

	2	
value 0x87. What "Ib \$t0,1000(\$zero	at location 1000 in memory contains is the content of register \$10 after the o)"? What is its content after the instru ? We're comparing the "load byte" inst ed" instruction.	instruction ction "Ibu
result will	uction will "sign extend 1 be 0xffffff87 while th ce 0x00000087	
10/26/2004	Comp 120 Fall 2004	3

	Hz. There are 4 clas	sses of instru	ctions (A-l	in the in	ock rate of 1GHz. M nstruction set. In a set
f benchmark progra					in in the table.
	Instruction Class	Frequency	M1 CPI	M2 CPI	
	A	40%	2	6	
	В	25%	3	6	
	C	20%	3	6	
faster is it? W CPI1 = 2*0.4+3*0	/hat is the cycle time .25+3*0.2+5*0.15		hine?		
CPI2 = 6*0.4+6*0	.25+6*0.2+8*0.15	= 6.3			
	100/2 a) / (2000/e	.3) = 1.086			
V1 is faster by (1	00/2.3)/ (2000/0				

	6	
[10] How can the ALL two values for equ	J we talked about in class be use lality?	ed to compare
result together v	dd, with Cin=1) and OR the with an additional gate. If th he values are equal.	
10/26/2004	Comp 120 Fall 2004	7

	7	
[5] Using 2's comple value in hex?	ement arithmetic, negate 0x1234fff. Wha	t is its
0x1234ffff inverte	ed = 0xedcb0000 plus 1 = 0xedcb	0001
10/26/2004	Comp 120 Fall 2004	8

Step 5 M	lemory Read Compl	etion
• Reg[IR[20-16]]= MDR;	
10/26/2004	Comp 120 Fall 2004	19

Step name	Action for R-type	Action for memory-reference	Action for branches	Action for jumps	
Instruction fetch	monuouono	IR = Memory[PC]	Dianoneo	Jumpo	
		PC = PC + 4			
Instruction	A = Reg [IR[25-21]]				
decode/register fetch	B = Reg [IR[20-16]]				
		ALUOut = PC + (sign-extend (IR[15-0]) << 2)			
Execution, address	ALUOut = A op B	ALUOut = A + sign-extend	if (A ==B) then	PC = PC [31-28	
computation, branch/		(IR[15-0])	PC = ALUOut	(IR[25-0]<<2)	
jump completion					
Memory access or R-type		Load: MDR = Memory[ALUOut]			
completion	ALUOut	or			
Memory read completion		Load: Reg[IR[20-16]] = MDR			
·		Store: Memory [ALUOut] = B Load: Reg[R[20-16]] = MDR			

