
1

August 26

• TA: Angela Van Osdol in 036

• Questions?

What is a computer?

• Tape drives?

• Big box with lots of lights?

• Display with huge letters?

• Little box with no lights?

• Lump in the cable?

5 Classic Computer Components Display

LCD Mouse

2

Keyboard Inside the case

b. Processor

c. PCI slots

e. Memory slots

Motherboard Memory

•RAM � Random Access Memory

•DRAM � Dynamic Random Access Memory

•SRAM � Static RAM

•ROM � Read-only Memory

•Volatile / Non-Volatile � needs power or not

•Magnetic � stores bits as magnetized regions

Pentium III Xeon

Processor
You only need switches and

wires!

•Relays

•Vacuum tubes

•Transistors

•Integrated Circuits

•VLSI

•Nanotubes?

•Quantum Effect Devices?

Control

In

Out

3

Disk Drive Improving Technology

Performance Increase

HP 9000/750

SUN-4/�
260

MIPS �
M2000

MIPS �
M/120

IBM�
RS6000

100

200

300

400

500

600

700

800

900

1100

DEC Alpha 5/500

DEC Alpha 21264/600

DEC Alpha 5/300

DEC Alpha 4/266

DEC AXP/500
IBM POWER 100

Year

P
er

fo
rm

an
ce

0

1000

1200

19971996199519941993199219911990198919881987

�

Abstractions
• What the user wanted.
• What the programmer designed.
• What the programmer thought about.
• What the language allowed.
• Assembly language.
• Binary.
• Function blocks.
• Gates
• Devices
• Physics

Abstraction: C to ASM
Swap(int v[], int k) {
int temp;
temp = v[k]; v[k] = v[k+1]; v[k+1] = temp;

}

Swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

C compiler

Assembly

Abstraction: ASM to Binary

Swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

00000000101000010000000000011000
00000000100011100001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100

00000011111000000000000000001000

Assembler

Assembly

Binary

4

Instruction Set Architecture
... the attributes of a [computing] system as seen by the programmer,

i.e. the conceptual structure and functional behavior, as distinct
from the organization of the data flows and controls, the logic
design, and the physical implementation.

– Amdahl, Blaaw, and Brooks, 1964

• interface between hardware and low-level software
• standardizes instructions, machine language bit patterns, etc.
• advantage: different implementations of the same architecture

• disadvantage: sometimes prevents using new innovations

Modern instruction set architectures:

– 80x86/Pentium/K6, PowerPC, DEC Alpha, MIPS, SPARC, HP

CISC vs. RISC

• ISA’s originally for humans to use

• Small memory size was critical thus
complex instructions

• High-level-language architectures (B5000)

• RISC says do a few things well; only supply
what the compiler will use; rely on compiler
to get it right.

Why look at MIPS?

• Why not one that matters like Intel?

Complexity…

Ugliness…
Horror…

Reality…

The Really Big Ideas

• Just bits for data and program

• Program is a sequence of instruction words

• Data-type determined by instruction

• Large linear “array” of memory

• Small number of “variables” (registers)

Just Bits

• Program and data have the same
representation

• Programs can manipulate programs

• Programs can manipulate themselves!

• Bits not the only way (Lisp)

Data Types

• char byte short int pointer quad float double

• Instruction determines type of operands
– Add (int), Add.s (float), Add.d (double)

• Free to reinterpret at will

• How big is a char?

• What’s a pointer?

5

Memory

• Large (usually) linear array

• Only read with load instructions
– lw $t5, 100($a3) ($t5 = mem[100+$a3])

• Only modified with store instructions
– sw $s0, 24($t3) (mem[24+$t3] = $s0)

• CISC machines have lots of ways to read
and write memory

Memory

• Address is always in bytes

• Words on 4 byte boundary (how many 0’s?)

• Short only on 2 byte boundary

• Doubles only on 8 byte boundary

• CISC allowed them anywhere

Why?

I t’s an ABSTRACTION!

GP Registers

• Variables for our programs

• The ONLY operands for most instructions

• A very small number (32 in MIPS)

Why?

• All 32 bits

• What about new 64 bit ISA’s?

Where we are headed
• Overview of C
• Performance issues (Chapter 2) vocabulary and

motivation
• A specific instruction set architecture (Chapter 3)

Why MIPS? Why not Intel?
• Arithmetic and how to build an ALU (Chapter 4)
• Pipelining to improve performance (Chapter 6)

briefly
Memory: caches and virtual memory (Chapter 7)

• Key to a good grade: reading the book!

