October 7

What is the problem?

+ Read 5.1 through 5.3

* Register!

* Questions?

« Chapter 4 — Floating Point

10/7/2004 Comp 120 Fall 2004

+ Many numeric applications require numbers over a VERY large
range. (e.g. nanoseconds to centuries)
* Most scientific applications require fractions (e.g. 1)

But so far we only have integers.
We *COULD* implement the fractions explicitly (e.g. %2, 1023/102934)
We *COULD* use bigger integers

Floating point is a better answer for most applications.

10/7/2004 Comp 120 Fall 2004 2

Floating Point

Normalization

« Just Scientific Notation for computers (e.qg. -1.345 x 10%)
« Representation in IEEE 754 floating point standard
32 bits ‘sign 1‘ exponent 8 ‘ significand or mantissa 23 ‘ single

64 bits ‘sign l‘ exponent 11 ‘ significand or mantissa 52 ‘ double

— value = (1-2*sign) x significand x 2exponent
— more bits for significand gives more precision
— more bits for exponent increases range

Remember, these are JUST BITS. It is up to the instruction to interpret them.

10/7/2004 Comp 120 Fall 2004

« In Scientific Notation:
1234000 = 1234 x 103 = 1.234 x 106

« Likewise in Floating Point
1011000 = 1011 x 23 = 1,011 x 26 +——Normalized

« The standard says we should always keep them normalized so that
the first digit is 1 and the binary point comes immediately after.

« But wait! There's more! If we know the first bit is 1 why keep it?

10/7/2004 Comp 120 Fall 2004 4

IEEE 754 floating-point standard

Arithmetic in Floating Point

« Leading “1” bit of significand is implicit
« We want both positive and negative exponents for big and small
numbers.
« Exponent is “biased” to make comparison easier
— all Os is smallest exponent all 1s is largest
— bias of 127 for single precision and 1023 for double precision
— summary: (1-2*sign) x (L+significand) x 2exponent -bias
* Example:
— decimal: -.75 =-3/4 =-3/22
— binary: -.11=-1.1x21
— floating point: exponent = 126 = 01111110
— |EEE single precision: 10111111010000000000000000000000
« What about zero?

10/7/2004 Comp 120 Fall 2004

« In Scientific Notation we learned that to add to numbers you must
first get a common exponent:
¢ 1.23x10"3 +4.56 x 10"6 ==
+ 0.00123 x 10”6 + 4.56 x 10”6 ==
* 456123 x 10"6
« In Scientific Notation, we can multiply numbers by multiplying the
significands and adding the exponents
— 1.23x10"3 x 4.56 x 10"6 ==
— (1.23 X 4.56) X 101(3+6) ==
— 5.609 x 10”9
* We use exactly these same rules in Floating point PLUS we add a
step at the end to keep the result normalized.

10/7/2004 Comp 120 Fall 2004 6




Floating point AIN'T NATURAL

Floating Point Complexities

It is CRUCIAL for computer scientists to know that Floating Point arithmetic
is NOT the arithmetic you learned since childhood

1.0 is NOT EQUAL to 10%0.1 (Why?)
= 1.0*10.0==10.0

= 0.1*10.0 .0
= 0.1decimal == 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 + ... ==
0.00011 0011 0011 0011 0011 ...

In decimal 1/3 is a repeating fraction 0.333333...
If you quit at some fixed number of digits, then 3* 1/3 1= 1

Floating Point arithmetic IS NOT associative
X+ (y + z) is not necessarily equal to (x +y) + z

Addition may not even result in a change
(x + 1) MAY == x

10/7/2004 Comp 120 Fall 2004 7

In addition to overflow we can have “underflow”
Accuracy can be a big problem
— |EEE 754 keeps two extra bits, guard and round
— four rounding modes
Non-zero divided by zero yields “infinity” INF
Zero divided by zero yields “not a number” NAN
Implementing the standard can be tricky
Not using the standard can be worse

10/7/2004 Comp 120 Fall 2004 8

MIPS Floating Point

Chapter Four Summary

Floating point “Co-processor”

32 Floating point registers

— separate from 32 general purpose registers
— 32 bits wide each.

— use an even-odd pair for double precision

add.d fd, fs, ft # fd = fs + ft in double precision
add.s fd, fs, ft # fd = fs + ft in single precision
sub.d, sub.s, mul.d, mul.s, div.d, div.s, abs.d, abs.s
l.d fd, address # load a double from address
l.s, s.d, s.s

Conversion instructions
Compare instructions
Branch (bclt, bcif)

10/7/2004 Comp 120 Fall 2004 9

Computer arithmetic is constrained by limited precision
Bit patterns have no inherent meaning but standards do exist

— two's complement

— |EEE 754 floating point
Computer instructions determine “meaning” of the bit patterns
Performance and accuracy are important so there are many
complexities in real machines (i.e., algorithms and implementation).
Accurate numerical computing requires methods quite different from
those of the math you learned in grade school.

10/7/2004 Comp 120 Fall 2004 10




