Stacks and Procedures

| forgot, am | Don’t know. But, if
the Caller you PUSH again I'm

or Callee? \ / gonna POP you.

Support for High-Level Language constructs are an integral
part of modern computer organization. In particular, support
for procedures and functions.

Comp 411 LOG — Stacks and Procedures 1

The Beauty of Procedures

o Reusable code fragments (modular design)

clear_screen(); ,‘

code to draw a bunch of lines
clear_screen();

o Parameterized functions (variable behaviors)

line(x1, y1, x2, y2, color); for (i=0; i < N-1; i++)
line(x2,y2,x3,y3, color); line(x[i].y[i].x[i+1].y[i+1].color);
line(x[i],y[i],x[0].y[O].color);

Comp 411 LOG — Stacks and Procedures

2

More Procedure Power

* Local scope (Independence)

int x = 9; 8 —— These are different “x"s
_ _ How do we

int fee(int x) {

return x+x-1; keep track of
} all the
. . . variables
:Lnt: foo (:L—nt i) { _./This is yet another “x” /
int x = 0; 5
while (1 > 0) { .
X x + fee(i); -’

i i-1;

}

return x;

}

That “fee()” seems odd
to me? And, foo()'s a
little 5quare

main() {
fee (foo (x)) ;

}

Comp 411 LOG — Stacks and Procedures 3

Using Procedures

* A“calling” program (Caller) must:
— Provide procedure parameters. In other words, put the

o A“

arguments in a place where the procedure can access them
Transfer control to the procedure. Jump to it
called” procedure (Callee) must:

Acquire the resources needed to perform the function
Perform the function

Place results in a place where the Caller can find them
Return control back to the Caller

* Solution (a least a partial one):

Comp 411

Allocate registers for these specific functions

LOG — Stacks and Procedures 4

Comp 411

MIPS Register Usage

The
“linkage
register” is

Conventions designate registers for procedure arguments ($4-$7) here the
and return values ($2-$3).

The ISA designates a “linkage register” for calling procedures ($31) e caee
Transfer control to Callee using the jal instruction
Return to Caller with the § $31 or j $ra instruction

return
address of
back to

is stored.
This allows
procedures
to be
called from

any place,
and for

the caller
to come

back to
the place

where it
was

invoked.

Name Register number Usage
Szero 0 the constant value O
Sat 1 assembler temporary
Sv0-5vil 2-3 procedure return values
$al0-$a3 4-7 procedure arguments
St0-5t7 8-15 temporaries
$s0-$s7 16-23 saved by callee
$t8-5t9 24-25 more temporaries
Sk0-Sk1 26-27 reserved for operating system
Sgp 28 global pointer
$Sp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address

LOG — Stacks and Procedures 5

And It “"Sort Of” Works

e Example:
.globl x

.data

X: .word 9

.globl fee

.text

fee:
add Sv0,$a0, $a0
addi $v0,$v0,-1
jr Sra

Callee

gioot main Caller

main: o That’s odd?
1w $al0,x)
jal fee
jr Sra

Comp 411

Works for special cases
where the Callee needs few
resources and calls no
other functions.

This type of function is
called a LEAF function.

But there are lots of issues:

* How can fee call functions?
e More than 4 arguments?

¢ Local variables?

¢ Where will main return to?

Let’s consider the worst
case of a Callee as a
Caller...

LOG — Stacks and Procedures ©

Writing Procedures

How do we go about writing callable

int sqr(int x) { procedures? We'd like to support not

if (x > 1)

x = sqr(x-1)+x+x-1; only LEAF procedures, but also
return x; procedures that call other procedures,
} ad infinitum (e.g. a recursive function).
main () sqr(10) = sqr(9)+10+10-1 = 100
{ sqr(9) = sqr(8)+9+9-1 = 81
sqr (10) ; . eqr(8) = eqr(7)+6+8-1= 64
} Oh, recureion eqr(7) = sqr(6)+7+7-1 =49

headache. ™ Q) HO=satreiei=36
sqr(5) = sqr(4)+5+5-1= 25

eqr(4) = sqr(3)+4+4-1=16

eqr(3) = sqr(2)+3+3-1=9

sqr(2) = sqr(1)+2+2-1=4

sqr(1) =1

sqr(0) =0

Comp 411 LOG — Stacks and Procedures 7

Procedure Linkage: First Try

int sqr(int x) {
if (x > 1)
X = sqr(x-1)+x+x-1;
return x;

}

main ()
{

sqr (10) ;
}

MIPS Convention:

* pass 1°* arg x in $a0
* save return addr in $ra
e return result in $vO

* use only temp register
to avoid saving stuff

Comp 411 LOG — Stacks and Procedures &

Procedure Linkage: First Try

Callee/Caller

int sqr(int x) {
if (x > 1)
X = sqr(x-1)+x+x-1;
return x;

}

Caller
main ()
{
sqr (10) ;
}

MIPS Convention:

* pass 1°* arg x in $a0
* save return addr in $ra
e return result in $vO

* use only temp register
to avoid saving stuff

Comp 411 LOG — Stacks and Procedures 9

Procedure Linkage:

Callee/Caller
int sqr(int x) {
if (x > 1)
X = sqr(x-1)+x+x-1;
return x;

}

Caller
main ()

{
}

sqr (10) ;

MIPS Convention:

* pass 1°* arg x in $a0
* save return addr in $ra
e return result in $vO

* use only temp register
to avoid saving stuff

Comp 411

sqr:

then:

rtn:

slti
beq
add
beq

add
addi
jal
add
add
addi

jr

First Try

$t0,$a0,2
$t0,$0,then #! (x<2)
$v0,$0,$a0
$0,$0,rtn

$t0,$0,$a0
$a0,$a0,-1
sqr
Sv0,S$v0,$t0
$v0,$v0,$t0
Sv0,S$v0,-1

Sra

LOG — Stacks and Procedures 10

Procedure Linkage:

Callee/Caller
int sqr(int x) { sqr: slti
if (x > 1) beq
X = sqr(x-1)+x+x-1; add
return x;
} beq
i‘l::‘:ﬁ’l;;then:
Caller $t0 is clobbered g’h add
= 1S clopberea on
Taln () successive calls. addi
sqr (10) ; Jal
} add
add
MIPS Convention: addi
* pass 1°* arg x in $a0 rtn:
* save return addr in $ra jr

e return result in $vO
* use only temp register
to avoid saving stuff

Comp 411

First Try

$t0,$a0,2
$t0,$0,then #! (x<2)
$v0,$0,$a0
$0,$0,rtn

$t0,$0,$a0
$a0,$a0,-1
sqr
Sv0,S$v0,$t0
$v0,$v0,$t0
Sv0,S$v0,-1

Sra

LOG — Stacks and Procedures 11

}
Caller
main () $t0 is cl.obbered on
{ successive calls.
Will saving “x” in some
} Sqr (10) ; register or at some

Comp 411

Procedure Linkage:
Callee/Caller

int sqr(int x) {

if (x > 1)

X = sqr(x-1)+x+x-1;

i‘l::‘:ﬁ’l;;then:
& _add

8/’ addi
jal
add

return x;

help?

fixed location in memory

MIPS Convention:

* pass 1°* arg x in $a0
* save return addr in $ra
e return result in $vO

* use only temp register
to avoid saving stuff

sqr:

rtn:

slti
beq
add
beq

add
addi

jr

First Try

$t0,$a0,2
$t0,$0,then #! (x<2)
$v0,$0,$a0
$0,$0,rtn

$t0,$0,$a0
$a0,$a0,-1
sqr
$v0,$v0,S$t0
$v0,$v0,$t0
$v0,$v0,-1

Sra

LOG — Stacks and Procedures 12

}
Caller
main () $t0 is cl.obbered on
{ successive calls.
Will saving “x” in some
} Sqr (10) ; register or at some

Comp 411

Procedure Linkage:
Callee/Caller

int sqr(int x) {

if (x > 1)

X = sqr(x-1)+x+x-1;

i‘l::‘:ﬁ’l;;then:
& _add

8/’ addi
jal
add

return x;

help? (Nope)

fixed location in memory

MIPS Convention:

* pass 1°* arg x in $a0
* save return addr in $ra
e return result in $vO

* use only temp register
to avoid saving stuff

sqr:

rtn:

slti
beq
add
beq

add
addi

jr

First Try

$t0,$a0,2
$t0,$0,then #! (x<2)
$v0,$0,$a0
$0,$0,rtn

$t0,$0,$a0
$a0,$a0,-1
sqr
$v0,$v0,S$t0
$v0,$v0,$t0
$v0,$v0,-1

Sra

LOG — Stacks and Procedures 13

Procedure Linkage:

Callee/Caller
int sqr(int x) { sqr: slti
if (x > 1) beq
X = sqr(x-1)+x+x-1; add
return x;
} beq
i‘l::‘:ﬁ’l;;then:
Caller $t0 i clobbered g’h add
= 1S clobbered on
Taln () successive calls. addi
. Will saving “x” in some 1al
Sqr (1 0) ; register or at some J
} fixed location in memory add
help? (Nope) add
MIPS Convention: addi
* pass 1°* arg x in $a0 rtn:
* save return addr in $ra jr

Comp 411

e return result in $vO
* use only temp register
to avoid saving stuff

First Try

$t0,$a0,2
$t0,$0,then #! (x<2)
$v0,$0,$a0
$0,$0,rtn

$t0,$0,$a0
$a0,$a0,-1
sqr
Sv0,S$v0,$t0
$v0,$v0,$t0
$v0,$v0,-1

We also clobber our

o 0l
Sra returh address, so
there’s no way back!

LOG — Stacks and Procedures 14

A Procedure’'s Storage Needs

Basic Overhead for Procedures/Functions:
* Caller sets up ARGUMENTS for callee
f(x,y,z) orworse.. sin (a+b)
Caller invokes Callee while saving the

In C it’s the caller’s job to

Return Address to get back evaluate its arguments as
e Callee saves stuff that Caller expects expressions, and pase the

to remain u"changed resulting values to the callee...
* Callee executes Therefore, the CALLEE has to
* Callee passes results back to Caller. save arguments if it wants

access to them after calling
Local variables of Callee: some other procedure, because

... they might not be around in any
{ variable, to look up later.

int x, y;

S S -

}

Each of these is specific to a “particular” invocation or
activation of the Callee. Collectively, the arguments passed
in, the return address, and the callee’s local variables are
ite activation record, or call frame.

Comp 411 LOG — Stacks and Procedures 15

Lives of Activation Records

int sqr(int x) {
if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

sqr(3)

A procedure call creates a new
activation record. Caller’s record
is preserved because we'll need it
when call finally returns.

Comp 411

> TIME

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

LOG — Stacks and Procedures 16

Lives of Activation Records

int sqr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;
return x;

}

> TIME
sqr(3) eqr(3)
sqr(2)
A procedure call creates a new Return to previous activation record
activation record. Caller’s record when procedure finishes, permanently
is preserved because we'll need it discarding activation record created

when call finally returns. by call we are returning from.

Comp 411 LOG — Stacks and Procedures 17

Lives of Activation Records

int sqr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;
return x;

}

> TIME

sqr(3) eqr(3) eqr(3)
sqr(2) sqr(2)
sqr(1)

A procedure call creates a new Return to previous activation record
activation record. Caller’s record when procedure finishes, permanently
is preserved because we'll need it discarding activation record created
when call finally returns. by call we are returning from.

Comp 411 LOG — Stacks and Procedures 18

A procedure call creates a new
activation record. Caller’s record
is preserved because we'll need it

Lives of Activation Records

int sqr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;

return x;

}

> TIME

sqr(3)

eqr(3)

eqr(3) eqr(3)

sqr(2)

sqr(2) sqr(2)

when call finally returns.

Comp 411

sqr(1)

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

LOG — Stacks and Procedures 19

A procedure call creates a new
activation record. Caller’s record
is preserved because we'll need it

Lives of Activation Records

int sqr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;

return x;

}

> TIME

sqr(3)

eqr(3)

eqr(3) eqr(3) | | eqr(3)

sqr(2)

sqr(2) sqr(2)

when call finally returns.

Comp 411

sqr(1)

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

LOG — Stacks and Procedures 20

A procedure call creates a new
activation record. Caller’s record
is preserved because we'll need it

Lives of Activation Records

int sqr(int x) {
if (x > 1)

x = sqr(x-1)+x+x-1; activation records?

return x;

}

Where do we store

> TIME

sqr(3)

eqr(3)

eqr(3) eqr(3) | | eqr(3)

sqr(2)

sqr(2) sqr(2)

when call finally returns.

Comp 411

sqr(1)

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

LOG — Stacks and Procedures 21

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

LOG — Stacks and Procedures 22

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

LOG — Stacks and Procedures 23

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

LOG — Stacks and Procedures 24

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

LOG — Stacks and Procedures 25

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

LOG — Stacks and Procedures 26

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

LOG — Stacks and Procedures 27

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

N
N
N
N
N
N
N
X
N,

LOG — Stacks and Procedures

28

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

LOG — Stacks and Procedures

29

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

Some interesting
properties of stacks:

SMALL OYERHEAD.
Only the top is
directly visible, the
so-called
“top-of-stack”

Add things by
PUSHING new values
on top.

Remove things by
POPPING off values.

LOG — Stacks and Procedures 30

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

Some interesting
properties of stacks:

SMALL OYERHEAD.
Only the top is
directly visible, the
so-called
“top-of-stack”

Add things by
PUSHING new values
on top.

Remove things by
POPPING off values.

LOG — Stacks and Procedures 31

Comp 411

We Need Dynamic Storagel

What we need is a SCRATCH
memory for holding temporary
variables. We'd like for this
memory to grow and shrink as
heeded. And, we'd like it to
have an easy management

policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

Some interesting
properties of stacks:

SMALL OYERHEAD.
Only the top is
directly visible, the
so-called
“top-of-stack”

Add things by
PUSHING new values
on top.

Remove things by
POPPING off values.

LOG — Stacks and Procedures 32

MIPS Stack Convention

CONYENTIONS:
igher addresses

* Waste a register for the 8000000, Zack,, j:mm
Stack Pointer
($sp = $29). pop —> ;i

e Stack grows DOWN
(towards lower 10008000, | - ---- Data______
addreeees) on 10000000,
pushes and allocates

* $sp points to the oy
TOP *used* location. 00300000 Rasared

Lower addresses

¢ Place stack far away
from our program
and its data

Comp 411 LOG — Stacks and Procedures 33

MIPS Stack Convention

CONVYENTIONS:
igh
» Waste a register for the 8000000, Ti Tdd%i‘%
stack” segmen
Stack Pointer %
($sp = $29). R — X
e Stack grows DOWN oeas aya jo
(towards lower 10008000, | - ---- Data ‘*g{; "f‘,’:;j:‘::!
addreeees) on 10000000,
pushes and allocates
* $sp points to the | e
TOP *used* location. ‘6 Reserved

Lower addresses

¢ Place stack far away
from our program
and its data

Comp 411 LOG — Stacks and Procedures 34

MIPS Stack Convention

CONYENTIONS:
. Higher addresses

* Waste a register for the 8000000~
Stack Pointer %
($5P = $29). Sop —> 7 z \

e Stack grows DOWN oeas aya jo
(towards lower 0008000, Pata______| doLow s
addresses) on 10000000,
pushes and allocates

R “text” segment

e $sp points to the (Program)

* * 0 00400000,
TOP *used* location. Rosorved
Lower addresses

¢ Place stack far away

from our program Other possible implementations include:

and its data 1) stacks that grow “UP”
2) SP points to first UNUSED location

Comp 411 LOG — Stacks and Procedures 35

MIPS Stack Convention

Higher addresses

“stack” segment

CONVENTIONS:
* Waste a register for the 8000000,
Stack POil’lter' Recall that directl!
($5P = $29)- addressable globahll bop —>

variables were allocated

o Stack grows DOWN relative to a special — |

(towards lower
addresses) on
pushes and allocates

¢ $sp points to the
TOP *used® location.

¢ Place stack far away
from our program
and its data

Comp 411

“global pointer”
$gp —> 100080004t

10000000,

00400000,

“text” segment
(Program)

Reserved

Lower addresses

c

\

$oeas ays 3o

d01 341 1eys s
AYM ***wiwny

Other possible implementations include:

1) stacks that grow “UP”

2) SP points to first UNUSED location

LOG — Stacks and Procedures 36

Stack Management Primitives

ALLOCATE k: reserve k WORDS of stack
Reg[SP] = Reg[SFP] - 4%k

DEALLOCATE k: release k WORDS of stack
Reg[SP] = Reg[SP] + 4%k

PUSH rx: push Reg[x] onto stack

Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP rx: pop the value on the top of the stack into Reg[x]

Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SP] + 4;

Comp 411 LOG — Stacks and Procedures 37

Stack Management Primitives

ALLOCATE k: reserve k WORDS of stack . .
Reg[SP] = Reg[SP] - 4k l addi $ep.$ep.-4°k l
DEALLOCATE k: release k WORDS of stack
Reg[SP] = Reg[SFP] + 4%k

PUSH rx: push Reg[x] onto stack

Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP rx: pop the value on the top of the stack into Reg[x]

Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SF] + 4;

Comp 411 LOG — Stacks and Procedures 38

Comp 411

Stack Management Primitives

ALLOCATE k: reserve k WORDS of stack . .
Reg[SP] = Reg[SP] - 4k l addi $ep.$ep.-4°k l
DEALLOCATE k: release k WORDS of stack

Reg[SP] = Reg[SFP] + 4%k I addi $op,$op, 4%k I

PUSH rx: push Reg[x] onto stack

Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP rx: pop the value on the top of the stack into Reg[x]
Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SF] + 4;

LOG — Stacks and Procedures 39

Stack Management Primitives

ALLOCATE k: reserve k WORDS of stack . .
Reg[SP] = Reg[SP] - 4k l addi $ep.$ep.-4°k l
DEALLOCATE k: release k WORDS of stack

Reg[SP] = Reg[SP] + 4%k I addi $op,$op, 4%k I

PUSH rx: push Reg[x] onto stack b AT i by
Reg[SP] = Reg[SF] - 4 addi $sp,$sp,-4
Mem[Reg[SP]] = Reg[x] g sw $rx, O($sp)

POP rx: pop the value on the top of the stack into Reg[x]
Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SF] + 4;

Comp 411 LOG — Stacks and Procedures 40

Stack Management Primitives

ALLOCATE k: reserve k WORDS of stack . .
Reg[SP] = Reg[SP] - 4k l addi $ep.$ep.-4°k l
DEALLOCATE k: release k WORDS of stack

Reg[SP] = Reg[SP] + 4%k I addi $op,$op, 4%k I

PUSH rx: push Reg[x] onto stack b AT i by
Reg[SP] = Reg[SF] - 4 addi $sp,$sp,-4
Mem[Reg[SP]] = Reg[x] g sw $rx, O($sp)

POP rx: pop the value on the top of the stack into Reg[x]

AI ad followed by a DEALLOCATE 1
Reg[x] = Mem[Reg[SP]] RX, O($ep)

Reg[SP] = Reg[SP] + 4; g addn $op,$sp.4

Comp 411 LOG — Stacks and Procedures 41

Fun with Stacks

Stacks can be used to squirrel away variables for You should
0 0 ALWAYS
later. For instance, the following code fragment can Allocate
be inserted anywhere within a program. prior to
saving, and
3 deallocate
Argh!!! I'm out of registers Scotty!! after
restoring
addi Ssp,S$sp, -8 # allocate 2 ll::tpg’
SW $s0,4 ($sp) # Free up s0 // '
SW $sl,0($sp) # Free up sl
1w $s0,dilithum xtals \'
1w $sl,seconds_til explosion
suspense: addi $sl,$s1,-1
bne $sl,$0,suspense
SW $s0,warp engines
lw $s0,4 ($sp) # Restore s0
lw $sl,0(S$sp) # Restore sl
addi Ssp, S$sp, 8 # deallocate 2

AND Stacks can also be used to solve other problems...

Comp 411 LOG — Stacks and Procedures 42

Solving Procedure Linkage “Problems”

In case you forgot, a reminder of our problems:
1) We need a way to pass arguments into procedures
2) Procedures need storage for their LOCAL variables
3) Procedures need to call other procedures
4) Procedures might call themselves (Recursion)

BUT FIRST, WE'LL WASTE SOME MORE REGISTERS:
$30 = $fp. Frame ptr, points to the callee’s
local variables on the stack,
we also use it to access
extra args (>4)
$31 = $ra. Return address back to caller
$29 = $sp. Stack ptr, points to “TOP” of stack

Now we can define a STACK FRAME
(a.k.a. the procedure’s Activation Record):

Comp 411 LOG — Stacks and Procedures 43

More MIPS Procedure Conventions

What needs to be saved?

CHOICE 1... anything that a Callee touches
(except the return value registers)

CHOICE 2... Give the Callee access to everything
(make the Caller save those registers
it expects to be unchanged)

CHOICE 3... Something in between.
(Give the Callee some registers to
play with. But, make it save others
if they are not enough, and also
provide a few registers that the caller
can assume will not be changed by the
callee.)

Comp 411 LOG — Stacks and Procedures 44

More MIPS Procedure Conventions

What needs to be saved?
CHOICE 1... anything that a Callee touches
(except the return value registers)
CHOICE 2... Give the Callee access to everything
(make the Caller save those registers
it expects to be unchanged)
|CHOICE 3... Something in between.
\\ ofcourse,tve (Give the Callee some registers to

comvention play with. But, make it save others

? e if they are not enough, and also
provide a few registers that the caller
can assume will not be changed by the
callee.)

Comp 411 LOG — Stacks and Procedures 45

Stack Frame Overview . .

The STACK FRAME contains storage for

Stack
the CALLER’s volatile state that it wants S e Fraanc:e
preserved after the invocation of CALLEEs. Ar gs > 4

FP:—>
In addition, the CALLEE will use the stack Saved rege T
for the following:
or the Tollowing CALLEE's
1) Accessing the arguments that the Local variables f vack
CALLER passes to it rame
(specifically, the 5* and greater) SP: l
2) Saving non-temporary registers that)
it wishes to modify (unused)
3) Accessing its own local variables L

The boundary between stack frames falls

It’s possible to use only the SP to
at the first word of state saved by the P Y

access a stack frame, but offsets

CALLEE, and just after the extra may change due to ALLOCATEs and
arguments (>4, if used) passed in from DEALLOCATEs. For convenience a $fp
the CALLER. The FRAME POINTER keeps is used to provide CONSTANT offsets

track of this boundary between stack to local variables and arguments

frames.

Comp 411 LOG — Stacks and Procedures 46

Procedure Stack Usage
ADDITIONAL space must be allocated in the stack frame for:

-—d
.

Any SAVED registers the procedure uses ($s0-$57)

2. Any TEMPORARY registers that the procedure wants preserved
IF it calls other procedures ($t0-$t9)

Any LOCAL variables declared within the procedure

Other TEMP space IF the procedure runs out of registers (RARE)
Enough “outgoing” arguments to satisfy the worse case
ARGUMENT SPILL of ANY procedure it calls.

(SPILL is the number of arguments greater than 4).

o h O

Reminder: Stack frames are extended by multiples of 2 words.
By convention, the above order is the order in which storage is
allocated

Comp 411 LOG — Stacks and Procedures 47

Procedure Stack Usage
ADDITIONAL space must be allocated in the stack frame for:

-—d
.

Any SAVED registers the procedure uses ($s0-$57)

2. Any TEMPORARY registers that the procedure wants preserved
IF it calls other procedures ($t0-$t9)

Any LOCAL variables declared within the procedure

Other TEMP space IF the procedure runs out of registers (RARE)
Enough “outgoing” arguments to satisfy the worse case
ARGUMENT SPILL of ANY procedure it calls.

(SPILL is the number of arguments greater than 4).

o h O

Reminder: Stack frames are extended by multiples of 2 words.
By convention, the above order is the order in which storage is
allocated

Each procedure has keep track of how
many SAVED and TEMPORARY
registers are on the stack in order to
calculate the offsets to LOCAL
YARIABLES.

Comp 411 LOG — Stacks and Procedures 486

Procedure Stack Usage
ADDITIONAL space must be allocated in the stack frame for:

-—d
.

Any SAVED registers the procedure uses ($s0-$57)

2. Any TEMPORARY registers that the procedure wants preserved
IF it calls other procedures ($t0-$t9)

Any LOCAL variables declared within the procedure

Other TEMP space IF the procedure runs out of registers (RARE)
Enough “outgoing” arguments to satisfy the worse case
ARGUMENT SPILL of ANY procedure it calls.

(SPILL is the number of arguments greater than 4).

o h O

Reminder: Stack frames are extended by multiples of 2 words.
By convention, the above order is the order in which storage is
allocated

Each procedure has keep track of how PRO: The MIPS stack frame convention

v many SAVED and TEMPORARY ‘ minimizes the number of stack
registers are on the stack in order to ALLOCATEs
calculate the offsets to LOCAL
YARIABLES. CON: The MIPS stack frame convention

tends to allocate larger stack frames

than needed, thus wasting memory
Comp 411 LOG — Stacks and Procedures 49

More MIPS Register Usage

* The registers $s0-$s7, $sp, $ra, $gp, $fp, and the stack above the
memory above the stack pointer must be preserved by the CALLEE

e The CALLEE is free to use $t0-$t9, $a0-$a3, and $vO-$v1, and the
memory below the stack pointer.

* No “user” program can use $kO-$k1, or $at

Name Register number Usage
Szero 0 the constant value 0
Sat 1 assembler temporary
Sv0-5vil 2-3 procedure return values
$al0-$a3 4-7 procedure arguments
St0-5t7 8-15 temporaries
$s0-$s7 16-23 saved by callee
St8-5t9 24-25 more temporaries
Sk0-Sk1 26-27 reserved for operating system
Sgp 28 global pointer
SSp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address

Comp 411 LOG — Stacks and Procedures 50

CALLER's $fp —

Space for $ra

Space for $fp
Stack Snap Shots o
] . Space for $s2
Shown on the right is a shap shot of a s
pace for $s1
program’s stack contents, taken at some Space for $50
instant in time. One can mine a lot of 552 CALLER’S
information by inspecting its contents. $t1 FRAME
Caller's local 1
Can we determine the number of CALLEE
arguments? Caller’s local n
Arg[5]
Can we determine the $sp (prior to call) — Arg[4]
maximum number of CALLEE’s $fp — Space for $ra
arguments needed by Space for $fp
any procedure called Callee’s local 1 CALLEE'S
by the CALLER? Callee’s local 2 FRAME
Arg[6]
Where in the CALLEE’s Arg[®]
Arg[4]

stack frame might one $sp (after call) —
find the CALLER’s $fp?

Comp 411

LOG — Stacks and Procedures 51

CALLER’s $fp —

Space for $ra

Space for $fp

Stack Snap Shots

Space for $3

Space for $s2

Shown on the right is a shap shot of a

Space for $s1

program’s stack contents, taken at some

Space for $s0

instant in time. One can mine a lot of

$t2

information by inspecting its contents.

$t1

Caller’s local 1

Can we determine the number of CALLEE

arguments? NOPE

Caller's local n

Arg[5]
Can we determine the $sp (prior to call) — Arg[4]
maximum number of CALLEE’s $fp — Space for $ra
arguments needed by Space for $fp
any procedure called Callee’s local 1
by the CALLER? Callee’s local 2

Arg[6]
Where in the CALLEE’s Arg[5]

Arg[4]

stack frame might one $sp (after call) —
find the CALLER’s $fp?

Comp 411

CALLER’S
FRAME

CALLEE’S
FRAME

LOG — Stacks and Procedures 52

CALLER’s $fp —

Space for $ra

Space for $fp

Stack Snap Shots

Space for $3

Space for $s2

Shown on the right is a shap shot of a

Space for $s1

program’s stack contents, taken at some

Space for $s0

instant in time. One can mine a lot of

$t2

information by inspecting its contents.

$t1

Caller’s local 1

Can we determine the number of CALLEE

arguments? NOPE

Caller's local n

Arg[5]

Can we determine the
maximum number of

$sp (prior to call) —
CALLEE’s $fp —

Arg[4]
Space for $ra

arguments needed by

Space for $fp

any procedure called

Callee’s local 1

by the CALLER? Yes, there can be

Callee’s local 2

no more than 6

Arg[©]

Where in the CALLEE’s

Arg[5]

$sp (after call) —

stack frame might one
find the CALLER’s $fp?

Arg[4]

CALLER’S
FRAME

CALLEE’S
FRAME

LOG — Stacks and Procedures 53

Stack Snap Shots

Comp 411

CALLER’s $fp —

Space for $ra

Space for $fp

Space for $3

Space for $s2

Shown on the right is a shap shot of a

Space for $s1

program’s stack contents, taken at some

Space for $s0

instant in time. One can mine a lot of

$t2

information by inspecting its contents.

$t1

Caller’s local 1

Can we determine the number of CALLEE

arguments? NOPE

Caller's local n

Arg[5]

Can we determine the
maximum number of

$sp (prior to call) —
CALLEE’s $fp —

Arg[4]
Space for $ra

arguments needed by

Space for $fp

any procedure called

Callee’s local 1

by the CALLER? Yes, there can be

Callee’s local 2

no more than 6

Arg[©]

Where in the CALLEE’s

Arg[5]

stack frame might one $sp (after call) —
find the CALLER’s $fp? It MIGHT be at -4($fp)

Arg[4]

LOG — Stacks and Procedures 54

CALLER’S
FRAME

CALLEE’S
FRAME

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

ALLOCATE

—. /minimum stack
int sqgr(int x) { sqr: addiu $sp,$sp,-8 22;&2:“‘
if (X > 1) SW $ra,4 ($Sp) address and the
X = sqr(x-1)+x+x-1; aw $a0,0 ($sp) !§P“%“"

return x: argument.,

y slti $t0,%$a0,2

beq $t0,$0, then
add $v0,$0,$a0
main () beq $0,$0,rtn
{ then:
sqr (10) ; addi $a0,%a0,-1
} jal sqr
lw $a0,0 ($sp)
add $v0,$v0,$al
add $v0,$v0,$al
addi $v0,$v0,-1
rtn:
lw Sra,4 ($sp)
addiu $sp, $sp,8
jr $ra

Comp 411 LOG — Stacks and Procedures 55

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;
return x;

}

main ()

{
sqr (10) ;

}

Comp 411

6ame SAL: addiu

registers ‘\ SwW

that must

survive the Sw

call. [l t l
beqg
add
beqg

then:
addi
jal
1w
add
add
addi
rtn:
1w
addiu
jr

ALLOCATE

—. /minimum stack

frame. With room
for the return
address and the
passed in

argument.

SPrSPr‘8
$ra,4($sp)
$a0,0(Ssp)
$t0,%$a0,2
$t0,$0, then
$v0,$0,$a0
$0,$0,rtn

$a0,%a0,-1

sqr

$a0,0 ($sp)

$v0,$v0,$al
$v0,$v0,$al
$v0,$v0,-1

$ra,4 ($sp)
$sp,$sp, 8
Sra

LOG - Stacks and Procedures 56

Back to Reality

Now let’s make our example work, using the MIPS procedure

linking and stack conventions.

int sqr(int x) {
if (x > 1)

registers ?‘\ sSw
X = sqr(x-1)+x+x-1; thatmust
d () survive the Sw
} call. S l ti

Save

return x;

beqg
add

main () beq

{ then:
sqr (10) ; addi

} Pass arguments
//jal

?bladd

add

addi
rtn:

1w

addiu

jr
Comp 411

sqgr: addiu

ALLOCATE

—. /' minimum stack
3P, $sp, -8 NE:::::::;::M
$ ra, 4 ($ Sp) address and the
$a0,0 ($sp) Franer.
$t0,%$a0,2
$t0,$0, then
$v0,$0,$a0
$0,$0,rtn

$a0,%a0,-1
sqr
$a0,0($sp)
$v0,$v0,$al
$v0,$v0,$al
$v0,$v0, -1

$ra,4 ($sp)
$sp,$sp, 8
Sra

LOG — Stacks and Procedures 57

Back to Reality

Now let’s make our example work, using the MIPS procedure

linking and stack conventions.

int sqr(int x) {
if (x > 1)

registers ?‘\ sSw
X = sqr(x-1)+x+x-1; thatmust
d () survive the Sw
} call. S l ti

Save

return x;

beqg
add
main () beq
{ then:
} sqr (10) ’ Pass arguments addi
//jal
’bladd
add
addi
rtn‘_
1w
Restore
5av:: / addiu
registers. J r

Comp 411

sqgr: addiu

ALLOCATE

—. /' minimum stack
3P, $sp, -8 NE:::::::;::M
$ ra, 4 ($ Sp) address and the
$a0,0 ($sp) Franer.
$t0,%$a0,2
$t0,$0, then
$v0,$0,$a0
$0,$0,rtn

$a0,%a0,-1
sqr
$a0,0($sp)
$v0,$v0,$al
$v0,$v0,$al
$v0,$v0, -1

$ra,4 ($sp)
$sp,$sp, 8
Sra

LOG - Stacks and Procedures 58&

Back to Reality

Now let’s make our example work, using the MIPS procedure

linking and stack conventions.

int sqr(int x) {
if (x > 1)

registers ?‘\ sSw
X = sqr(x-1)+x+x-1; thatmust
d () survive the Sw
} call. S l ti

Save

return x;

beqg
add
main () beq
{ then:
} sqr (10) ’ Pass arguments addi
//jal
’bladd
add
addi
rtn‘_
1w
Restore
5av:: / addiu
registers. J r

Comp 411

sqgr: addiu

ALLOCATE

—. /' minimum stack
3P, $sp, -8 NE:::::::;::M
$ ra, 4 ($ Sp) address and the
$a0,0 ($sp) Franer.
$t0,%$a0,2
$t0,$0, then
$v0,$0,$a0
$0,$0,rtn

$a0,%a0,-1

sqr

$a0,0 ($sp)

$v0,$v0,$al
$v0,$v0,$al
$v0,$v0,-1

DEALLOCATE
/ stack frame.

$ra,4 ($sp)
$sp,$sp, 8 7

Sra

LOG — Stacks and Procedures 59

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;
return x;

}

main ()
{

sqr (10) ;
}

Q: Why didn’t we save
e and update $fp?

2

Comp 411

6ame SAL: addiu

registers ?‘\ SW

that must
survive the Sw
call. slti

beqg
add
beqg
then:
Pass arguments addi
\\~|V/jal
g 1w
add
add
addi
rtn‘_
1w
il addiu
registers. J r

ALLOCATE

—. /minimum stack

frame. With room
for the return
address and the
passed in

argument.

SPrSPr‘8
$ra,4(Ssp)
$a0,0(Ssp)
$t0,%$a0,2
$t0,$0, then
$v0,$0,8a0
$0,$0,rtn

$a0,%a0,-1

sqr

$a0,0 ($sp)

$v0,$v0,$al
$v0,$v0,$al
$v0,$v0,-1

DEALLOCATE
/ stack frame.

$ra,4(Ssp) N
$sp, $sp, 8 7

Sra

LOG — Stacks and Procedures 60

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;
return x;

}

main ()
{

sqr (10) ;
}

Q: Why didn’t we save
e and update $fp?

A: Don't have local
variables or spilled

? args.

Comp 411

6ame SAL: addiu
registers ?‘\ SW
that must
survive the f Sw
call. slti
beqg
add
beqg
then:
Pass arguments addi
\\~|V/jal
g 1w
add
add
addi
rtn‘_
1w
Restere,” addiu
registers. J r

ALLOCATE
—. /minimum. stack
Ssp, $sp, -8 NB::;";::!;::“
$ ra, 4 ($ Sp) address and the
$a0,0 ($sp) Franer.
$t0,%$a0,2
$t0,$0, then
$v0,$0,$a0
$0,$0,rtn
$a0,%a0,-1
sqr
$a0,0 (Ssp)
$v0,$v0,$al
$v0,$v0,$al
$v0,$v0, -1
DEALLOCATE
/ stack frame.

$ra,4(Ssp) N
$sp, $sp, 8 7

Sra

LOG — Stacks and Procedures ©1

Testing Reality's Boundaries

Now let’s take a look at the active stack frames at some
point during the procedure’s execution.

sqgr: addiu $SP,$SP,—8
SW $ra, 4 (Ssp)
SW $a0,0 ($Ssp)
slti $t0,$a0,2
beq $t0,$0,then
$ra = 0x00400018 move $v0,$al
$a0 = 10,, beq $0,$0,rtn
$ra = 0x00400074
$a0 =9, then: .
$ra = 000400074 pC addi $a0,$a0,-1
$sp — $a0 = 8,5 — jal sqr
1w $a0,0 ($sp)
add $v0,$v0, $al
add $v0,$v0, $al
addi $v0,S$v0,-1
rtn:
1w $ra, 4 ($sp)
addiu $sp,$sp,8
jr $ra

Comp 411 LOG — Stacks and Procedures 62

Testing Reality's Boundaries

Now let’s take a look at the active stack frames at some
point during the procedure’s execution.

sqr: addiu $sp, $sp,-8
sSwW S$ra,4 (Ssp)
swW $a0,0 (Ssp)
slti $t0,$a0,2
Return Address to beq $t0,$0, then
$ra = Ox00400018 4 original caller move $v0,$al
$a0 =10,, N}{ beq $0,$0,rtn
$ra = 0x00400074
$ao = 910 then: .
$ra = Ox00400074 addi $a0,%a0,-1
$op — $a0 = 8, PC —— jal sqr
1w $a0,0(Ssp)
add $v0,$v0, $al
add $v0,$v0, $a0
addi $v0,S$v0,-1
rtn:
1w $ra,4 ($sp)
addiu $sp,$sp,8
jr $ra

Comp 411 LOG - Stacks and Procedures 63

Testing Reality's Boundaries

Now let’s take a look at the active stack frames at some
point during the procedure’s execution.

sqr: addiu $sp, $sp,-8
sSwW S$ra,4 (Ssp)
swW $a0,0 (Ssp)
slti $t0,$a0,2
Return Address to beq $t0,$0, then
$ra = Ox00400018 4 original caller move $v0,$al
$a0 =10,, N}{ beq $0,$0,rtn
$ra = 0x00400074
$ao = 910 then: .
$ra = Ox00400074 addi $a0,%a0,-1
$op — $a0 = 8, PC — jal sqr
1w $a0,0(Ssp)
add $v0,$v0, $al
add $v0,$v0, $a0
addi $v0,S$v0,-1
rtn:
1w $ra,4 ($sp)
addiu $sp,$sp,8
jr $ra

Comp 411 LOG — Stacks and Procedures 64

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that
case?

Comp 411 LOG - Stacks and Procedures 65

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

Abstraction!

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that
case?

Comp 411 LOG — Stacks and Procedures 66

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

Abstraction!

*High-level languages can provide compact

hotation that hides the details.

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that
case?

Comp 411 LOG — Stacks and Procedures 67

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

Abstraction!

*High-level languages can provide compact

hotation that hides the details.

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that

case?
Contracts!

Comp 411 LOG - Stacks and Procedures 68&

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

Abstraction!

*High-level languages can provide compact

hotation that hides the details.

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that

case?
Contracts!

e But, first we must agree on the details?
Not just the HOWs, but WHENS.

Comp 411 LOG — Stacks and Procedures 69

Procedure Linkage: Caller Contract

The CALLER will:

*Save all temp registers that it wants
to survive subsequent calls in its
stack frame

(tO-$t9, $a0-$a3, and $vO-$v1)

*Pass the first 4 arguments in registers
$a0-$ad, and save subsequent arguments on
stack, in *reverse* order.

eCall procedure, using a jal instruction
(places return address in $ra).

*Access procedure’s return values in $vO-$vi

Comp 411 LOG — Stacks and Procedures 70

Code Lawyer

Our running example is a CALLER. Let's make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sSwW ra,4(Ss
The CALLER will: vra, 4 ($sp)
: sw $a0,0($sp)
- Save all temp registers that it wants .
to survive subsequent calls in ite slti $ t0 ’ $a0 ’ 2
stack frame
(tO-$19, $a0-$a3, and O-91) beq $ t0 ’ $ 0 ’ then
- Pass the first 4 arguments in registers $a0- add $V0 ’ $ 0 ’ $a0
$a3, and save subsequent arquments on stack,
in reverse order., beq $0 ’ $0 ,rtn

- Call procedure, using a 3al instruction then:
(places retum address in $ra).

addi $a0,%a0,-1

- Access procedure’s return values in vO-$vi

jal sqr
1w $a0,0 ($sp)
add $v0,$v0,S$al
add $v0,$v0,S$al
int sqr(int x) { addi $v0,$v0,-1
x = sqr(x-1)+x+x-1;
return x; 1w $ra,4(Ssp)
} addiu $sp, $sp,8
jr Sra

Comp 411 LOG — Stacks and Procedures 71

Code Lawyer

Our running example is a CALLER. Let's make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sSwW ra,4($s
The CALLER will: $ra, 4 (3sp)
: swW $a0,0(Ssp)
- Save all temp registers that it wants -
to survive subsequent calls in ite slti $ to0, $a0 , 2
stack frame
(tO-$19, $a0-$a3, and WO-$1) beqgq $t0,$0, then
- Pass the first 4 arguments in registers $a0- add $V0 ’ $ 0 ’ $a0
$a3, and save subsequent arquments on stack,
in reverse order., beq $O ’ $O ’ rtn

- Call procedure, using a 3al instruction then:
(places retum address in $ra).

addi $a0,%a0,-1

- Access procedure’s return values in vO-$vi

jal sqr
1w $a0,0 ($sp)
add $v0,$v0,S$al
add $v0,$v0,S$al
int sqr(int x) { addi $v0,$v0,-1
x = sqr(x-1)+x+x-1;
return x; 1w $ra,4(Ssp)
} addiu $sp, $sp,8
jr Sra

Comp 411 LOG — Stacks and Procedures 72

Code Lawyer

Our running example is a CALLER. Let's make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sSwW ra,4($s
The CALLER will: $ra, 4 (3sp)
: swW $a0,0(Ssp)
- Save all temp registers that it wants -
to survive subsequent calls in ite slti $ to0, $a0 , 2
stack frame
(tO-$19, $a0-$a3, and WO-$1) beqgq $t0,$0, then
- Pass the first 4 arguments in registers $a0- add $V0 ’ $ 0 ’ $a0
$a3, and save subsequent arquments on stack,
in reverse order., beq $O ’ $O ’ rtn

- Call procedure, using a 3al instruction then:
(places retum address in $ra).

addi $a0,%$a0,-1

- Access procedure’s return values in vO-$vi

jal sqr
1w $a0,0 ($sp)
add $v0,$v0,S$al
add $v0,$v0,S$al
int sqr(int x) { addi $v0,$v0,-1
x = sqr(x-1)+x+x-1;
return x; 1w $ra,4(Ssp)
} addiu $sp, $sp,8
jr Sra

Comp 411 LOG — Stacks and Procedures 73

Code Lawyer

Our running example is a CALLER. Let's make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sSwW ra,4($s
The CALLER will: $ra, 4 (3sp)
: swW $a0,0(Ssp)
- Save all temp registers that it wants -
to survive subsequent calls in ite slti $ to0, $a0 , 2
stack frame
(tO-$19, $a0-$a3, and WO-$1) beqgq $t0,$0, then
- Pass the first 4 arguments in registers $a0- add $V0 ’ $ 0 ’ $a0
$a3, and save subsequent arquments on stack,
in reverse order., beq $O ’ $O ’ rtn

- Call procedure, using a 3al instruction then:
(places retum address in $ra).

addi $a0,%$a0,-1

- Access procedure’s return values in vO-$vi

jal sqr
1w $a0,0 ($sp)
add $v0,$v0,S$al
add $v0,$v0,S$al
int sqr(int x) { addi $v0,$v0,-1
x = sqr(x-1)+x+x-1;
return x; 1w $ra,4(Ssp)
} addiu $sp, $sp,8
jr Sra

Comp 411 LOG — Stacks and Procedures 74

Code Lawyer

Our running example is a CALLER. Let's make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sSwW ra,4(Ss
The CALLER will: $ra, 4 (3sp)
‘ SW $a0,0 ($sp)
- Save all temp registers that it wants -
to survive subsequent. calls in its slti $ t0 ’ $a0 ’ 2
stack frame
(tO-ﬁ:Q. $a0-$a3, and vO-91) beq $ t0 ’ $ 0 ’ then
-Pass the first 4 arguments in registers $a0- add $V0 ’ $ 0 ’ $a0
.’i::];‘;::iz:j:‘r;ubffqumb arguments on stack, beq $ 0 , $ 0 , rtn
- Call procedure, using a 3al instruction then:
(places retum address in $ra). addi $ao) $ao = 1
- Access procedure’s return values in vO-$vi N
jal sqr
1w $a0,0 ($sp)
add $v0,$v0, $al
add $v0,$v0,S$al
int sqr(int x) { addi $v0,$v0,-1
x = sqr(x-1)+x+x-1;
return x; 1w] sra,4($sp)
} addiu $sp, $sp,8
jr Sra

Comp 411 LOG — Stacks and Procedures 75

Procedure Linkage: Callee Contract

If needed the CALLEE will:

1) Allocate a stack frame including space for saved
registers, local variables, and spilled arguments

2) Save any “preserved” registers used:

($ra, $sp, $p, $gp, $50-$57)

3) If CALLEE has local variables -or- needs access to
arguments on the stack, save the CALLER’s frame
pointer and set $fp to 1°* entry of the CALLEE’s stack

4) EXECUTE procedure

B) Place return values in $vO-$vi
©) Restore saved registers

7) Fix $sp to its original value
&) Return to CALLER with jr $ra

Comp 411 LOG — Stacks and Procedures 76

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp,$sp,-8
sw $ra,4($sp)
) SwW $a0,0(Ssp)
If needed the CALLEE wilk slti $t0,$a0,2
1) Aocarte a stack frame inchuding space beq $t0,$0, then
R e T add $v0,$0,$a0
2) Save beqg $0,$0,rtn

($ca, $op, ¥, Sap, $e0 $s7)
3) ¥ CALLEE. haw local variabdes —or- needs
Access Lo arguments on stack, save, the

CALLEK s frame pointer, then set. $ip to addi $a0,8a0,-1
first local vanalie ‘ jal sqr

) Plaso et volus N0 1w $a0,0 ($sp)
‘,’)),":;‘;"m“:‘:"”"“"' - add $v0,$v0, $a0
”) Ketum m(‘Alu.k’mth'y*n add $v0 , $v0 , $a0

addi $v0,$v0,-1

int sqgr(int x) {
if (x> 1) lw _ Sra,4 ($sp)
x = sqr(x-1)+x+x-1; addiu $sp,$sp,8
return x; jr Sra

}

Comp 411 LOG — Stacks and Procedures 77

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp, $sp,-8
sw $ra,4($sp)
) SW $a0,0(Ssp)
If needed the CALLEE wilk slti $t0,$a0,2
1) Aocarte a stack frame inchuding space beq $t0,$0, then
R e T add $v0,$0,$a0
2) Save beqg $0,$0,rtn

($ca, $op, ¥, Sap, $e0 $s7)
3) ¥ CALLEE. haw local variabdes —or- needs
Access Lo arguments on stack, save, the

CALLEK s frame pointer, then set. $ip to addi $a0,8a0,-1
first local vanalie ‘ jal sqr

) Plaso et volus N0 1w $a0,0 ($sp)
‘,’)),":;‘;"m“:‘:"”"“"' - add $v0,$v0, $a0
”) Ketum m(‘Alu.k’mth'y*n add $v0 , $v0 , $a0

addi $v0,$v0,-1

int sqgr(int x) {
if (x> 1) lw _ Sra,4 ($sp)
x = sqr(x-1)+x+x-1; addiu $sp,$sp,8
return x; jr Sra

}

Comp 411 LOG — Stacks and Procedures 78

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp, $sp,-8
SW $ra, 4 ($sp)
) SW $a0,0 ($sp)
If needed the CALLEE wilk slti $t0,$a0,2
1) Aocarte a stack frame inchuding space beq $t0,$0, then
R e T add $v0,$0,$a0
2) Save beqg $0,$0,rtn

($ca, $op, ¥, Sap, $e0 $s7)
3) ¥ CALLEE. haw local variabdes —or- needs
Access Lo arguments on stack, save, the

CALLEK s frame pointer, then set. $ip to addi $a0,8a0,-1
first local vanalie ‘ jal sqr

) Plaso et volus N0 1w $a0,0 ($sp)
‘,’)),":;‘;"m“:‘:"”"“"' - add $v0,$v0, $a0
”) Ketum m(‘Alu.k’mth'y*n add $v0 , $v0 , $a0

addi $v0,$v0,-1

int sqgr(int x) {
if (x> 1) lw _ Sra,4 ($sp)
x = sqr(x-1)+x+x-1; addiu $sp,$sp,8
return x; jr Sra

}

Comp 411 LOG — Stacks and Procedures 79

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqgr: addiu $sp,$sp,-8
sw Sra,4 (Ssp)
3 SW $a0,0 ($sp)
If needed the CALLEE wilk slti $t0,$a0,2
1) Aocarte a stack frame inchuding space beq $t0,$0, then
m:rwuu" . add $V0 o $0 o $a0
2) Save " beq $0,$0,rtn

($ca, $op, ¥, Sap, $e0 $s7)
3) ¥ CALLEE. haw local variabdes —or- needs
Access Lo arguments on stack, save, the

CALLEK s frame pointer, then set. $fp to addi $a0,%a0,-1

Elano S ‘ jal sqr

5y Place retuim ok in 5O 1w $a0,0 ($sp)

72 P fop o cvgint e add $v0,$v0,$a0

B) Return to CALLER with jr %va add $VO , $VO , $a0
addi $v0,S$v0,-1

int sqgr(int x) {
if (x> 1) lw _ Sra,4 ($sp)
x = sqr(x-1)+x+x-1; addiu $sp,$sp,8
return x; jr Sra

}

Comp 411 LOG — Stacks and Procedures &0

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqgr: addiu $sp,$sp,-8
sw Sra,4 (Ssp)
3 SW $a0,0 ($sp)
If needed the CALLEE wilk slti $t0,$a0,2
1) Aocarte a stack frame inchuding space beq $t0,$0, then
m:rwuu" . add $V0 o $0 o $a0
2) Save " beq $0,$0,rtn

($ca, $op, ¥, Sap, $e0 $s7)
3) ¥ CALLEE. haw local variabdes —or- needs
Access Lo arguments on stack, save, the

CALLEK s frame pointer, then set. $fp to addi $a0,%a0,-1

Elano S ‘ jal sqr

5y Place retuim ok in 5O 1w $a0,0 ($sp)

72 P fop o cvgint e add $v0,$v0,$a0

B) Return to CALLER with jr %va add $VO , $VO , $a0
addi $v0,S$v0,-1

int sqgr(int x) {
if (x> 1) 1w _ Sra,4 ($sp)
x = sqr(x-1)+x+x-1; addiu $sp,$sp,8
return x; jr Sra

}

Comp 411 LOG — Stacks and Procedures 81

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp, $sp,-8
sSW Sra,4 (Ssp)
3 SW $a0,0 ($sp)
If needed the CALLEE wilk slti $t0,$a0,2
1) Aocarte a stack frame inchuding space beq $t0,$0, then
iy T add $v0, 50, $a0
2) Save " beq $0,$0,rtn

($ca, $op, ¥, Sap, $e0 $s7)
3) ¥ CALLEE. haw local variabdes —or- needs
Access Lo arguments on stack, save, the

CALLEK s frame pointer, then set. $fp to addi $a0,%a0,-1

Elano S ‘ jal sqr

5y Place retuim ok in 5O 1w $a0,0 ($sp)

72 P fop o cvgint e add $v0,$v0,$a0

B) Return to CALLER with jr %va add $VO , $VO , $a0
addi $v0,S$v0,-1

int sqgr(int x) {
if (x> 1) 1w _ Sra,4 ($sp)
x = sqr(x-1)+x+x-1; addiu $sp,$sp,8
return x; jr Sra

}

Comp 411 LOG — Stacks and Procedures &2

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr:

B

If needed the CALLEE wilk

1) Nlocate a stack frame incuding space
saved regoters, local variables, and
spiled arguments

Z) Save) registors used:

(%2, $op, ¥ip, Sap, $e0 $67)

3) ¥ CALLEE. haw local variabdes —or- needs
Access Lo arguments on stack, save, the
CALLEEs frame poiater, then set $fp to

4) EXECUTE procedure
5) Place returm value in SO
6) Kestore saved registens
7) Fix $op to its original value
B) Return to CALLER with jr %va

int sqgr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;
return x;

}

Comp 411

addiu $sp, $sp,-8
sw Sra,4 (Ssp)
SW $a0,0 ($sp)
slti $t0,$a0,2
beqgq $t0,$0, then
add $v0,$0,$a0
beqg $0,$0,rtn
addi $a0,$a0,-1
jal sqr

lw $a0,0 ($sp)
add $v0,$v0,S$al
add $v0,$v0,S$al
addi $v0,S$v0,-1
lw Sra,4 ($sp)
addiu $sp, $sp, 8
jr Sra

LOG - Stacks and Procedures &3

On Last Point: Dangling References

Stacks can be an unreliable place to put things....

int *p; /* a pointer */

—
int h(x) caller
{
int y = x*3; $fp —» space for $ra
p = &y; epace for $bp
return 37;
space for args
} h(10)
h(10) ; $ep — =20
print (*p) ;
—__|
——
What do we expect o
to be printed? |
—_ |

“During Call”

Comp 411 LOG — Stacks and Procedures 84

On Last Point: Dangling References

Stacks can be an unreliable place to put things....

int *p; /* a pointer */._\ $fP —’_\
; TEMPS
int h(x) caller $5P s ()
{
int y = x*3; $fp —» space for $ra
p = &y; epace for $bp
return 37; ?
} space for args .
h(10) —> (unused
h(10) ; $op — =50 °pace)
print (*p);
s s
What do we expect o - .
to be printed? |
N N

“During Call” “After Call”

Comp 411 LOG — Stacks and Procedures &5

Dangling Reference Solutions

Java & PASCAL: Kiddy scissors only.
No "ADDRESS OF" operator: language restrictions forbid
constructs which could lead to dangling references.

C and C++: real tools, real dangers.
"You get what you deserve".

SCHEME/LISP: throw cycles at it.

Activation records allocated from a HEAP, reclaimed
transparently by garbage collector (at considerable cost).

“You get what you pay for”
Of course, there’s a stack hiding there somewhere...

Comp 411 LOG - Stacks and Procedures &6

