pixel. 

We propose an alternative solution to an 
approach first utilized a decade ago 
(Scaumaker et al., 19o9) nut due to a few 
difficulties, not widely exploited. The 
general approac~ is named on the 
observation that in a wide variety of 
applications many images are generated of 
the same environment with only a caange in 
the viewing position ancl orientation, but 
no change in the environment. For 
example, pilots in a simulator may 
practice many dit£erent landings at the 
same airport, with eac,l landing generating 
thousands of new images. Simiiarl y, an 
architect may "walk" thro,lgn a newly 
designed house or housing development; a 
bioc,~emist may rotate OK move a~out a 
complicated protein molecule. To take 
advantage ol such statlc environments, the 
data uase is ~eprocessed once (for all 
time, or until the data base is changed) 
before any images ale generated, in this 
pre processing stage, certain geometric 
relationJaips are extracted which can then 
be used to speeu up the visible polygon 
determination for each pi~el, for all 
possi~ le images. 

It is important to note that although 
the developmeLt hece is given oflly rigi~ 
oojects and environments, these concepts 
can be e xtende~l to handle environments 
wita some moving oojects. 

SOLUTION OVERVIEW 

In ouder to detecmine the visible 
surface at each pixel, traditionally tile 
distance from the viewillg position to each 
polygon whic~ maps onto that pixel is 
calculated. Most methods attempt to 
minimize the number of polygons to be ~o 

considered. Our approach eliminates these 
distance calculations entirely. Rather, 
it transforms tae polygonal data base 
(splitting polygons when necessary) into a 
binary tree which can be traversed at 
image generation time to yield a 
vis~il~z priorit z value for each 
polygon. These visibility priorities are 
assigned in such a way that at each pixel 
the closest polygon to the viewing 
position will be the one with the highest 
wisioility priority. As we shall see, the 
visibility priorities are a function of 
the viewing position; they remain constant 
~or all pixels in every image generated 
from the same viewing position. In cases 
for which these visibility priority 
numuers cannot De assigned to the original 
polygons (see, e.g., fig. 6) and some 
polygons need to be split, the splitting 
is done only once -- during the 
p~eprocessing phase -- never at image 
generation time. 

~hE~ROCESSING PHASE 

Let us now consider the set of 
polygons P = {pl,P2,°..,pn} which define 
the 3-D environment. Choose an arbitrary 
(ior noN) polygon Pk from this set. We 
note that the plane in-which this polygon 
lies partitions the rest of 3-space into 
two half-spaces--call these S k and S~. 
The two half-spaces are identified w ith 
the positive and negative sides of the 
polygon pk o If Pk was defined with a 
"front" slae, then that side is considered 
as tile positive one; otherwise, one of the 
sides is arDitrarily caosen at this time 
to be the positive side. 

What can we say about visibility 
priorities of these polygons? We know 
that if the viewing position is in one 
hall-space, say in Sk, that no polygon 
within S:K can obstruct either polygon Pk 
or any polygon in Sk(see figure. 1). 

Therefore, ~e split each of the 
polygons in P - {Pk} along the plane of 
Pk' putting tile polygons (or parts of 
t~em) waich lie in S k into one set and 
polygons which lie in S T into another set. 
( Polygons coplanar with p~ can be put 
into eitaer set.) We can represent the 
results of this splitting process by a 
Uinary tree (we'll call it a Binary Space 
?artitioning, or "BSP" tree) in which the 
root contains Pk and each branch,s subtree 
contains the set of polygons associated 
with one of the half-spaces (Fig. 2). 

We next consider one of the two new 
sets of polygons, say the one in S k. We 
remove a polygon, say p~ and split the 
remaining polygons in $ along the plane 
of Pi" putting those polygons (or parts 
tiler~of) lying on the positive side in one 
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set (Sk,j) and those lying on the negative 
side ±n anotaer set (Sk T)- The overall 
tree after this step is ~own in Fig. 3. 

To complete the construction of the 
BSP tree we continue splitting sets until 
no non-null sets remain. 

The entire preprocessin~ phase, then, 
consists of transforming the entire 
polygonal data base into a BSP tree by the 
following recursive procedure (stated in a 
simple pseudo-PASCAL): 

PROC Make_tree (pl:polygon_list) : tree; 

BEGIN 
k=Select_polygon (pl) ; 
pos_list := null; neg_list := null; 
/* pos ~efers t o  positive parts 

neg refers to negative parts ~/ 
FOR i := I TO Size_of(pl) DO 

BEGIN 
IF i <> k THEN 
BEGIN 
Split_polygon (p1[i], pick], 

pos_parts, neg_par ts) ; 
Add (pos_parts, pos_list) ; 
Add (neg_parts, neg_list) 
END 

END; 
RETURN Combine_tree (MaKe_tree (pos_list) , 

p1 (k) , 
[take_tree (neg_list)) 

END; 

We note again that this process i~ 
only performed once for all possiul e 
images from all viewing positions; tae 
tree remains valid as long as the scene 
doesn't change. 

IMAGE GENERATION PHASE 

Calculating the visibilit y 
priorities, once tae viewing position is 
known, is a variant of an in-order 
traversal of the environment's ~ 5 P  tree 
(traverse one subtree, visit the root, 
traverse the other subtree). We wish, for 
example, t o  ~ave an order of traversal 
that visits the polygons from those 
farthest away to those closest to t~e 
current viewing position. At any given 
node, there are two possibilities: 
positive side subtree, node, negative sid~ 
subtree or negative side suotree, node, 
positive side su~tree. We choose one o£ 
t~ese two orderings basea on tae 
relationship o£ the current viewing 
position to the node's L, oiygon. 
Specifically, we are intecested in the 
side (positive or negative) ot the node's 
polygon where the current viewing position 
is located. Let's call the two sides the 
"containing" side and the "other" side. 
The traversal for a back-to-front ordering 
is 1) the "other" side, 2) the node, and 
3) the "containing" side. ( This side-of~ 

node-polygon determination is, of course, 
just a chec~ of the sign of the Z 
component of the node polygon's normal 
vector after the usual transformation to 
the screen coordinate system.) 

This notion of a traversal may be 
embodied in at least two different ways 
for visible surface image generation. One 
alternative is to assign priorities to 
f, olygons in the order that we visit taem. 
Using the traversal order just described 
we will get a low-to-high visibility 
priority assignment. These values can 
then De used within a conventional visible 
surzace display algorithm wherever 
visibility determinations need to De made. 
The other obvious alternative, which in 
fact is the one taut we nave implemented, 
does not assign explicit visibility 
priority values to polygons but uses the 
t~aversal to drive a "painter's" algorithm 
which paints onto the screen' s image 
ouffer each polygon as it is encountered 
in the traversal. Since higher priority 
polygons are visited later in the 
traversal and thus painter later, they 
will overwrite any overlapping polygons of 
lower priority. Tae following rec ursive 
procedure genera tes a visible surface 
image in the aoove-described manner. 

PROC Back to front(eye:viewing_position; 
t: BSP_tree) ; 

I~EGIN 
iF Not_null (t) THEN 

IF pos_side_of (root L t],eye) 
THEN 

BZGiN 
p a c k  to front (eye, neg_nranch [ t]); 
Display_polygon (root [ t]) ; 
mack to front (eye, pos_branch[t]) 
END 

ZLSE 

BEGIN 
Back to front (eye, i.os branch[ t ]) ; 
Display_polygon (root[ t]) ; 
Back to front (eye, neg_branch£t]) 
VN9 

E~,D 

Figures ~,5,and 6 illustrate this 
visible surlace algorithm. Since the 
display used had only one bit per pixel, 
the procedure Display_polygon painted the 
interior of the polygon the background 
saade and painted the outline of the 
polygon in tl~e otaer shade. 

The possiule weakness o£ this 
approach is that the number of polygons in 
the tree may increase sharply. (Recall, 
every root polygon splits all crossing 
polygons in its list in order to put any 
polygon in one or the other of its 
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subtrees. ) Ke **ave attempted to Limit 
this increase ~y selecting the root 
polygon at each stage to De the one whose 
plane splits the minimum number of 
polygons in its list. Table I indicates 
the performance of the system in limiting 
the number of polygons in the BSP tree. 
Figures 7 and 8 show ~e BSP tree for the 
environments of Fxgures q and 6, 
respectively. 

No. of 
No. of PolyKons in 

Fig. no. Original PolyKons BSP Tree 

4 ii ii 

5 72 I00 

6 3 5 

Table I: Number or' polygons in tree 
versus original data base 

We are currently examining a more 
sopaisticatea strategy for minimizing the 
number of polygons in the BSP tree. In 
addition to the just-descriued criterion 
of choosing a node polygon as one that 
minimizes the number of polygons that are 
split, a second criterion is also 
considered. This one maximizes the number 
ol "polygon conflicts" eliminat ee. We 
define a polygon conflict as an occurrence 
between two polygons in one list in whic,~ 
the plane of one pol~'gon intersects the 
other polygon. The hope is that these 
eliminated polygon conflicts will reduce 
the number oL polygons which will need to 
be cut in t,~e descendant suDtrees. ~ore 
precisely, if P is toe set of polygons, 
then form the sets S I' S 2 , S for each 
polygon p P as [ollows: 3 

S 1 -= [q c P I g is entirely 
positive half space of p} 

in the 

S z [q e ~ [ q is intersected by the 
p~ane of p} 

S 3 ~ {q e P i q As entirely 
negative half-space of p] 

in the 

We define a function 

IO ; polygon sj and the plane 
f(si, sj) = of s i intersect 

; otherwise 

and 

= ~ ~ f(si, sj) 
Im'n si~S m s 3.e~n 

we then select the p such that for 

Si(P) ,S2(P) ,S 3 (P) 
tee expresslon [Ii,3+ I3,1-(|$21~ weight)] 

which is maximal. 

FOHMAL DEVELOPSENT 

Let us now examine the nature of the 
uinary space-partitioning (BSP) tree more 
closely. The construction can be carried, 
in essentially identical manner, for any 
dimension; nonetheless, it is only the 
three-dimensional version that is of major 
interest to us here. However, it is 
easier to explain its nature in the two- 
dimensional setting, as the various 
geometric structures arising can be 
clearly drawn; thus the discussion of the 
properties of the tree will be presented 
~ssuming a t~o-dimensional universe. 
Nonetheless, we encourage the reader, as 
the next section of the paper is reada to 
extrapolate the three-dimensional 
interpretation. In the latter portion of 
the paper, where combinatorial issues are 
examined, the results wall be given for 
both two and three dimensions, since 
combinatorial complexity is dimension 
dependent. We now begin with some 
(sligatly non-standard) terminology° 

Segment - an oriented closed convex subset 
of a line, i.e., a finite segment, a 
ray, or a line, with a direction 
associated with it. 

Region - a closed convex set of points of 
a plane. (A region is normally defined 
as an open connected set.)* 

Extension of a 
Segment in a 
Region - given a segment s and a region R, 

define the extension of s in R to be 
the intersection of the line on which s 
lies with the region ~, obtaining the 
segment ~[ Assign to S R the direction 
induced x s (we indicate this by 
pointing an arrow to the ~ight) 

Note that a region can be unbounded 
(a plane) "partially bounded" (e.g., a 
half-plane) , or (completely) bounded 
(e.g., a finite polygon ). The motivation 
for defining regions and segments in this 
manner is that in general we have no 
interest in distinguishing between the 
bounded, partially bounded, and unbounded 
sets. The 3-space analogies to segments 

*A set is open if there is an "implicit 
boundary" which is not in the set. 
Formall~, a set Of points 8 in the plane 
is open if and only if 'V'K6R, e> 0 such 
that qPy[ix-1|<e => ySR]. k closed set is 
the complement of an open set (if bounded, 
the set inc£udes the boundary}. Formally, 
a set of points R in a plane is closed iff 
for every converging sequence • -> x, 
V n [ x  SE = >  x~ , I t ] .  

127 



and regions are polygons (or alternately, 
regions) and sectors (o~ volumes) 
respectively. The orientation of the 
polygons corresponds t o  the usual notion 
of the front and back sides. We are now 
ready to examine the general algorithm for 
construction of a lapeled binary space- 
partitioning tree. 

Algorithm I: Construction of a (2-space) 
BSP tree 

Input - a region R and a set of segmentsZ lying 
in R 

Output - A BSP Tree 

Method - call t~e function, BSPT~ with R and Z as 
parameters and Z ÷ ~. 

Procedure - BSPT ( R:reglon; E:set of segments ) 
:node 

Begin 

If E ~ ~ then 

b e s i n  
A 

c h o o s e  s c Z a n d  f o r m  s R 

A 
PartltlOndefinedR andas: Z by s R into Rs ' R~, ERs , ZR~ 

A 
R s -= { p c R I P c s R or p lles to the 

right of SA R } 

A 
R~ --- { p e R [ P c s R or p lles to the 

left of SAR } 

Z R =- { B n R s I B E Z-{s} } 
s 

zz_ -= { S n R~ [ B E Z - {s }  } 
8 

Create a new node v 

leftson(v) :=BSPT( R~,ER~ ) 

rightson(v) := BSPT (Rs,ER) 
s 

label(v) := s 
R 

return {v) 

~A 

Create a leaf 

label (~) :=R 

return (~) 

End BSPT 
L e t  u s  look at an example before examining 
t~e properties of this algorithm. 

Let R be a square and ~z{ a,b,c], as in 
figure 9a. 

If a is chosen first, we get figure 9D 
which creates figure 9c. If, next, b is 

R- a 
chosen before c, the final result will 
appear as in figure 10. 

A 
Consider now the set E of segments, which 
of course lies wholly within the original 
~. It is easily seen that it partitions R 
into convex regions (polygons}. Each such 
region, together with its boundary, will 
be referred to as an area (volume foe 3- 
space). The set of all the areas created 
Dy the algorithm will be referred to as a 
tessellation. The areas may be thought of 
as the intersection of half-planes (half- 
spaces for 3-D) created by th 9 lines on 
whic~ the elements of z (or ~) lie. The 
purpose of orientation of the segments is 
to distinguish between the two half- 
planes. The subscripts of each region, 
generated by algorithm I, indicate the 
half-planes whose intersection forms the 
region. As an example, refer to figure 11 
which is a BSP tree for the tessellation 
in fig. 10 where parentheses are used to 
indicate subscripting of regions. 

It should be clear by now that the 
algorithm performs a recursive 
partitioning of the plane Dy the segments 
lying in it. However, oDserve that ~iven 
a set of segments , that more than one 
tessellations can be generated by the 
algorithm depending upon the order in 
which segments are selected. Observe that 
in fig. 9, had the order of selection 
been c, b, a, fig. 12 would have been 
produced, which not only looks different 
f~om fig. 10, but has four areas, as 
opposed to five. Since a tessellation is 
formed by the extended segments, as 
opposed to the segments themselves and the 
length of an extended segment is dependent 
on the size of the region containing it at 
the time it is extended, selecting 
segments in different orders produces 
different regions, and thus the dependence 
of the tessellation on the order of 
selection. 

It is also possible to have, for a 
given set of segments, more than one tree 
which describes the same tessellation. 
Assume that at some stage of the 
construction of the tree, we are examining 
the region R k and the associated set of 

segment%ER~ {s I, s 2 ..... sin}. If 

m A 
U=. Si=iUlS i wlth respect to P~, then 

e~e~y permutation ~ on i = |,2,.o.,m will 
result in a different subtree, where the 
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subtcee is generated oy selecting segments 
in the order s~(1) , s~(2), .,,s~ (m ~ 
Nonetheless, every s~Otree will describe 
the same tessellation of ~k" 
Conse ~uen tl y, there ace distinct trees 
describing the same tessellation of the 
original region R. For example, in figure 
13, either tree specifies the same 
tessellation. 

An important special case occurs when 
the initial set of segments is equivalent 
to the extended set, i.e., u{slseE} = 
u{~|~e~J. If in addition the initial 
region is a plane, all o~ the elements of 
z, would De lines. Since extension has no 
effect, the tessellation is fixed oefore 
the algorithm oegins. We call such a 
tessellation a maximum tessellation 
because ant set of segments lying on the 
same set ot lines can produce only 
tessellations whose areas ace the union of 
the areas o~ the maximum tessellation, as 
can be ~een by comparing figures 10 and 12 
with fig. I~. it follows that any set of 
segments has a corresponding maximum 
tessellation whose cardinal ity is the 
maximum of the number of areas produced by 
any tessellation resulting from the set. 
In general, the number of different 
tessellations that can be derived from a 
set Z i~, in some sense, the complement of 
the number of distinct trees which 
describe the same tessellations. 

A BSP tree constructed b¥ algorithm I 
contains nodes labeled with segments and 
nodes labeled wita areas. The segment 
nodes are exactly the interior nodes of 
the tree and the "area" nodes are the 
leaves. The algorithm can be thought of 
as first generating a binary tree composed 
of only the segment nodes.. There will 
then be segment nodes which have one or 
two empty sons. {Every node of a binary 
tree has potentially two sons, left and 
right. If a node does not have one or 
both sons# we refer to these as "empty 
sons.") At each empty son, an area node 
is added. The resulting tree is s u c h  t h a t  
all segment nodes have both a left and a 
right son, either of which could be 
another segment node or an area node. 
Since binary trees of n nodes have n+1 
empty sons, it follows that the number of 
area nodes~is one more than the number of 
segment nodes, thus a tree of 2n-I nodes 
is needed to represent a tessellation 
containing n areas. 

Each subtree of a BSP tree represents 
some region R I in the sense that the union 
of all the areas represented by the leaves 
o£ R i equals R i (the segments represented 
by the segment nodes of R i are thus, also 
included in this union). FOE notational 
purposes we will designate the region 
represented Dy the entire tree as Ro" 
This, of course, is the original reglon 
from which the tessellation is formed. 
The extension of the segment s represented 

by the coot q of a subtree partitions a 
region ~i, and the regions represented by 
the two subtrees of ~ are the two half- 
spaces formed from Ri b~ ~ . If, upon 
traversing the tree one reaches q, then 
taking the left or right branch of g would 
have a geometric correspondence to 
selecting one of these two half-spaces. A 
path in the tree, then, reflects a 
successive selection of smaller and 
smaller portions of R o. In fact the 
region represented by a subtree is the 
intersection of the half-spaces with 
respect to R o formed by the extension of 
the segments which are on the path to the 
root of the subtree g {but not including 
q). i t  immediately follows that the area 
which is "added" at each empty son is 
exactly the intersection of the half- 
spaces with respect to R o formed by the 
extension of segments whose nodes are on 
the path to the son. 

It is easy to see how a BSP tree can 
be used to locate which area of the 
tessellation a point lies. Beginning at 
the coot, determine on which side of a 
segment the point lies and proceed to the 
son representing the half-space 
corresponding to that side {points on the 
line being assigned arbitrarily to one of 
the two half-spaces}. Repetition of this 
process will generate a path to a leaf 
node that represents the area in which the 
point lies, thus solving what might be 
called the "location problem" with respect 
to a tessellation. 

B ~  Tree use~_~..9.~...,£~¢oc¢~ o~d~ei ,q  

The ability of a BSP tree to be used 
for the generation of a priority ordering 
is based upon the principle that given in 
which half-space lies the point to which 
the ordering is relative (usually thought 
of as the "eye" or viewing position), all 
points in this same half-space will have 
priority over all points in the other 
mall-space. Although this fact is fairly 
self evident for half-spaces, it is also 
true for any two convex regions. 

To obtain a priority ordering from 
the tree, an inorder traversal is 
performed. The choice of taking the left 
or right branch of a node q representing 
segment s is always made in favor of the 
subtree which represents the region that 
is contained in the same half-space that 
the viewing position is ~n, this half- 
space having been formed b X ~ with respect 
to R o. It is easy to see that such a 
policy will result in the first area node 
t o  be reached being the one in which the 
viewing position lies, i.e. the solution 
to the location problem mentioned earlier. 
Priority is assigned to a node upou 
backing-up from it during the traversal. 
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Thus for each node g, all nodes o f  the 
chosen subtree receive higher priorities 
than g, and similarly, all nodes of the 
remaining subtree obtain a lower priority 
than q. The entire traversal of the tree 
will then produce a total ordering of the 
nodes, and this is precisely the 
visibility priority of the elements 
represented by the nodes. Note that it is 
reguisite that R, be convex to guarantee 
this property. Since the partitioning of 
a convex object produces two convex 
objects, the convexity of H implies the 
sane property for a~l subseguent 
refinements of ~0 during the construction 
o f  the tree. Thus all areas are convex 
which is sufficient to guarantee the 
existence of a priority ordering of the 
areas. 

ConDarisoq of Uses of the BSP Tree 
The first appearance of a BSP tree An 

the general literature gas in Sutherland, 
st- el. (197~) zeviewlng the work o f  
S~husaker, et aL (1969), although the 
t r e e  gas n@t named and its ~general 
properties were not developed. The 
application presented gas that in which 
iavlslble "dividing planes" were 
introduced to the data base. The method 
Involved the designer of a siuulation 
scene manually positioning Ucl~sters" such 
a s  b u i l d i n g s ,  tDees, mountains, etco# so 
t h a t  v e r t i o a l  dividing planes could be 
piaoed between t h e  cluster.s to v a r y i n g  
extents. This resulted, in terms of a BSP 
flee, la the generation of a tessellation 
of~the s~eface by the dividing places 
which are represented by segment nodes# 
a n d  e a c h  c l u s t e r  mas  c o n t a i n e d  w h o l l y  
w i t h i n  am area. T h u s  e a c h  cluster 
corresponded t o  a n  a r e a  n o d e .  a p r i o r i t y  
ordering c o u l d  t h e n  b e  o b t a i n e d  o n  t h e  
clusters. 

&ddltional power is available if the 
tessellation is a maximum tessellation. 
In this case, it is possible t o  compute 
off-line the priority ordering for each 
case of the viewing position being in a 
different area. This follows from the 
fact that since the areas are formed by a 
maxiuuu tessellation, it is not possible 
for tgo different points in the sane area 
to be on different sides of the extension 
of a segment with respect to R 0 {since in 
a maximum tessellation all segments are 
egual to their extensions with respect to 
R~). Thus for each area the traversal o f  
the tree is fixed. The Sutherland~ 
~., presentation suggests taking 
advantage of this by pre-computing and 
storing for each area its inherent 
p r i o r i t y  ordering on  t h e  clusters {since 
the dividing planes are not part of the 
scene they need not be included in the 
ordering). It was t h e n  sufficient t c  
solve the location problem in order to 
obtain the priority ordering. Since this 
method requires n 2 storage space (where n 

is the number of clusters) and the 
traversal of the tree is O(n), it is not 
clear whether this approach is 
advantageous. Also since a maximum 
tessellation is requited the tree will be 
the largest possible for a given set of 
clusters. 

The application of BSP trees 
introduced in this paper is something of a 
complement to that presented in 
Sutherland, et al. Here those objects 
represented by the segment (or polygon} 
nodes constitute the visible data while 
the areas of the tessellation are of no 
importance. In fact, the function 
Hake_tree presented earlier produces only 
the segment nodes. The area nodes are 
only implied by the empty sons. Also, 
Sake tree forms a BSP tree for three 
dimensions while the former method, 
although working in 3-D, forms a BSP tree 
for two dimensionsa and Make_tree's 
tessellation in general is not maximal. 
Clearly the aSP tree can be used with 
dividing planes to divide 3-space into 
volumes, and a hybrid of polygons and 
dividing planes could also be developed. 
FoE instance, each area node of a tree 
constructed with dividing planes could be 
replaced with a BSP tree constructed of 
polygons for the cluster contained in the 
area. 

~9~b~nato~s of the Bsp T~@e 

ge sill nee examine the size of the 
BSP trees. The previous discussion was 
presented, for slmplicity's sake, for the 
2-D case; here we will derive some 
f.mules both for the 2-D and 3-D BSP 
trees. Although we are most interested in 
the 3-D case, 2-D is important in the 
special 3-D case in which all of the 
objects "sit" on the ground and can be 
separated by vertical planes. This is 
equivalent to a 2-D BSP tree corresponding 
to the 2-D scene obtained by projecting 
the objects and the separating plane on 
the ground plane. 

As noted previously, the BSP tree can 
be created by both infinite and finite 
objects= The infinite objects are planes 
for the 3-D case are lines for the 2-D 
case. The corresponding finite objects 
are non-intersec¢ing convex polygons and 
segments. Ue will examine these two 
extremal cases in turn. 

A d-dimensional BSP tree partitions 
the d-dimensional space by (d-1)- 
dimensional objects. Je thus examine 
first, what is the maximum number fd (n) of 
volumes of a d-dimensional space that can 
be created by n (d-1)-dimensional planes. 
In the 2-D case we have been considering, 
this corresponds to the maximum 
tessellation of the plane using lines. 
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The general formula is 

d (~) 
fd (n) =lEO • 

As there is a one-to-one 
correspondence oetween the volumes and the 
leaves of tae binary BSP tree, the ;,umber 
of the nodes of the BSP tree is 2f d (n)-1. 

How many (d- I) -dimensional regions 
created from (d- I) -dimensional planes 
under the assumption taat no 3 planes 
intersect along a single (d-2)-dimensional 
line~ It can be showa that the number is 

d 
n 

z i Q ) .  
i=o 

In the other ext~emal case, where the 
objects ~iven are n (d-1)-dimensional non- 
interpenetrating convex pol)gons, we 
examine the worst case, namely compute the 
maximum number of the (d- I) -dimensional 
regions that are obtained from the 
polygons by the intersection of the n (d- 
I)-dimensional planes on waich they lie. 
It can be shown that tae number is 

n nd_ 1 
(2) + 

We summarize the results in Table 2 for 
the two interesting cases d=2 and d=3. 

Volumes Unbounded Objects Bounded 9bjects 
2 2 

n +n 2 n +n 
2-D: - - +  1 n 

2 2 
3 3 2 n 3 n + 5n n - n + 2n + 3n 2 + 2n 

3-D: - - +  i 
6 2 6 

Table ~: ~aximum possible nodes in BSP 
t~ee. 

Conclusion 

A solution has been presented to the 
visible surface problem which appears to 
De more e~ficient than previous solutions 
whenever many images are to be generated 
of tile same static environment° The 
algorithm is easy to implement since both 
phases, the prep~ocessing and the image 
9eneLation, can each be succinctly stated 
in a short recursive proceduce. The major 
potential weakness, a large increase from 
the number of original polygons in the 
data base to the number in the BSP tree, 
has not occurred in any environment so far 
encountered. 
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Figure l: Environment split by plane of Pk 
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Figure 2: Beginning of BSP tree construction 
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Figure 3: BSP tree after two steps 
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Figure 4: Wire-frame and visible line/surface images of same environment 
(ii original polygons; ii in BSP tree) 

Figure 5: Wire-frame and visible line/surface images of same environment 
(72 original polygons; i00 polygons in BSP tree) 

Figure 6: Visible line/surface image 
of simple object whose polygons 
cannot be directly assigned visibility 
priorities (some pol#gons here have 
been split during preprocessing) 
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(left branches are positive; 
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Figure 7: BSP tree and polygons of Fig.4 

Figure 8: BSP tree and polygons of Fig. 6 (A and C have each been split into 
two parts by plane of polygon B) 
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The maximum 
tessellation 
for Figure 9 
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