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Issued Tuesday, 1/16/2007; Due Tuesday, 1/23/2007 
 

Homework Information: Some of the problems are probably too long to be done the night before the 
due date, so plan accordingly. Late homework will not be accepted. Feel free to get help from others, but 
the work you hand in should be your own. 
 
Problem 1.  “ Miss Information?”  
 
In lecture we learned that information resolves uncertainty, and that information is measured in units of 
bits.  In order to uniquely identify one of N equally likely alternatives, log2N bits of information must be 
communicated. This is equivalent to saying that log2N bits are needed to encode any particular choice. If 
we learn a fact that only narrows down a list of possible alternatives to a choice of M  candidates (M  < 
N), we say that we’ve received log2(N/M ) bits of information.  For example, if we start with 4 equally 
likely alternatives, we’ ll need 2 bits to provide a unique encoding for each of the 4 alternatives.  If we 
learn a fact that narrows the number of alternatives down to 2, that fact has conveyed log2(4/2) = 1 bit of 
information. 
 

(A) How many bits are required to uniquely encode all playing cards in a standard deck of 52? If you 
are told a card’s suit, how many bits of information are conveyed? If you are told that the same 
card is a face card, how many additional bits are conveyed? 

  
(B)  How many total bits of information are in a single deck of cards? If all cards with values 2 to 6 

inclusive are removed from the deck (all suits), how many total bits are required to encode the 
resulting smaller deck? In this smaller deck, how many bits are required to encode the card’s suit? 
It’ s face value (7, 8, 9, 10, J, Q, K, or A)? 

 
Consider the situation when the N alternatives are not equally likely. It still takes log2N bits to encode 
any particular choice, but with clever encoding the average number of bits needed to encode a choice 
might be smaller.  For example, suppose there were three alternatives  
(“A” , “B” , and “C”) with the following probabilities of being chosen: 
 

p(“A”) = 0.5 
p(“B”) = 0.3 
p(“C”) = 0.1 
p(“D”) = 0.1 

 
We might encode “A”  with the string “0” , “B”  with “10” , “C”  with “110” , and  “D”  with “111” . 
 

(C)  If we record the results of making a sequence of choices by concatenating from left-to-right the bit 
strings that encode each choice, what sequence of choices is represented by the bit string 
“0100111110010”? 

 
(D) What is the expected length of the bit string that encodes the results of making 1000 choices?  

What is the length in the worst case?  How do these numbers compare with 1000* log2(4/1)? 
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Intuitively it seems that we get less information when we learn of a likely choice and more information 
when we learn of an unlikely choice.  This intuition is reflected in the following formula for the average 
number of bits of information (Entropy) received about a choice made from N alternatives when each 
alternative has a (possibly different) probability pi: 
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(E) How much information do you receive, on average, from a single flip of a crooked coin where ptail 

= 0.375 and phead = 0.625?  Is this more or less than the amount of information you receive from 
the flip of a fair coin? 

 
(F) A data stream is composed of a sequence of three characters, { u, d, s} . What probabilities would 

you assign to these to maximize the entropy? What probabilities would you assign to minimize the 
entropy? Assume that the probabilities of u, d, and s are p(u) = 0.7,  
p(d) = 0.2, and p(s) = 0.1. What is the entropy of this data stream? How close can you come to 
achieving this number of bits in practice? Suppose, that you assign a unique code to every 2-
character combination, { uu, ud, us, du, dd, ds, su, sd, ss} . Devise a variable length code to for this 
data stream, and compute its entropy (you can assume all data streams are composed of an even 
number of characters). What is the entropy of this data stream? How close can you come to 
achieving this number of bits in practice? 
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Problem 2.  Modular  Ar ithmetic and 2’s Complement Representation 
 
Most computers choose a particular word length (measured in bits) for representing integers and provide 
hardware that performs operations on word-size operands.  Many current generation processors have 
word lengths of 32 bits. Restricting the size of the operands and the result to a single word means that the 
arithmetic operations are actually performing arithmetic modulo 232. 
 

(A) How many different values can be encoded in a 32-bit word? 
 
Almost all modern computers use a 2’s complement representation for integers since the 2’s complement 
addition operation is the same for both positive and negative numbers.  In 2’s complement notation, one 
negates a number by complementing each bit in its representation (i.e., changing 0’s to 1’s and vice 
versa) and adding 1.  By convention, we write 2’s complement integers with the most-significant bit 
(MSB) on the left and the least-significant bit (LSB) on the right.  Also by convention, if the MSB is 1, 
the number is negative; otherwise it’ s non-negative. 
 

(B)  Please use a 32-bit 2’s complement representation to answer the following questions.  What’s the 
representation for 0? For the most positive integer that can be represented? For the most negative 
integer that can be represented?  What are the decimal values for the most positive and most 
negative integers? What do you get if you negate the largest negative integer (given both the 
binary and decimal values)? 

(C)  Since writing a string of 32 bits gets tedious, it’ s often convenient to use hexadecimal notation 
where a single digit in the range 0—9 or A—F is used to represent adjacent groups of 4 bits 
(starting from the left).  Give the corresponding 8-digit hexadecimal encoding for each of the 
following numbers:  

 
(C.1) 41110 
(C.2) −13107210 
(C.3) 000110001000010110100011110100112 
(C.4) 111111111111111111111111100010002 

(C.5) -110 
 
(D) Calculate the following using 8-bit 2’s complement arithmetic (which is just a fancy way of 

saying to do ordinary addition in base 2 keeping only 8 bits of your answer).  Remember that 
subtraction can be performed by negating the second operand and then adding it to the first 
operand. 
 
 (D.1)  42 + 36 

 (D.2)  96 - 69 
 (D.3)  69 - 96 
 (D.4)  120 - 60 
 (D.5)  -60 + 120 
 (D.6)  120 + (-120) 
 (D.7)  120 + 120 
 
Explain what happened in the last addition and in what sense your answer is “ right” . 
 


