
L06 – Stacks and Procedures 1Comp 411

Stacks and Procedures

I forgot, am I
the Caller
or Callee?

Support for High-Level Language constructs are an integral
part of modern computer organization. In particular, support
for procedures and functions.

Don’t know. But, if
you PUSH again I’m

gonna POP you.

L06 – Stacks and Procedures 2Comp 411

The Beauty of Procedures

• Reusable code fragments (modular design)
clear_screen();

… # code to draw a bunch of lines

clear_screen();

…

• Parameterized functions (variable behaviors)
line(x1, y1, x2, y2, color);

line(x2,y2,x3,y3, color);

…

for (i=0; i < N-1; i++)
line(x[i],y[i],x[i+1],y[i+1],color);

line(x[i],y[i],x[0],y[0],color);

L06 – Stacks and Procedures 3Comp 411

More Procedure Power

• Local scope (Independence)
int x = 9;

int fee(int x) {

return x+x-1;

}

int foo(int i) {

int x = 0;

while (i > 0) {

x = x + fee(i);

i = i - 1;

}

return x;

}

main() {

fee(foo(x));

}

These are different “x”s

This is yet another “x”

How do we
keep track of
all the
variables

That “fee()” seems odd
to me? And, foo()’s a
little square.

L06 – Stacks and Procedures 4Comp 411

Using Procedures

• A “calling” program (Caller) must:
– Provide procedure parameters. In other words, put the

arguments in a place where the procedure can access them

– Transfer control to the procedure. Jump to it

• A “called” procedure (Callee) must:
– Acquire the resources needed to perform the function

– Perform the function

– Place results in a place where the Caller can find them

– Return control back to the Caller

• Solution (a least a partial one):
– Allocate registers for these specific functions

L06 – Stacks and Procedures 5Comp 411

MIPS Register Usage

• Conventions designate registers for procedure arguments ($4-$7)
and return values ($2-$3).

• The ISA designates a “linkage register” for calling procedures ($31)

• Transfer control to Callee using the jal instruction

• Return to Caller with the j $31 or j $ra instruction

Name Register number Usage

$zero 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 procedure return values

$a0-$a3 4-7 procedure arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved by callee

$t8-$t9 24-25 more temporaries

$k0-$k1 26-27 reserved for operating system

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

The
“linkage
register” is
where the
return
address of
back to
the callee
is stored.
This allows
procedures
to be
called from
any place,
and for
the caller
to come
back to
the place
where it
was
invoked.

L06 – Stacks and Procedures 6Comp 411

And It “Sort Of” Works

• Example:
.globl x

.data

x: .word 9

.globl fee

.text

fee:

add $v0,$a0,$a0

addi $v0,$v0,-1

jr $ra

.globl main

.text

main:

lw $a0,x

jal fee

jr $ra

That’s odd?

Caller

Callee

Works for special cases
where the Callee needs few
resources and calls no
other functions.

This type of function is
called a LEAF function.

But there are lots of issues:
• How can fee call functions?
• More than 4 arguments?
• Local variables?
• Where will main return to?

Let’s consider the worst
case of a Callee as a
Caller…

L06 – Stacks and Procedures 7Comp 411

Writing Procedures

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

sqr(10) = sqr(9)+10+10-1 = 100
sqr(9) = sqr(8)+9+9-1 = 81
sqr(8) = sqr(7)+8+8-1 = 64
sqr(7) = sqr(6)+7+7-1 = 49
sqr(6) = sqr(5)+6+6-1 = 36
sqr(5) = sqr(4)+5+5-1 = 25
sqr(4) = sqr(3)+4+4-1 = 16
sqr(3) = sqr(2)+3+3-1 = 9
sqr(2) = sqr(1)+2+2-1 = 4
sqr(1) = 1
sqr(0) = 0

Oh, recursion
gives me a
headache.

How do we go about writing callable
procedures? We’d like to support not
only LEAF procedures, but also
procedures that call other procedures,
ad infinitum (e.g. a recursive function).

L06 – Stacks and Procedures 8Comp 411

Procedure Linkage: First Try

MIPS Convention:
• pass 1st arg x in $a0
• save return addr in $ra
• return result in $v0
• use only temp registers

to avoid saving stuff

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

L06 – Stacks and Procedures 9Comp 411

Procedure Linkage: First Try

MIPS Convention:
• pass 1st arg x in $a0
• save return addr in $ra
• return result in $v0
• use only temp registers

to avoid saving stuff

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

Caller

Callee/Caller

L06 – Stacks and Procedures 10Comp 411

Procedure Linkage: First Try

sqr: slti $t0,$a0,2

beq $t0,$0,then #!(x<2)

add $v0,$0,$a0

beq $0,$0,rtn

then:

add $t0,$0,$a0

addi $a0,$a0,-1

jal sqr

add $v0,$v0,$t0

add $v0,$v0,$t0

addi $v0,$v0,-1

rtn:

jr $ra

MIPS Convention:
• pass 1st arg x in $a0
• save return addr in $ra
• return result in $v0
• use only temp registers

to avoid saving stuff

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

Caller

Callee/Caller

L06 – Stacks and Procedures 11Comp 411

Procedure Linkage: First Try

sqr: slti $t0,$a0,2

beq $t0,$0,then #!(x<2)

add $v0,$0,$a0

beq $0,$0,rtn

then:

add $t0,$0,$a0

addi $a0,$a0,-1

jal sqr

add $v0,$v0,$t0

add $v0,$v0,$t0

addi $v0,$v0,-1

rtn:

jr $ra

OOPS!

MIPS Convention:
• pass 1st arg x in $a0
• save return addr in $ra
• return result in $v0
• use only temp registers

to avoid saving stuff

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

Caller

Callee/Caller

$t0 is clobbered on
successive calls.

L06 – Stacks and Procedures 12Comp 411

Procedure Linkage: First Try

sqr: slti $t0,$a0,2

beq $t0,$0,then #!(x<2)

add $v0,$0,$a0

beq $0,$0,rtn

then:

add $t0,$0,$a0

addi $a0,$a0,-1

jal sqr

add $v0,$v0,$t0

add $v0,$v0,$t0

addi $v0,$v0,-1

rtn:

jr $ra

OOPS!

MIPS Convention:
• pass 1st arg x in $a0
• save return addr in $ra
• return result in $v0
• use only temp registers

to avoid saving stuff

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

Caller

Callee/Caller

$t0 is clobbered on
successive calls.
Will saving “x” in some
register or at some
fixed location in memory
help?

L06 – Stacks and Procedures 13Comp 411

Procedure Linkage: First Try

sqr: slti $t0,$a0,2

beq $t0,$0,then #!(x<2)

add $v0,$0,$a0

beq $0,$0,rtn

then:

add $t0,$0,$a0

addi $a0,$a0,-1

jal sqr

add $v0,$v0,$t0

add $v0,$v0,$t0

addi $v0,$v0,-1

rtn:

jr $ra

OOPS!

MIPS Convention:
• pass 1st arg x in $a0
• save return addr in $ra
• return result in $v0
• use only temp registers

to avoid saving stuff

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

Caller

Callee/Caller

$t0 is clobbered on
successive calls.
Will saving “x” in some
register or at some
fixed location in memory
help? (Nope)

L06 – Stacks and Procedures 14Comp 411

Procedure Linkage: First Try

sqr: slti $t0,$a0,2

beq $t0,$0,then #!(x<2)

add $v0,$0,$a0

beq $0,$0,rtn

then:

add $t0,$0,$a0

addi $a0,$a0,-1

jal sqr

add $v0,$v0,$t0

add $v0,$v0,$t0

addi $v0,$v0,-1

rtn:

jr $ra

OOPS!

MIPS Convention:
• pass 1st arg x in $a0
• save return addr in $ra
• return result in $v0
• use only temp registers

to avoid saving stuff

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

Caller

Callee/Caller

$t0 is clobbered on
successive calls.

We also clobber our
return address, so
there’s no way back!

Will saving “x” in some
register or at some
fixed location in memory
help? (Nope)

L06 – Stacks and Procedures 15Comp 411

A Procedure’s Storage Needs
Basic Overhead for Procedures/Functions:

• Caller sets up ARGUMENTs for callee
f(x,y,z) or worse... sin(a+b)

• Caller invokes Callee while saving the
Return Address to get back

• Callee saves stuff that Caller expects
to remain unchanged

• Callee executes
• Callee passes results back to Caller.

Local variables of Callee:
...
{
int x, y;
... x ... y ...;

}

Each of these is specific to a “particular” invocation or
activation of the Callee. Collectively, the arguments passed
in, the return address, and the callee’s local variables are
its activation record, or call frame.

In C it’s the caller’s job to
evaluate its arguments as
expressions, and pass the
resulting values to the callee…
Therefore, the CALLEE has to
save arguments if it wants
access to them after calling
some other procedure, because
they might not be around in any
variable, to look up later.

L06 – Stacks and Procedures 16Comp 411

Lives of Activation Records

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

sqr(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

L06 – Stacks and Procedures 17Comp 411

Lives of Activation Records

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

sqr(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

sqr(3)

sqr(2)

L06 – Stacks and Procedures 18Comp 411

Lives of Activation Records

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

sqr(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

sqr(3)

sqr(2)

sqr(3)

sqr(2)

sqr(1)

L06 – Stacks and Procedures 19Comp 411

Lives of Activation Records

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

sqr(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

sqr(3)

sqr(2)

sqr(3)

sqr(2)

sqr(3)

sqr(2)

sqr(1)

L06 – Stacks and Procedures 20Comp 411

Lives of Activation Records

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

sqr(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

sqr(3)

sqr(2)

sqr(3)

sqr(2)

sqr(3)

sqr(2)

sqr(1)

sqr(3)

L06 – Stacks and Procedures 21Comp 411

Lives of Activation Records

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

sqr(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created
by call we are returning from.

sqr(3)

sqr(2)

sqr(3)

sqr(2)

Where do we store
activation records?

sqr(3)

sqr(2)

sqr(1)

sqr(3)

L06 – Stacks and Procedures 22Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

L06 – Stacks and Procedures 23Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 24Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 25Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 26Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 27Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 28Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 29Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 30Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

Some interesting
properties of stacks:

SMALL OVERHEAD.
Only the top is
directly visible, the
so-called

“top-of-stack”

Add things by
PUSHING new values
on top.

Remove things by
POPPING off values.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 31Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

Some interesting
properties of stacks:

SMALL OVERHEAD.
Only the top is
directly visible, the
so-called

“top-of-stack”

Add things by
PUSHING new values
on top.

Remove things by
POPPING off values.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 32Comp 411

We Need Dynamic Storage!

What we need is a SCRATCH
memory for holding temporary
variables. We’d like for this
memory to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

Some interesting
properties of stacks:

SMALL OVERHEAD.
Only the top is
directly visible, the
so-called

“top-of-stack”

Add things by
PUSHING new values
on top.

Remove things by
POPPING off values.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

L06 – Stacks and Procedures 33Comp 411

MIPS Stack Convention

CONVENTIONS:

• Waste a register for the
Stack Pointer
($sp = $29).

• Stack grows DOWN
(towards lower
addresses) on
pushes and allocates

• $sp points to the
TOP *used* location.

• Place stack far away
from our program
and its data

$sp

Higher addresses

Lower addresses

Reserved

“text” segment
(Program)

“stack” segment
800000016

Data

1000000016

0040000016

1000800016

L06 – Stacks and Procedures 34Comp 411

MIPS Stack Convention

CONVENTIONS:

• Waste a register for the
Stack Pointer
($sp = $29).

• Stack grows DOWN
(towards lower
addresses) on
pushes and allocates

• $sp points to the
TOP *used* location.

• Place stack far away
from our program
and its data

$sp

Higher addresses

Lower addresses

Humm… Why
is that the TOP
of the stack?

Reserved

“text” segment
(Program)

“stack” segment
800000016

Data

1000000016

0040000016

1000800016

L06 – Stacks and Procedures 35Comp 411

MIPS Stack Convention

CONVENTIONS:

• Waste a register for the
Stack Pointer
($sp = $29).

• Stack grows DOWN
(towards lower
addresses) on
pushes and allocates

• $sp points to the
TOP *used* location.

• Place stack far away
from our program
and its data

$sp

Higher addresses

Lower addresses

Humm… Why
is that the TOP
of the stack?

Other possible implementations include:
1) stacks that grow “UP”
2) SP points to first UNUSED location

Reserved

“text” segment
(Program)

“stack” segment
800000016

Data

1000000016

0040000016

1000800016

L06 – Stacks and Procedures 36Comp 411

MIPS Stack Convention

CONVENTIONS:

• Waste a register for the
Stack Pointer
($sp = $29).

• Stack grows DOWN
(towards lower
addresses) on
pushes and allocates

• $sp points to the
TOP *used* location.

• Place stack far away
from our program
and its data

$sp

Higher addresses

Lower addresses

Humm… Why
is that the TOP
of the stack?

Other possible implementations include:
1) stacks that grow “UP”
2) SP points to first UNUSED location

Reserved

“text” segment
(Program)

“stack” segment
800000016

Data

1000000016

0040000016

1000800016$gp

Recall that directly
addressable global
variables were allocated
relative to a special
“global pointer”

L06 – Stacks and Procedures 37Comp 411

Stack Management Primitives
ALLOCATE k: reserve k WORDS of stack

Reg[SP] = Reg[SP] - 4*k

DEALLOCATE k: release k WORDS of stack
Reg[SP] = Reg[SP] + 4*k

PUSH rx: push Reg[x] onto stack
Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP rx: pop the value on the top of the stack into Reg[x]
Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SP] + 4;

L06 – Stacks and Procedures 38Comp 411

Stack Management Primitives
ALLOCATE k: reserve k WORDS of stack

Reg[SP] = Reg[SP] - 4*k

DEALLOCATE k: release k WORDS of stack
Reg[SP] = Reg[SP] + 4*k

PUSH rx: push Reg[x] onto stack
Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP rx: pop the value on the top of the stack into Reg[x]
Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SP] + 4;

addi $sp,$sp,-4*k

L06 – Stacks and Procedures 39Comp 411

Stack Management Primitives
ALLOCATE k: reserve k WORDS of stack

Reg[SP] = Reg[SP] - 4*k

DEALLOCATE k: release k WORDS of stack
Reg[SP] = Reg[SP] + 4*k

PUSH rx: push Reg[x] onto stack
Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP rx: pop the value on the top of the stack into Reg[x]
Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SP] + 4;

addi $sp,$sp,-4*k

addi $sp,$sp,4*k

L06 – Stacks and Procedures 40Comp 411

Stack Management Primitives
ALLOCATE k: reserve k WORDS of stack

Reg[SP] = Reg[SP] - 4*k

DEALLOCATE k: release k WORDS of stack
Reg[SP] = Reg[SP] + 4*k

PUSH rx: push Reg[x] onto stack
Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP rx: pop the value on the top of the stack into Reg[x]
Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SP] + 4;

addi $sp,$sp,-4
sw $rx, 0($sp)

addi $sp,$sp,-4*k

addi $sp,$sp,4*k

An ALLOCATE 1 followed by a store

L06 – Stacks and Procedures 41Comp 411

Stack Management Primitives
ALLOCATE k: reserve k WORDS of stack

Reg[SP] = Reg[SP] - 4*k

DEALLOCATE k: release k WORDS of stack
Reg[SP] = Reg[SP] + 4*k

PUSH rx: push Reg[x] onto stack
Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP rx: pop the value on the top of the stack into Reg[x]
Reg[x] = Mem[Reg[SP]]
Reg[SP] = Reg[SP] + 4;

addi $sp,$sp,-4
sw $rx, 0($sp)

lw RX, 0($sp)
addi $sp,$sp,4

addi $sp,$sp,-4*k

addi $sp,$sp,4*k

An ALLOCATE 1 followed by a store

A load followed by a DEALLOCATE 1

L06 – Stacks and Procedures 42Comp 411

Fun with Stacks

Stacks can be used to squirrel away variables for
later. For instance, the following code fragment can
be inserted anywhere within a program.

#

Argh!!! I’m out of registers Scotty!!

#

addi $sp,$sp,-8 # allocate 2

sw $s0,4($sp) # Free up s0

sw $s1,0($sp) # Free up s1

lw $s0,dilithum_xtals

lw $s1,seconds_til_explosion

suspense: addi $s1,$s1,-1

bne $s1,$0,suspense

sw $s0,warp_engines

lw $s0,4($sp) # Restore s0

lw $s1,0($sp) # Restore s1

addi $sp,$sp,8 # deallocate 2

AND Stacks can also be used to solve other problems...

You should
ALWAYS
allocate
prior to

saving, and
deallocate

after
restoring

in order to
be SAFE!

L06 – Stacks and Procedures 43Comp 411

Solving Procedure Linkage “Problems”

BUT FIRST, WE’LL WASTE SOME MORE REGISTERS:
$30 = $fp. Frame ptr, points to the callee’s

local variables on the stack,
we also use it to access
extra args (>4)

$31 = $ra. Return address back to caller
$29 = $sp. Stack ptr, points to “TOP” of stack

Now we can define a STACK FRAME
(a.k.a. the procedure’s Activation Record):

In case you forgot, a reminder of our problems:
1) We need a way to pass arguments into procedures
2) Procedures need storage for their LOCAL variables
3) Procedures need to call other procedures
4) Procedures might call themselves (Recursion)

L06 – Stacks and Procedures 44Comp 411

More MIPS Procedure Conventions
What needs to be saved?

CHOICE 1… anything that a Callee touches
(except the return value registers)

CHOICE 2… Give the Callee access to everything
(make the Caller save those registers
it expects to be unchanged)

CHOICE 3… Something in between.
(Give the Callee some registers to
play with. But, make it save others
if they are not enough, and also
provide a few registers that the caller
can assume will not be changed by the
callee.)

L06 – Stacks and Procedures 45Comp 411

Of course, the
MIPS
convention
is to do this
case.

More MIPS Procedure Conventions
What needs to be saved?

CHOICE 1… anything that a Callee touches
(except the return value registers)

CHOICE 2… Give the Callee access to everything
(make the Caller save those registers
it expects to be unchanged)

CHOICE 3… Something in between.
(Give the Callee some registers to
play with. But, make it save others
if they are not enough, and also
provide a few registers that the caller
can assume will not be changed by the
callee.)

L06 – Stacks and Procedures 46Comp 411

Stack Frame Overview

FP:

SP:

Saved regs

Local variables

Args > 4

(unused)

The STACK FRAME contains storage for
the CALLER’s volatile state that it wants
preserved after the invocation of CALLEEs.

In addition, the CALLEE will use the stack
for the following:

1) Accessing the arguments that the
CALLER passes to it
(specifically, the 5th and greater)

2) Saving non-temporary registers that
it wishes to modify

3) Accessing its own local variables

The boundary between stack frames falls
at the first word of state saved by the
CALLEE, and just after the extra
arguments (>4, if used) passed in from
the CALLER. The FRAME POINTER keeps
track of this boundary between stack
frames.

It’s possible to use only the SP to
access a stack frame, but offsets
may change due to ALLOCATEs and
DEALLOCATEs. For convenience a $fp
is used to provide CONSTANT offsets
to local variables and arguments

CALLEE’s
Stack
Frame

CALLER’s
Stack
Frame

L06 – Stacks and Procedures 47Comp 411

Procedure Stack Usage
ADDITIONAL space must be allocated in the stack frame for:

1. Any SAVED registers the procedure uses ($s0-$s7)
2. Any TEMPORARY registers that the procedure wants preserved

IF it calls other procedures ($t0-$t9)
3. Any LOCAL variables declared within the procedure
4. Other TEMP space IF the procedure runs out of registers (RARE)
5. Enough “outgoing” arguments to satisfy the worse case

ARGUMENT SPILL of ANY procedure it calls.
(SPILL is the number of arguments greater than 4).

Reminder: Stack frames are extended by multiples of 2 words.
By convention, the above order is the order in which storage is
allocated

L06 – Stacks and Procedures 48Comp 411

Procedure Stack Usage
ADDITIONAL space must be allocated in the stack frame for:

1. Any SAVED registers the procedure uses ($s0-$s7)
2. Any TEMPORARY registers that the procedure wants preserved

IF it calls other procedures ($t0-$t9)
3. Any LOCAL variables declared within the procedure
4. Other TEMP space IF the procedure runs out of registers (RARE)
5. Enough “outgoing” arguments to satisfy the worse case

ARGUMENT SPILL of ANY procedure it calls.
(SPILL is the number of arguments greater than 4).

Reminder: Stack frames are extended by multiples of 2 words.
By convention, the above order is the order in which storage is
allocated

Each procedure has keep track of how
many SAVED and TEMPORARY
registers are on the stack in order to
calculate the offsets to LOCAL
VARIABLES.

L06 – Stacks and Procedures 49Comp 411

Procedure Stack Usage
ADDITIONAL space must be allocated in the stack frame for:

1. Any SAVED registers the procedure uses ($s0-$s7)
2. Any TEMPORARY registers that the procedure wants preserved

IF it calls other procedures ($t0-$t9)
3. Any LOCAL variables declared within the procedure
4. Other TEMP space IF the procedure runs out of registers (RARE)
5. Enough “outgoing” arguments to satisfy the worse case

ARGUMENT SPILL of ANY procedure it calls.
(SPILL is the number of arguments greater than 4).

Reminder: Stack frames are extended by multiples of 2 words.
By convention, the above order is the order in which storage is
allocated

Each procedure has keep track of how
many SAVED and TEMPORARY
registers are on the stack in order to
calculate the offsets to LOCAL
VARIABLES.

PRO: The MIPS stack frame convention
minimizes the number of stack
ALLOCATEs

CON: The MIPS stack frame convention
tends to allocate larger stack frames
than needed, thus wasting memory

L06 – Stacks and Procedures 50Comp 411

More MIPS Register Usage

• The registers $s0-$s7, $sp, $ra, $gp, $fp, and the stack above the
memory above the stack pointer must be preserved by the CALLEE

• The CALLEE is free to use $t0-$t9, $a0-$a3, and $v0-$v1, and the
memory below the stack pointer.

• No “user” program can use $k0-$k1, or $at

Name Register number Usage

$zero 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 procedure return values

$a0-$a3 4-7 procedure arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved by callee

$t8-$t9 24-25 more temporaries

$k0-$k1 26-27 reserved for operating system

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

L06 – Stacks and Procedures 51Comp 411

Stack Snap Shots

CALLER’S
FRAME

Space for $ra

Space for $fp

Space for $s3

Space for $s2

Space for $s1

Space for $s0

$t2

$t1

Caller’s local 1

…

Caller’s local n

Arg[5]

Arg[4]

Space for $ra

Space for $fp

Callee’s local 1

Callee’s local 2

Arg[6]

Arg[5]

Arg[4]

CALLEE’S
FRAME

$sp (after call)

$sp (prior to call)

CALLER’s $fp

CALLEE’s $fp

Shown on the right is a snap shot of a
program’s stack contents, taken at some
instant in time. One can mine a lot of
information by inspecting its contents.

Can we determine the number of CALLEE
arguments?

Can we determine the
maximum number of
arguments needed by
any procedure called
by the CALLER?

Where in the CALLEE’s
stack frame might one
find the CALLER’s $fp?

L06 – Stacks and Procedures 52Comp 411

Stack Snap Shots

CALLER’S
FRAME

Space for $ra

Space for $fp

Space for $s3

Space for $s2

Space for $s1

Space for $s0

$t2

$t1

Caller’s local 1

…

Caller’s local n

Arg[5]

Arg[4]

Space for $ra

Space for $fp

Callee’s local 1

Callee’s local 2

Arg[6]

Arg[5]

Arg[4]

CALLEE’S
FRAME

$sp (after call)

$sp (prior to call)

CALLER’s $fp

CALLEE’s $fp

Shown on the right is a snap shot of a
program’s stack contents, taken at some
instant in time. One can mine a lot of
information by inspecting its contents.

Can we determine the number of CALLEE
arguments?

Can we determine the
maximum number of
arguments needed by
any procedure called
by the CALLER?

Where in the CALLEE’s
stack frame might one
find the CALLER’s $fp?

NOPE

L06 – Stacks and Procedures 53Comp 411

Stack Snap Shots

CALLER’S
FRAME

Space for $ra

Space for $fp

Space for $s3

Space for $s2

Space for $s1

Space for $s0

$t2

$t1

Caller’s local 1

…

Caller’s local n

Arg[5]

Arg[4]

Space for $ra

Space for $fp

Callee’s local 1

Callee’s local 2

Arg[6]

Arg[5]

Arg[4]

CALLEE’S
FRAME

$sp (after call)

$sp (prior to call)

CALLER’s $fp

CALLEE’s $fp

Shown on the right is a snap shot of a
program’s stack contents, taken at some
instant in time. One can mine a lot of
information by inspecting its contents.

Can we determine the number of CALLEE
arguments?

Can we determine the
maximum number of
arguments needed by
any procedure called
by the CALLER?

Where in the CALLEE’s
stack frame might one
find the CALLER’s $fp?

NOPE

Yes, there can be
no more than 6

L06 – Stacks and Procedures 54Comp 411

Stack Snap Shots

CALLER’S
FRAME

Space for $ra

Space for $fp

Space for $s3

Space for $s2

Space for $s1

Space for $s0

$t2

$t1

Caller’s local 1

…

Caller’s local n

Arg[5]

Arg[4]

Space for $ra

Space for $fp

Callee’s local 1

Callee’s local 2

Arg[6]

Arg[5]

Arg[4]

CALLEE’S
FRAME

$sp (after call)

$sp (prior to call)

CALLER’s $fp

CALLEE’s $fp

Shown on the right is a snap shot of a
program’s stack contents, taken at some
instant in time. One can mine a lot of
information by inspecting its contents.

Can we determine the number of CALLEE
arguments?

Can we determine the
maximum number of
arguments needed by
any procedure called
by the CALLER?

Where in the CALLEE’s
stack frame might one
find the CALLER’s $fp?

NOPE

Yes, there can be
no more than 6

It MIGHT be at -4($fp)

L06 – Stacks and Procedures 55Comp 411

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

ALLOCATE
minimum stack
frame. With room
for the return
address and the
passed in
argument.

L06 – Stacks and Procedures 56Comp 411

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

ALLOCATE
minimum stack
frame. With room
for the return
address and the
passed in
argument.

Save
registers
that must
survive the
call.

L06 – Stacks and Procedures 57Comp 411

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

ALLOCATE
minimum stack
frame. With room
for the return
address and the
passed in
argument.

Save
registers
that must
survive the
call.

Pass arguments

L06 – Stacks and Procedures 58Comp 411

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

ALLOCATE
minimum stack
frame. With room
for the return
address and the
passed in
argument.

Save
registers
that must
survive the
call.

Pass arguments

Restore
saved
registers.

L06 – Stacks and Procedures 59Comp 411

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

ALLOCATE
minimum stack
frame. With room
for the return
address and the
passed in
argument.

Save
registers
that must
survive the
call.

Pass arguments

DEALLOCATE
stack frame.

Restore
saved
registers.

L06 – Stacks and Procedures 60Comp 411

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

ALLOCATE
minimum stack
frame. With room
for the return
address and the
passed in
argument.

Save
registers
that must
survive the
call.

Pass arguments

DEALLOCATE
stack frame.

Q: Why didn’t we save
and update $fp?

Restore
saved
registers.

L06 – Stacks and Procedures 61Comp 411

Back to Reality

Now let’s make our example work, using the MIPS procedure
linking and stack conventions.

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

main()

{

sqr(10);

}

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

ALLOCATE
minimum stack
frame. With room
for the return
address and the
passed in
argument.

Save
registers
that must
survive the
call.

Pass arguments

DEALLOCATE
stack frame.

A: Don’t have local
variables or spilled
args.

Q: Why didn’t we save
and update $fp?

Restore
saved
registers.

L06 – Stacks and Procedures 62Comp 411

Testing Reality’s Boundaries
Now let’s take a look at the active stack frames at some

point during the procedure’s execution.

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

move $v0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

$ra = 0x00400018
$a0 = 1010

$ra = 0x00400074

$a0 = 910

$ra = 0x00400074

$a0 = 810

PC$sp

L06 – Stacks and Procedures 63Comp 411

Testing Reality’s Boundaries
Now let’s take a look at the active stack frames at some

point during the procedure’s execution.

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

move $v0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

$ra = 0x00400018
$a0 = 1010

$ra = 0x00400074

$a0 = 910

$ra = 0x00400074

$a0 = 810

PC

Return Address to
original caller

$sp

L06 – Stacks and Procedures 64Comp 411

Testing Reality’s Boundaries
Now let’s take a look at the active stack frames at some

point during the procedure’s execution.

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

move $v0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

$ra = 0x00400018
$a0 = 1010

$ra = 0x00400074

$a0 = 910

$ra = 0x00400074

$a0 = 810

PC

Return Address to
original caller

$sp

L06 – Stacks and Procedures 65Comp 411

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that
case?

L06 – Stacks and Procedures 66Comp 411

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that
case?

Abstraction!

L06 – Stacks and Procedures 67Comp 411

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that
case?

Abstraction!
•High-level languages can provide compact
notation that hides the details.

L06 – Stacks and Procedures 68Comp 411

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that
case?

Abstraction!

Contracts!

•High-level languages can provide compact
notation that hides the details.

L06 – Stacks and Procedures 69Comp 411

Procedure Linkage is Nontrivial

The details can be overwhelming.
What’s the solution for managing this complexity?

We have another problem, there are great many CHOICEs
that we can make in realizing a procedure (which
variables are saved, who saves them, etc.), yet we will
want to design SOFTWARE SYSTEM COMPONENTS that
interoperate. How did we enable composition in that
case?

Abstraction!

Contracts!

•High-level languages can provide compact
notation that hides the details.

• But, first we must agree on the details?
Not just the HOWs, but WHENs.

L06 – Stacks and Procedures 70Comp 411

Procedure Linkage: Caller Contract

The CALLER will:

•Save all temp registers that it wants
to survive subsequent calls in its
stack frame

(t0-$t9, $a0-$a3, and $v0-$v1)

•Pass the first 4 arguments in registers
$a0-$a3, and save subsequent arguments on
stack, in *reverse* order.

•Call procedure, using a jal instruction
(places return address in $ra).

•Access procedure’s return values in $v0-$v1

L06 – Stacks and Procedures 71Comp 411

Code Lawyer

Our running example is a CALLER. Let’s make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 72Comp 411

Code Lawyer

Our running example is a CALLER. Let’s make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 73Comp 411

Code Lawyer

Our running example is a CALLER. Let’s make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 74Comp 411

Code Lawyer

Our running example is a CALLER. Let’s make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 75Comp 411

Code Lawyer

Our running example is a CALLER. Let’s make sure it obeys
its contractual obligations

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 76Comp 411

Procedure Linkage: Callee Contract

If needed the CALLEE will:
1) Allocate a stack frame including space for saved

registers, local variables, and spilled arguments

2) Save any “preserved” registers used:
($ra, $sp, $fp, $gp, $s0-$s7)

3) If CALLEE has local variables -or- needs access to
arguments on the stack, save the CALLER’s frame
pointer and set $fp to 1st entry of the CALLEE’s stack

4) EXECUTE procedure
5) Place return values in $v0-$v1
6) Restore saved registers
7) Fix $sp to its original value
8) Return to CALLER with jr $ra

L06 – Stacks and Procedures 77Comp 411

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 78Comp 411

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 79Comp 411

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 80Comp 411

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 81Comp 411

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 82Comp 411

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 83Comp 411

More Legalese

Our running example is also a CALLEE. Are these
contractual obligations satisfied?

sqr: addiu $sp,$sp,-8

sw $ra,4($sp)

sw $a0,0($sp)

slti $t0,$a0,2

beq $t0,$0,then

add $v0,$0,$a0

beq $0,$0,rtn

then:

addi $a0,$a0,-1

jal sqr

lw $a0,0($sp)

add $v0,$v0,$a0

add $v0,$v0,$a0

addi $v0,$v0,-1

rtn:

lw $ra,4($sp)

addiu $sp,$sp,8

jr $ra

int sqr(int x) {

if (x > 1)

x = sqr(x-1)+x+x-1;

return x;

}

L06 – Stacks and Procedures 84Comp 411

On Last Point: Dangling References

int *p; /* a pointer */

int h(x)
{

int y = x*3;
p = &y;
return 37;

}

h(10);
print(*p);

h(10)

P = ?

caller

What do we expect
to be printed?

$sp

space for $ra
space for $bp

Y=30

space for args

$fp

Stacks can be an unreliable place to put things….

“During Call”

L06 – Stacks and Procedures 85Comp 411

On Last Point: Dangling References

int *p; /* a pointer */

int h(x)
{

int y = x*3;
p = &y;
return 37;

}

h(10);
print(*p);

h(10)

P = ?

caller

What do we expect
to be printed?

$sp

space for $ra
space for $bp

Y=30

space for args

$fp

?

(TEMPS)

(unused
space)

$sp

$fp

P = ?

Stacks can be an unreliable place to put things….

“During Call” “After Call”

L06 – Stacks and Procedures 86Comp 411

Dangling Reference Solutions

Java & PASCAL: Kiddy scissors only.
No "ADDRESS OF" operator: language restrictions forbid

constructs which could lead to dangling references.

C and C++: real tools, real dangers.
”You get what you deserve".

SCHEME/LISP: throw cycles at it.
Activation records allocated from a HEAP, reclaimed

transparently by garbage collector (at considerable cost).

“You get what you pay for”

Of course, there’s a stack hiding there somewhere...

