
•1

10/7/2004 Comp 120 Fall 2004 1

October 7
• Read 5.1 through 5.3
• Register!
• Questions?
• Chapter 4 – Floating Point

10/7/2004 Comp 120 Fall 2004 2

What is the problem?
• Many numeric applications require numbers over a VERY large

range. (e.g. nanoseconds to centuries)
• Most scientific applications require fractions (e.g. π)

But so far we only have integers.

We *COULD* implement the fractions explicitly (e.g. ½, 1023/102934)

We *COULD* use bigger integers

Floating point is a better answer for most applications.

10/7/2004 Comp 120 Fall 2004 3

• Just Scientific Notation for computers (e.g. -1.345 × 1012)

• Representation in IEEE 754 floating point standard

– value = (1-2*sign) × significand × 2exponent

– more bits for significand gives more precision

– more bits for exponent increases range

Floating Point

sign 1 exponent 8 significand or mantissa 23

sign 1 exponent 11 significand or mantissa 52

single

double

32 bits

64 bits

Remember, these are JUST BITS. It is up to the instruction to interpret them.

10/7/2004 Comp 120 Fall 2004 4

Normalization
• In Scientific Notation:

1234000 = 1234 x 103 = 1.234 x 106

• Likewise in Floating Point
1011000 = 1011 x 23 = 1.011 x 26

• The standard says we should always keep them normalized so that
the first digit is 1 and the binary point comes immediately after.

• But wait! There’s more! If we know the first bit is 1 why keep it?

Normalized

10/7/2004 Comp 120 Fall 2004 5

IEEE 754 floating-point standard
• Leading “1” bit of significand is implicit
• We want both positive and negative exponents for big and small

numbers.
• Exponent is “biased” to make comparison easier

– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– summary: (1-2*sign) × (1+significand) × 2exponent – bias

• Example:
– decimal: -.75 = -3/4 = -3/22

– binary: -.11 = -1.1 x 2-1

– floating point: exponent = 126 = 01111110
– IEEE single precision: 10111111010000000000000000000000

• What about zero?

10/7/2004 Comp 120 Fall 2004 6

Arithmetic in Floating Point
• In Scientific Notation we learned that to add to numbers you must

first get a common exponent:
• 1.23 x 10^3 + 4.56 x 10^6 ==
• 0.00123 x 10^6 + 4.56 x 10^6 ==
• 4.56123 x 10^6

• In Scientific Notation, we can multiply numbers by multiplying the
significands and adding the exponents
– 1.23 x 10^3 x 4.56 x 10^6 ==
– (1.23 x 4.56) x 10^(3+6) ==
– 5.609 x 10^9

• We use exactly these same rules in Floating point PLUS we add a
step at the end to keep the result normalized.

•2

10/7/2004 Comp 120 Fall 2004 7

Floating point AIN’T NATURAL
• It is CRUCIAL for computer scientists to know that Floating Point arithmetic

is NOT the arithmetic you learned since childhood

• 1.0 is NOT EQUAL to 10*0.1 (Why?)
� 1.0 * 10.0 == 10.0

� 0.1 * 10.0 != 1.0
� 0.1 decimal == 1/16 + 1/32 + 1/256 + 1/512 + 1/4096 + … ==

0.0 0011 0011 0011 0011 0011 …
� In decimal 1/3 is a repeating fraction 0.333333…

� If you quit at some fixed number of digits, then 3 * 1/3 != 1

• Floating Point arithmetic IS NOT associative
x + (y + z) is not necessarily equal to (x + y) + z

• Addition may not even result in a change
(x + 1) MAY == x

10/7/2004 Comp 120 Fall 2004 8

Floating Point Complexities

• In addition to overflow we can have “underflow”

• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

• Non-zero divided by zero yields “infinity” INF

• Zero divided by zero yields “not a number” NAN

• Implementing the standard can be tricky
• Not using the standard can be worse

10/7/2004 Comp 120 Fall 2004 9

MIPS Floating Point
• Floating point “Co-processor”
• 32 Floating point registers

– separate from 32 general purpose registers
– 32 bits wide each.
– use an even-odd pair for double precision

• add.d fd, fs, ft # fd = fs + ft in double precision
• add.s fd, fs, ft # fd = fs + ft in single precision
• sub.d, sub.s, mul.d, mul.s, div.d, div.s, abs.d, abs.s
• l.d fd, address # load a double from address
• l.s, s.d, s.s
• Conversion instructions
• Compare instructions
• Branch (bc1t, bc1f)

10/7/2004 Comp 120 Fall 2004 10

Chapter Four Summary
• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do exist

– two’s complement
– IEEE 754 floating point

• Computer instructions determine “meaning” of the bit patterns
• Performance and accuracy are important so there are many

complexities in real machines (i.e., algorithms and implementation).
• Accurate numerical computing requires methods quite different from

those of the math you learned in grade school.

