
L5 – Simulator   1Comp 411

Adventures in Assembly Land

• What is an Assembler
• ASM Directives
• ASM Syntax
• Intro to MARS
• Simple examples



L5 – Simulator   2Comp 411

A Simple Programming Task

• Add the numbers 0 to 4 …

• 10 = 0 + 1 + 2 + 3 + 4

• In “C”:

• Now let‟s code it in ASSEMBLY

int i, sum;

main() {

sum = 0;

for (i=0; i<5; i++)

sum = sum + i;

}



L5 – Simulator   3Comp 411

What IS an Assembler?

• A program for writing programs

• Machine Language:
– 1‟s and 0‟s loaded into memory.

(Did anybody ever really do that?)

• Assembly Language:
Front panel of a classic PDP8e. The toggle 
switches were used to enter machine 
language.

ASM 01101101

11000110

00101111

10110001

.....

Symbolic
SOURCE
text file

Binary
Machine

Language

ASSEMBLER
Translator
program

STREAM of 
bits to be 
loaded into memory

.globl main
main:

subu $sp, $sp, 24
sw     $ra, 16($sp)
li        $a0, 18
li        $a1, 12
li        $a2, 6
jal      tak

move   $a0, $v0

Assembler: 
1. A Symbolic LANGUAGE for representing strings of bits
2. A PROGRAM for translating Assembly Source to binary.



L5 – Simulator   4Comp 411

Assembly Source Language

An Assembly SOURCE FILE contains, in symbolic text, 
values of successive bytes to be loaded into memory... e.g.

Resulting memory dump:

.data 0x10000000

.byte 1, 2, 3, 4

.byte 5, 6, 7, 8

.word 1, 2, 3, 4

.asciiz "Comp 411"

.align 2

.word 0xfeedbeef

•Specifies address where following values are loaded 
•First four byte values 
•Second four byte values 
•Four WORD values  (each is 4 bytes)
•A string of 9 ASCII bytes (8 + NULL)
•Align to next multiple of 4 (22)
•Hex encoded WORD Value

[0x10000000]    0x04030201  0x08070605  0x00000001  0x00000002

[0x10000010]    0x00000003  0x00000004  0x706d6f43  0x31313420

[0x10000020]    0x00000000  0xfeedbeef  0x00000000  0x00000000

Notice the byte ordering. This MIPS is “little-endian”  (The least 
significant byte of a word or half-word has the lowest address)



L5 – Simulator   5Comp 411

Assembler Syntax

• Assembler DIRECTIVES (Keywords prefixed  with a „.‟)
• Control the placement and interpretation of bytes in memory

.data <addr> Subsequent items are considered data

.text <addr> Subsequent items are considered instructions

.align N Skip to next address multiple of 2N

• Allocate Storage
.byte b1, b2, …, bn Store a sequence of bytes (8-bits)
.half  h1, h2, …, hn Store a sequence of half-words (16-bits)
.word w1, w2, …, wn Store a sequence of words (32-bits)
.ascii “string” Stores a sequence of ASCII encoded bytes
.asciiz “string” Stores a zero-terminated string
.space n Allocates n successive bytes

• Define scope
.globl sym Declares symbol to be visible to other files 
.extern sym size Sets size of symbol defined in another file

(Also makes it DIRECTly addressable)



L5 – Simulator   6Comp 411

More Assembler Syntax

• Assembler COMMENTS
All text following a „#‟ (sharp) to the end of the line is ignored

• Assembler LABELS
• Labels are symbols that represent memory addresses. Labels 

take on the values of the address where they are declared. 
Labels declarations appear at the beginning of a line, and are 
terminated by a colon. Labels can be established for data items 
as well as instructions… e. g.

.data 

item: .word 1 # a data word

.text

start: .word 0x00821820 # add $3, $4, $2

.word 0x00031a00 # sll $3, $3, 8

.word 0x306300ff # andi $3, $3, 0xff

While having an 
assembler helps,  
coding like this is 
still painful. (Don‟t 
actually do this!)



L5 – Simulator   7Comp 411

Our Example: Variable Allocation

• Two integer variables (by default 32 bits in MIPS)

• “.data” assembler directive places the following words 
into the data segment

• “.globl” directives make the “sum” and “I” variables visible 
to all other assembly modules

• “.space” directives allocate 4 bytes for each variable

.data

.globl sum

.globl i

sum:    .space 4

i:      .space 4



L5 – Simulator   8Comp 411

Even More Assembler Syntax

• Assembler PREDEFINED SYMBOLS
• Register names and aliases

$0-$31, $zero, $v0-$v1, $a0-$a3, $t0-$t9, $s0-$s7, 

$at, $k0-$k1, $gp, $sp, $fp, $ra

• Assembler MNEMONICS
• Symbolic representations of individual instructions

add, addu, addi, addiu, sub, subu, 

and, andi, or, ori, xor, xori, nor, lui, 

sll, sllv, sra, srav, srl, srlv, 

div, divu, mult, multu, mfhi, mflo, mthi, mtlo,

slt, sltu, slti, sltiu, beq, bgez, bgezal, bgtz, blez, 

bltzal, bltz, bne, j, jal, jalr, jr,

lb, lbu, lh, lhu, lw, lwl, lwr, sb, sh, sw, swl, swr, rfe

• pseudo-instructions (some mnemonics are not real 
instructions)

abs, mul, mulo, mulou, neg, negu, not, rem, remu, rol, ror, 

li, seq, sge, sgeu, sgt, sgtu, sle, sleu, sne, b, beqz, bge, 

bgeu, bgt, bgtu, ble, bleu, blt, bltu, bnez, la, ld, ulh, 

ulhu, ulw, sd, ush, usw, move,syscall, break, nop



L5 – Simulator   9Comp 411

Actual “Code”

• Next we write ASSEMBLY code using the instruction 
mnemonics  

.text

.globl main

main:

add   $t0,$zero,$zero     # sum = 0

add   $t1,$zero,$zero     # for (i = 0; ...

loop:

addu $t0,$t0,$t1   # sum = sum + i;

addi $t1,$t1,1     # for (...; ...; i++

slti $t2,$t1,5     # for (...; i<5;

bne $t2,$zero,loop

end: li $v0, 10       # exit

syscall

A common convention, which originated with the „C‟ 
programming language, is for the entry point 
(starting location) of a program to named “main”. 

Bookkeeping:
1) Register $t0 is allocated as the “sum” variable
2) Register $t1 is allocated as the “i” variable



L5 – Simulator   10Comp 411

MARS

• MIPS Assembler 
and Runtime 
Simulator

• Java application

• Runs on all 
platforms

• Links on class 
website

• (You‟ll need to 
download it for 
assignments)



L5 – Simulator   11Comp 411

A Slightly More Challenging Program

• Add 5 numbers from a list …

• sum = n0 + n1 + n2 + n3 + n4

• In “C”:

• Once more… let‟s encode it in assembly

int i, sum;

int a[5] = {7,8,9,10,8};

main() {

sum = 0;

for (i=0; i<5; i++)

sum = sum + a[i];

}



L5 – Simulator   12Comp 411

Variable Allocation

• We cheated in our last example. Generally, variables will 
be allocated to memory locations, rather than registers 
(Though clever optimization can often avoid it).

• This time we add the contents of an array

• “.word” allows us to initialize  a list of sequential words 
in memory. The label represents the address of the first 
word in the list, or the name of the array

.data

sum:    .space 4

i:      .space 4

a:      .word 7,8,9,10,8

Arrays have to 
be in memory. 
Why?



L5 – Simulator   13Comp 411

The New Code

.text

.globl main

main:

sw    $zero,sum     # sum = 0;

sw    $zero,i       # for (i = 0;

lw    $t1,i         # allocate register for i

lw    $t0,sum       # allocate register for sum

loop:

sll   $t2,$t1,2    # covert "i" to word offset

lw    $t2,a($t2)   # load a[i]

addu  $t0,$t0,$t2  # sum = sum + a[i];

sw    $t0,sum      # update variable in memory

addi  $t1,$t1,1    # for (...; ...; i++

sw    $t1,i        # update memory

slti  $t2,$t1,5    # for (...; i<5;

bne   $t2,$zero,loop

end: li    $v0, 10      # exit

syscall



L5 – Simulator   14Comp 411

A Little “Weirdness”

The Assembler 
rewrote some of 
our instructions.  
What‟s going on?



L5 – Simulator   15Comp 411

A Coding Challenge

• What is the largest Fibonacci number less than 100?
– Fibonacci numbers: 

Fi+1 = Fi + Fi-1

F0 = 0
F1 = 1

– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

• In “C”
int x, y;

main() {

x = 0;

y = 1;

while (y < 100) {

int t = x;

x = y;

y = t + y;

}

}



L5 – Simulator   16Comp 411

MIPS Assembly Code

• In assembly .data

.extern x 4

.extern y 4

x:    .space 4

y:    .space 4

.text

.globl main

main:

sw    $zero,x            # x = 0;

addi  $t1,$zero,1        # y = 1;

sw    $t1,y

lw    $t0,x

while:                        # while (y < 100) {

slti  $t2,$t1,100

beq   $t2,$zero,endw

add   $t2,$zero,$t0      #     int t = x;

add   $t0,$zero,$t1      #     x = y;

sw    $t0,x

add   $t1,$t2,$t1        #     y = t + y;

sw    $t1,y

beq   $zero,$zero,while  # }

end: li    $v0, 10            # exit

syscall



L5 – Simulator   17Comp 411

Next Time

• Parameterized Programs

• Procedures

• Stacks

• MIPS procedure linkage conventions


