16 November

• 5 classes to go
• Questions?
• More on VM and Cache

4kB Direct Mapped Cache

Address (showing bit positions):

0 1 2 3

Index 4

64kB Cache

Address (showing bit positions):

0 1 2 3

Index 4

4kB 4-way Set Associative Cache

Address (showing bit positions):

0 1 2 3

Index 4

64k direct-mapped cache

• 16 byte BLOCKS
• How many BLOCKS?
• Which bits to select the BLOCK?
• How many bits in the TAG?

4kB direct-mapped cache

• 4 byte BLOCKS
• How many BLOCKS?
• Which bits to select the BLOCK?
• How many bits in the TAG?
4kB 4-way set associative cache

Address Translation

- Instruction Fetch
 - Use PC to get VIRTUAL address
 - Lookup VIRTUAL address in TLB
 - MISS → OS Trap
 - Lookup PHYSICAL address in INSTRUCTION CACHE
 - MISS → STALL waiting on MEMORY
 - Finally deliver instruction to INSTRUCTION REGISTER

Address Translation

- Data Fetch
 - Use ALU to get VIRTUAL address
 - Lookup VIRTUAL address in TLB
 - MISS → OS Trap
 - Lookup PHYSICAL address in L1 DATA CACHE
 - MISS → STALL waiting on L2 DATA CACHE
 - Lookup PHYSICAL address in L2 DATA CACHE
 - MISS → STALL waiting on memory
 - Finally Deliver data to the STALLED pipeline

Making Address Translation Fast

Virtual Address Translation

VM meets Cache
VM meets Cache

Virtual address

- TLB access
 - Yes
 - No

- TLB miss exception

 - No
 - Update the TLB

 - Yes

- Physical address

 - No
 - Write

 - Yes

- Cache miss result

 - No
 - Cache hit

 - Yes

 - Write access

 - No

 - Write protection exception

 - No

 - Write data into cache

 - Yes

 - Update the tag, and put the data into the cache

 - No

 - Data not available

 - No

 - TLB miss exception

 - No

 - Write access

 - No

 - Physical address

 - No

 - No

 - Yes

 - Yes

 - Yes

Classes to go

4