
Representing Information

“Bit Juggling”

- Representing information

using bits

- Number representations

- Some other bits

∙ Chapters 1 and 2.3,2.4

0

00

0

1

1
1

1

Motivations

∙ Computers Process Information

∙ Information is measured in bits

∙ By virtue of containing only “switches”

and “wires” digital computer technologies

use a binary representation of bits

∙ How do we use/interpret bits?

∙ We need standards of representations for

– Letters

– Numbers

– Colors/pixels

– Music

– Etc.

Last

Time

Today

Encoding

 Encoding describes the process of

assigning representations to information

 Choosing an appropriate and efficient encoding is

a real engineering challenge (and an art)

 Impacts design at many levels

- Mechanism (devices, # of components used)

- Efficiency (bits used)

- Reliability (noise)

- Security (encryption)

If all choices are equally likely (or we have no reason to

expect otherwise), then a fixed-length code is often

used. Such a code should use at least enough bits to

represent the information content.

ex. Decimal digits 10 = {0,1,2,3,4,5,6,7,8,9}

4-bit BCD (binary code decimal)

ex. ~84 English characters = {A-Z (26), a-z (26), 0-9 (10),

punctuation (8), math (9), financial (5)}

7-bit ASCII (American Standard Code for Information Interchange)

Fixed-Length Encodings

bits<=)(76.39284log 2

bits<=)(43.32210log 2

Encoding Positive Integers


1

0

2
n

=i

i

i
b=v

21121029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000

It is straightforward to encode positive integers as a sequence

of bits. Each bit is assigned a weight. Ordered from right to left,

these weights are increasing powers of 2. The value of an n-bit

number encoded in this fashion is given by the following

formula:

24 = 16

+ 28 = 256

+ 26 = 64
+ 27 = 128

+ 29 = 512
+ 210 = 1024

200010

Octal


1

0

8
n

=i

i

i
d=v

21121029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000

03720

Octal - base 8

000 - 0
001 - 1
010 - 2
011 - 3
100 - 4
101 - 5
110 - 6
111 - 7

Often it is convenient to cluster groups of bits

together for a more compact representation. The

clustering of 3 bits is called Octal. Octal is not that

common today.

= 200010

Seems natural
to me!

0273

200010

0*80 = 0

+ 3*83 = 1536

+ 2*81 = 16
+ 7*82 = 448

Hex


1

0

16
n

=i

i

i
d=v

21121029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000

0x7d0

Hexadecimal - base 16

0000 - 0 1000 - 8
0001 - 1 1001 - 9
0010 - 2 1010 - a
0011 - 3 1011 - b
0100 - 4 1100 - c
0101 - 5 1101 - d
0110 - 6 1110 - e
0111 - 7 1111 - f

Clusters of 4 bits are used most frequently. This

representation is called hexadecimal. The

hexadecimal digits include 0-9, and A-F, and each

digit position represents a power of 16.

= 200010

0d7

200010

0*160 = 0
+ 13*161 = 208
+ 7*162 = 1792

Encoding Text in ASCII

Unicode

∙ ASCII is biased towards western languages.

English in particular.

∙ There are, in fact, many more than 256 characters

in common use:

â, m, ö, ñ, è, ¥, 揗, 敇, 횝, カ, ℵ, ℷ, ж, క, ค

∙ Unicode is a worldwide standard that supports all

languages, special characters, classic, and arcane

∙ Several encoding variants 16-bit (UTF-8)

1 0 x x x x x x1 0 z y y y y x1 1 1 1 0www 1 0wwz z z z

0 x x x x x x xASCII equiv range:

1 0x x x x x x1 1 0 y y y y xLower 11-bits of 16-bit Unicode

1 0 x x x x x x1 0 z y y y y x1 1 1 0 z z z z16-bit Unicode

Some Bit Tricks

- You are going to have to get accustomed to

working in binary. It will be helpful throughout

your career as a computer scientist.

- Here are some helpful guides

1. Memorize the first 10 powers of 2

20 = 1 25 = 32

21 = 2 26 = 64

22 = 4 27 = 128

23 = 8 28 = 256

24 = 16 29 = 512

More Tricks with Bits

1. Memorize the first 10 powers of 2

2. Memorize the prefixes for powers of 2 that are

multiples of 10

210 = Kilo (1024)

220 = Mega (1024*1024)

230 = Giga (1024*1024*1024)

240 = Tera (1024*1024*1024*1024)

250 = Peta (1024*1024*1024 *1024*1024)

260 = Exa (1024*1024*1024*1024*1024*1024)

Even More Tricks with Bits

1. When you convert a binary number to

decimal, first break it down into clusters

of 10 bits.

2. Then compute the value of the leftmost

remaining bits (1) find the appropriate

prefix (GIGA) (Often this is sufficient)

3. Compute the value of and add in each

remaining 10-bit cluster

00001010000000001100000000001101

Signed-Number Representations

∙ There are also schemes for representing signed
integers with bits. One obvious method is to
encode the sign of the integer using one bit.
Conventionally, the most significant bit is used for
the sign. This encoding for signed integers is
called the SIGNED MAGNITUDE representation.

S 21029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000



2

0

21
n

=i

i

iS
b=v

2000

Signed-Number Representations

∙ There are also schemes for representing signed
integers with bits. One obvious method is to
encode the sign of the integer using one bit.
Conventionally, the most significant bit is used for
the sign. This encoding for signed integers is
called the SIGNED MAGNITUDE representation.

S 21029 28 27 26 25 24 23 22 21 20

0 1 1 1 1 1 0 1 0000



2

0

21
n

=i

i

iS
b=v 1

-2000

∙ The Good: Easy to negate, find absolute value

∙ The Bad:
– Add/subtract is complicated; depends on the signs

– Two different ways of representing a 0

– It is not used that frequently in practice

2’s Complement Integers

20212223…
2N-2-2N-1 ……

N bits

The 2’s complement representation for signed integers
is the most commonly used signed-integer
representation. It is a simple modification of unsigned
integers where the most significant bit is considered
negative.

“binary” point“sign bit”
Range: – 2N-1 to 2N-1 – 1









2

0

1

1
22

n

=i

i

i

n

n
b+b=v

8-bit 2’s complement example:

11010110 = –27 + 26 + 24 + 22 + 21

= – 128 + 64 + 16 + 4 + 2 = – 42

Why 2’s Complement?
If we use a two’s complement representation for
signed integers, the same binary addition mod 2n

procedure will work for adding positive and
negative numbers (don’t need separate
subtraction rules). The same procedure will also
handle unsigned numbers!

Example:

5510 = 001101112

+ 1010 = 000010102

6510 = 010000012

5510 = 001101112

+ -1010 = 111101102

4510 = 1001011012

When using signed

magnitude

representations, adding

a negative value really

means to subtract a

positive value. However,

in 2’s complement,

adding is adding

regardless of sign. In

fact, you NEVER need to

subtract when you use a

2’s complement

representation.

2’s Complement Tricks

- Negation – changing the sign of a number

- First complement every bit (i.e. 1  0, 0  1)

- Add 1

Example: 20 = 00010100, -20 = 11101011 + 1 =

11101100

- Sign-Extension – aligning different sized

2’s complement integers

- Simply copy the sign bit into higher positions

CLASS EXERCISE

10’s-complement Arithmetic
(You’ll never need to borrow again)

Step 1) Write down two 3-digit numbers that you

want to subtract

Step 2) Form the 9’s-complement of each digit

in the second number (the subtrahend)
0  9

1  8

2  7

3  6

4  5

5  4

6  3

7  2

8  1

9  0

Helpful Table of the

9’s complement for

each digit

Step 3) Add 1 to it (the subtrahend)

Step 4) Add this number to the first

What did you get? Why weren’t you taught to

subtract this way?

Step 5) If your result was less than 1000,

form the 9’s complement again and add 1

and remember your result is negative

else

subtract 1000

Fixed-Point Numbers

By moving the implicit location of the
“binary” point, we can represent signed
fractions too. This has no effect on how
operations are performed, assuming that
the operands are properly aligned.

1101.0110 = –23 + 22 + 20 + 2-2 + 2-3

= – 8 + 4 + 1 + 0.25 + 0.125
= – 2.625

OR
1101.0110 = -42 * 2-4 = -42/16 = -2.625

-23 22 21 20 2-1 2-2 2-3 2-4

Repeated Binary Fractions

Not all fractions can be represented exactly using

a finite representation. You’ve seen this before in

decimal notation where the fraction 1/3 (among

others) requires an infinite number of digits to

represent (0.3333…).

In Binary, a great many fractions that you’ve

grown attached to require an infinite number of

bits to represent exactly.

EX: 1 / 10 = 0.110 = .0001100110011…2

1 / 5 = 0.210 = .001100110011…2 = 0.333…16

Bias Notation

∙ There is yet one more way to represent signed

integers, which is surprisingly simple. It involves

subtracting a fixed constant from a given

unsigned number. This representation is called

“Bias Notation”.

Biasb=v
n

=i

i

i


1

0

2 1 1 0 1 0 1 1 0

2025 24 23 22 212627

EX: (Bias = 127)
6 * 1 = 6

13 * 16 = 208

- 127

87
Why? Monotonicity

Floating Point Numbers

Another way to represent numbers is to use a

notation similar to Scientific Notation. This format

can be used to represent numbers with fractions

(3.90 x 10-4), very small numbers (1.60 x 10-19), and

large numbers (6.02 x 1023). This notation uses

two fields to represent each number. The first part

represents a normalized fraction (called the

significand), and the second part represents the

exponent (i.e. the position of the “floating” binary

point). Exponent
FractionNormalized 2

Normalized Fraction

“dynamic range” “bits of accuracy”

Exponent

IEEE 754 Format

1

S

127
21.1




ExponentS
dSignifican=v

1 11

S

52

SignificandExponent

1023
21.1




ExponentS
dSignifican=v

23

Significand

This is effectively a

signed magnitude

fixed-point number

with a “hidden” 1.

The 1 is

hidden

because it

provides no

information

after the

number is

“normalized”

8

Exponent

The

exponent is

represented

in bias 127

notation.

Why?

Single precision format

Double precision format

Summary

1) Selecting the encoding of information has

important implications on how this information

can be processed, and how much space it

requires.

2) Computer arithmetic is constrained by finite

representations, this has advantages (it allows

for complement arithmetic) and disadvantages (it

allows for overflows, numbers too big or small to

be represented).

3) Bit patterns can be interpreted in an endless

number of ways, however important standards do

exist

- Two’s complement

- IEEE 754 floating point

