August 31

* Email addresses
 Drop box
* Questions?

31 August 2004 Comp120 Fall 2004

The Redlly Big Ideas

Just bits for data and program

» Programis a sequence of instruction words
» Data-type determined by instruction
 Largelinear “array” of memory

Small number of “variables’ (registers)

31 August 2004 Comp120 Fall 2004 2

Just Bits

 Program and data have the same
representation

 Programs can manipulate programs
 Programs can manipulate themselves!
« Bitsnot the only way (Lisp)

31 August 2004 Comp120 Fall 2004

Data Types

« char byte short int pointer quad float double
* |Instruction determines type of operands

— Add (int), Add.s (float), Add.d (double)
 Freeto reinterpret at will
e How bigisachar?
e What's apointer?

31 August 2004 Comp120 Fall 2004 4

Memory

 Large (usually) linear array
 Only read with load instructions
—lw $t5, 100($a3) ($t5 = mem[100+$a3])
» Only modified with store instructions
— SW $0, 24($t3) (mem[24+$t3] = $s0)
 CISC machines have lots of waysto read
and write memory

31 August 2004 Comp120 Fall 2004

Memory

» Addressisawaysin bytes
Words on 4 byte boundary (how many 0's?)
« Short only on 2 byte boundary
Doubles only on 8 byte boundary
CISC alowed them anywhere
Why?
It'san ABSTRACTION!

31 August 2004 Comp120 Fall 2004 6

GP Registers

Variables for our programs
The ONLY operands for most instructions
A very small number (32in MIPS)
Why?
All 32 bits
What about new 64 bit ISA’s?

Just enough C

For our purposes C isamost identical to JAVA except:

C has“functions’, JAVA has “methods’.
function == method without “class”.
A global method.
C has“pointers’ explicitly. JAVA has them but hides
them under the covers.

31 August 2004 Comp120 Fall 2004 8

31 August 2004 Comp120 Fall 2004 7
C pointers

int i; /1 sinple integer variable

int a[10]; // array of integers

int *p; /1 pointer to integer(s)

*(expressi on) iscontent of address computed by expression.

a[k] == *(a+k)

a isaconstant of type “i nt *”

a[k] = a[k+1] EQUV *(a+k) = *(a+tk+l)

Legal uses of C Pointers

int i; /1 sinple integer variable

int a[10]; // array of integers

int *p; /1 pointer to integer(s)

p=&; /1 & neans address of

p = a; /1 no need for & on a

p = &[5]; // address of 6" elenent of a

*p /1 value of |ocation pointed by p
*p = 1; /1 change val ue of that |ocation
*(p+l) = 1; // change val ue of next |ocation
p[1] =1, /1 exactly the sane as above

p++; /1 step pointer to the next elenent
31 August 2004 Comp120 Fall 2004 10

31 August 2004 Comp120 Fall 2004 9
Legal uses of Pointers
int i; /1 sinmple integer variable

int a[10];// array of integers

int *p;

/] pointer to integer(s)

So what happens when
p=&;

What is value of p[0]?
What is value of p[1]?

31 August 2004

Comp120 Fall 2004

C Pointersvs. object size

Does “p++” really add 1 to the pointer?
NO It adds 4.
Why 4?2

char *q;

g++; // really does add 1

31 August 2004 Comp120 Fall 2004 12

Clear123

void clearl(int array[], int size) {
for(int i=0; i<size; i++)
array[i] = 0;
}

void clear2(int *array, int size) {
for(int *p = &rray[0]; p < &array[size]; pt++)
*p =0
}

void clear3(int *array, int size) {
int *arrayend = array + size;
while(array < arrayend) *array++ = 0;

}

31 August 2004 Comp120 Fall 2004 13

Pointer summary

* Inthe“C” world and in the “machine” world:
— apointer isjust the address of an object in memory
— size of pointer is fixed regardless of size of object
— to get to the next object increment by the object’ s size
in bytes
— to get the the it object add i*sizeof(object)
* Moredetails:
— int R[5] = Risint* constant address of 20 bytes
— R[i] > *(R+i)
—int*p=&R[3] > p = (R+3) (p points 12 bytes after R)

31 August 2004 Comp120 Fall 2004 14

Representations

Pointer Size vs. Addressable Space

¢ Pointers ARE addresses
* Number of unique addressesfor N hitsis 2N

« With addresses that are 32 bitslong you can
address 4G bytes

« With addresses that are 13 bitslong you can
address 8k bytes
— that’s 2k words

31 August 2004 Comp120 Fall 2004 16

270 1
Y ou need to know your z:: i
powers of 2! 3 5
274 16
2"5 32
276 64
2NT7 128
278 256
29 512
2710 1k
2720 iM
31 August 2004 Comp120 Fall 2004 2730 1G 15
CversusASM

31 August 2004 Comp120 Fall 2004 17

Form of the Instructions

« Opcode
« Register (usually result destination)
e Operand 1
¢ Operand 2
eg.
add $t0, $a0, $t0

31 August 2004 Comp120 Fall 2004 18

Naming Registers

Thisisall just software “ convention”
* $a0 - $a3 argumentsto functions
* $v0 - $v1 results from functions
* $rareturn address
o $s0 - $s7 “saved” registers
 $t0 - $t9 “temporary” registers
* $sp stack pointer

31 August 2004 Comp120 Fall 2004

What are the operands?

Registerse.g. $a0
With load and store thisis logical enough
¢ But small constants are VERY common

* S0, some instructions allow “immediate”
operands. E.g. muli $t0, $a1, 4

« Where do we get big constants?

31 August 2004 Comp120 Fall 2004 20

C versus ASM

31 August 2004 Comp120 Fall 2004

21

Next: Performance

Measure, Report, and Summarize

Make intelligent choices

See through the marketing hype

Key to understanding underlying organizational motivation

Why is some hardware better than others for different programs?

What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

How does the machine'sinstruction set affect performance?

31 August 2004 Comp120 Fall 2004 22

Where we are headed

Performance issues (Chapter 2) vocabulary and
motivation

A specific instruction set architecture (Chapter 3)
Why MIPS? Why not Intel?

* Arithmetic and how to build an ALU (Chapter 4)
 Pipdining to improve performance (Chapter 6)
briefly
Memory: caches and virtual memory (Chapter 7)

» Keytoagood grade: readingthe book!

31 August 2004 Comp120 Fall 2004

