
•1

10/21/2004 Comp 120 Fall 2004 1

21 October

• Only 12 to go!
• Been to the Fair?
• Assignment 9 due 28th instead of 26th

• Today Control

10/21/2004 Comp 120 Fall 2004 2

Synchronous Systems

Latch
Combinational

logic
Latch

leading

edge

trailing

edge

On the leading edge of the clock, the input of a latch is
transferred to the output and held.

We must be sure the combinational logic has settled before
the next leading clock edge.

Clock

data

10/21/2004 Comp 120 Fall 2004 3

Asynchronous Systems

Latch
Combinational

logic
Latch

data

valid

No clock!

The data carries a “valid” signal along with it

System goes at greatest possible speed.
Only “computes” when necessary.

Everything we look at will be synchronous

10/21/2004 Comp 120 Fall 2004 4

Fetching Sequential Instructions

P

C

4

Read Address

Instruction

Instruction
Memory

How about branch?

10/21/2004 Comp 120 Fall 2004 5

Datapath for R-type Instructions

Read Reg. 1
5

5

5

32

Read Reg. 2

Write Reg.

Write Data

data 1

data 2

3

ALU Operation

Inst Bits 25-21

Inst Bits 20-16

Inst Bits 15-11

RegWrite

32

32

10/21/2004 Comp 120 Fall 2004 6

Fun with MUXes

Select 0

In 3

In 2

Select 0

In 1

In 0

Select 1

Out

Remember the MUX?

This will route 1 of 4
different 1 bit values
to the output.

•2

10/21/2004 Comp 120 Fall 2004 7

MUX Blocks

0
1
2
3
4
5
6
7

Out

2 1 0
Select

In
pu

t

8

3

Select

In Out

The select signal determines which of the inputs is connected
to the output

10/21/2004 Comp 120 Fall 2004 8

Inside there is a 32 way MUX per bit

Register 0

Register 1

Register 2

Register 3

Register 4

Register ...

Register 30

Register 31

32 to1 MUX

Read Reg 1

Data 1

For EACH bit in the 32 bit register

LOT’S OF
CONNECTIONS!

And this is just one port!

10/21/2004 Comp 120 Fall 2004 9

Our Register File has 3 ports

Read Reg. 1
5

5

5

32

Read Reg. 2

Write Reg.

Write Data

data 1

data 2

Inst Bits 25-21

Inst Bits 20-16

Inst Bits 15-11

RegWrite

32

32

2 Read Ports

1 Write Port

REALLY LOTS OF CONNECTIONS!

This is one reason we have only a
small number of registers

What’s another reason?

10/21/2004 Comp 120 Fall 2004 10

Implementing Logical Functions

Suppose we want to map M input bits to N output bits

For example, we need to take the OPCODE field from the instruction and
determine what OPERATION to send to the ALU.

3

ALU Operation

32

32

Map to ALU op

OPCODE bits
from instruction

10/21/2004 Comp 120 Fall 2004 11

We can get 1 bit out with a MUX

0
1
2
3
4
5
6
7

Out

2 1 0
Select

In
pu

t

Put the INPUT HERE

Wire these to HIGH or LOW
depending on the value you
want OUT for that INPUT

For example, 3 input AND has
INPUT7 wired HIGH and all the
others wired LOW.

10/21/2004 Comp 120 Fall 2004 12

Or use a ROM

Read-Only Memory
M-bit Address N-bit Result

•3

10/21/2004 Comp 120 Fall 2004 13

Or use a PLA

AND Array
M-bit Input

OR Array
N-bit OutputProduct Terms

Think of the SUM of PRODUCTS form.

The AND Array generates the products of various input bits

The OR Array combines the products into various outputs

Programmable Logic Array

10/21/2004 Comp 120 Fall 2004 14

Finite State Machines

•A set of STATES

•A set of INPUTS

•A set of OUTPUTS

•A function to map the STATE and the INPUT into the next
STATE and an OUTPUT

Remember “Shoots and Ladders”?

10/21/2004 Comp 120 Fall 2004 15

Traffic Light Controller

G E/W

R N/S

Y E/W

R N/S

R E/W
G N/S

R E/W

Y N/S

10/21/2004 Comp 120 Fall 2004 16

Implementing a FSM

State

Function

Inputs Outputs

Clock

10/21/2004 Comp 120 Fall 2004 17

Recognizing Numbers
Recognize the regular expression for floating point numbers

[\t]* [-+]?[0-9]*(. [0-9]*)? (e[-+]?[0–9]+)?

Examples:
+123.456e23
.456

1.5e-10
-123

“a” matches itself

“[abc]” matches one of a, b, or c

“[a-z]” matches one of a, b, c, d, ..., x, y, or z

“0*” matches zero or more 0’s (“”, “0”, “00”, “0000”)

“Z?” matches zero or 1 Z’s

10/21/2004 Comp 120 Fall 2004 18

FSM Diagram

start

‘ ’

sign

‘+’ ‘-’

whole

‘0’ – ‘9’
‘0’ – ‘9’

frac

‘.’

‘.’‘.’ ‘0’ – ‘9’

exp

‘e’

‘e’

‘0’ – ‘9’

done‘ ’

‘ ’

‘ ’

•4

10/21/2004 Comp 120 Fall 2004 19

FSM Table

IN : STATE � NEW STATE

‘ ’ : start � start

‘0’ | ‘1’ | ... | ‘9’ : start � whole

‘+’ | ‘-’ : start � sign

‘.’ : start � frac

‘0’ | ‘1’ | ... | ‘9’ : sign � whole

‘.’ : sign � frac

‘0’ | ‘1’ | ... | ‘9’ : whole � whole

‘.’ : whole � frac

‘ ’ : whole � done

‘e’ : whole � exp

‘e’ : frac � exp

‘0’ | ‘1’ | ... | ‘9’ : frac � frac

‘ ’ : frac � done

‘0’ | ‘1’ | ... | ‘9’ : exp � exp

‘ ’ : exp � done

STATE ASSIGNMENTS

start = 0 = 000

sign = 1 = 001

whole = 2 = 010

frac = 3 = 011

exp = 4 = 100

done = 5 = 101

error = 6 = 110

10/21/2004 Comp 120 Fall 2004 20

FSM Implementation

ROM or PLA

state 3

8
char in

error

ok

3

Our PLA has:

•11 inputs

•5 outputs

10/21/2004 Comp 120 Fall 2004 21

FSM Take Home
• With JUST a register and some logic, we can implement

complicated sequential functions like recognizing a FP number.

• This is useful in its own right for compilers, input routines, etc.

• The reason we’re looking at it here is to see how designers
implement the complicated sequences of events required to
implement instructions

• Think of the OP-CODE as playing the role of the input character in
the recognizer. The character AND the state determine the next
state (and action).

