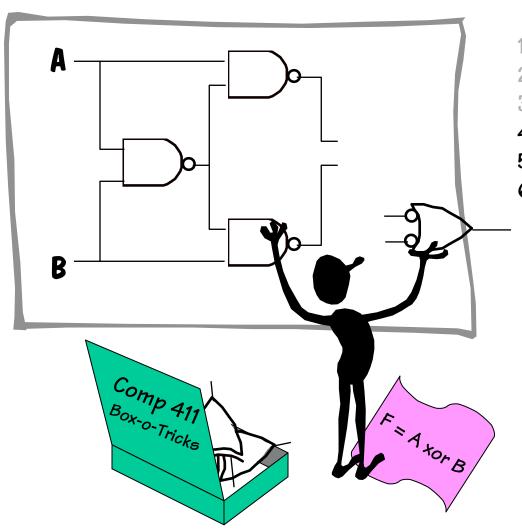
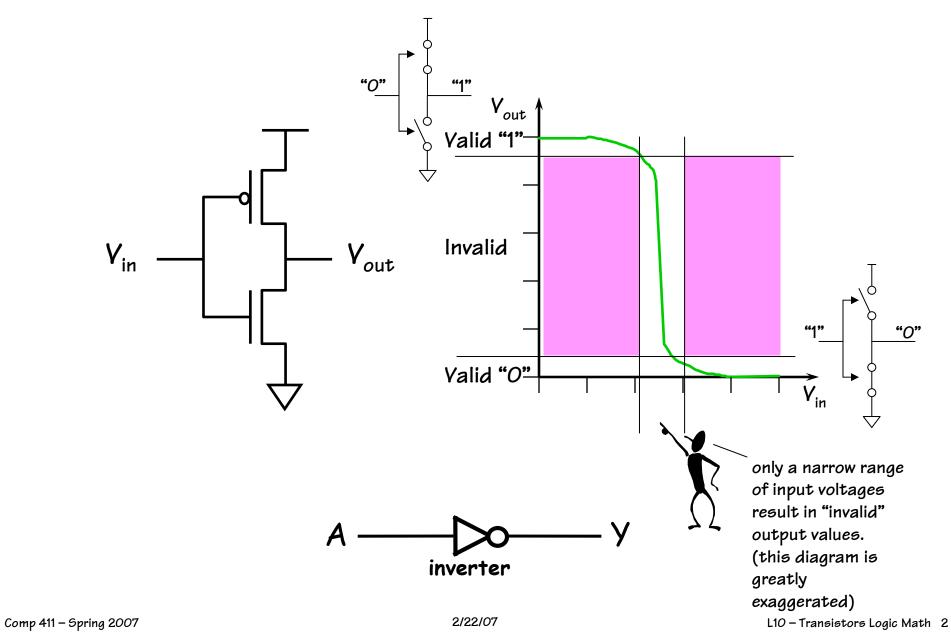
Transistors, Logic, and Math

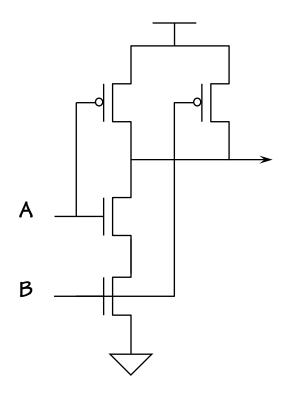


- 1) The digital contract
- 2) Encoding bits with voltages
- 3) Processing bits with transistors
- 4) Gates
- 5) Truth-tables
- 6) Multiplexer Logic

CMOS Inverter



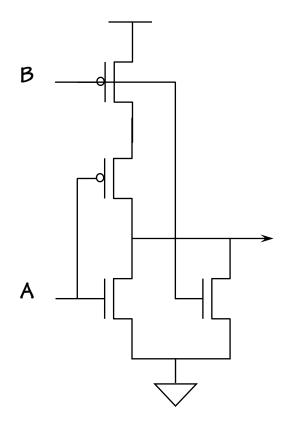
A Two Input Logic Gate



What function does this gate compute?

В	
0	
1	
0	
1	

Here's Another...



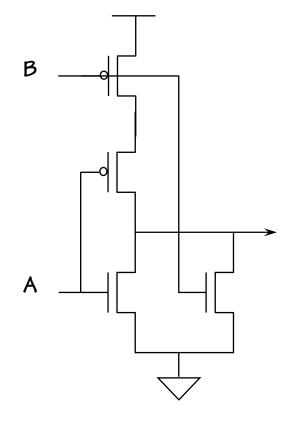
What function does this gate compute?

	В	C
0	0	
0	1	
1	0	
1	1	
		l

CMOS Gates Like to Invert

OBSERVATION: CMOS gates tend to be inverting!

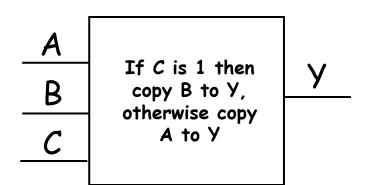
Precisely, one or more "O" inputs are necessary to generate a "1" output, and one or more "1" inputs are necessary to generate a "O" output. Why?



Now We're Ready to Design Stuff!

We need to start somewhere -- usually it's the functional specification

Argh... I'm tired of word games



Truth Table

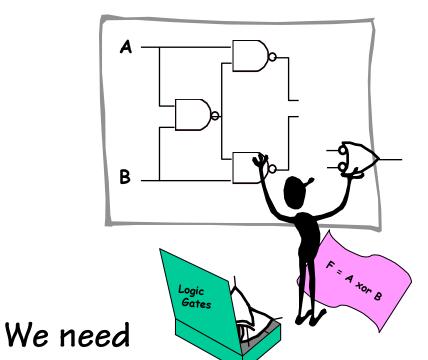
If you are like most engineers you'd rather see a table, or formula than parse a logic puzzle. The fact is, any combinational function can be expressed as a table.

These "truth tables" are a concise description of the combinational system's function. Conversely, any computation performed by a combinational system can expressed as a truth table.

C	В	A	У
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Where Do We Start?

We have a bag of gates.



We want to build a computer. What do we do?

... a systematic approach for designing logic

A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?

AN	1D	0	R	NA	ND	NO	DR
AB	У	AB	У	AB	У	AB	У
00	0	00	0	00	1	00	1
01	0	01	1	01	1	01	0
10	0	10	1	10	1	10	0
11	1	11	1	11	0	11	0

Hum... all of these have 2-inputs (no surprise)

 \dots 2 inputs have 4 permutations, giving 2^2 output cases

How many permutations of 4 outputs are there? 24

Generalizing, there are 2^{N} , N-input gates!

There Are Only So Many Gates

There are only 16 possible 2-input gates

... some we know already, others are just silly

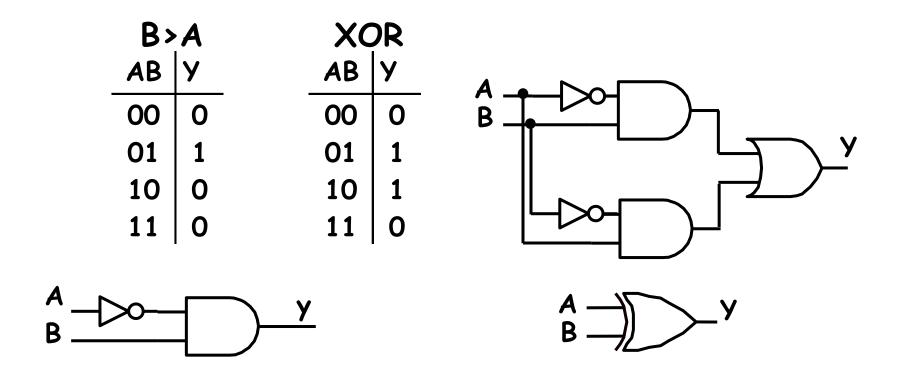
I																
Ν																
Ρ	Z									Х	N		Ν		Ν	
U	Ε	A	A		В		X		N	Ν	0	A	0	В	A	0
T	R	Ν	>		>		0	0	0	0	Т	<=	Т	< =	Ν	N
AB	0	D	В	A	Α	В	R	R	R	R	'B'	В	' <i>A</i> '	Α	D	Ε
00	0	0	0	0	0	0	0	-0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	4	0	+	0	+	0	4	0	+	0	+	0	+	0	+

How many of these gates can be implemented using a single CMOS gate?

Do we need all of these gates?

Nope. After all, we describe them all using AND, OR, and NOT.

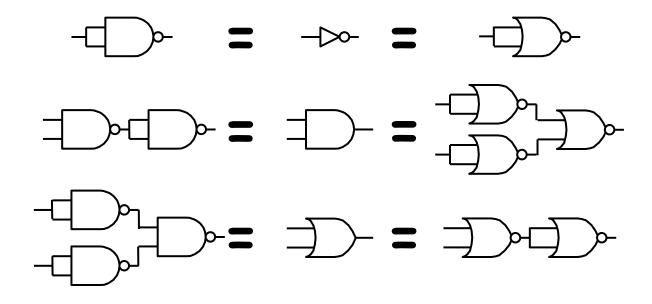
We Can Make Most Gates Out of Others



How many different gates do we really need?

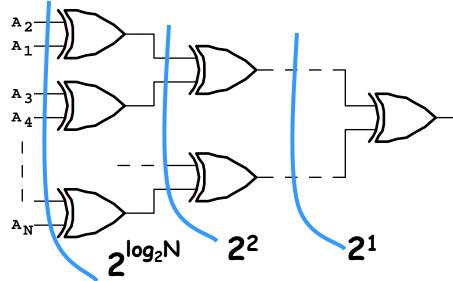
One Will Do!

NANDs and NORs are universal



Ah!, but what if we want more than 2-inputs

I Think That I Shall Never See a Gate Lovely as a ...



N-input TREE has O(log N) levels...

Signal propagation takes $O(\frac{\log N}{\log N})$ gate delays.

Here's a Design Approach

Truth Table

C	В	A	У
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- 1) Write out our functional spec as a truth table
- 2) Write down a Boolean expression for every '1' in the output

$$Y = \overline{CB}A + \overline{C}BA + CB\overline{A} + CBA$$

3) Wire up the gates, call it a day, and go home!

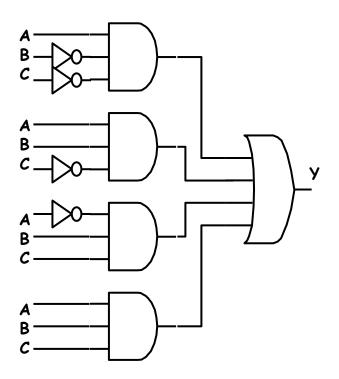
This approach will always give us logic expressions in a particular form:

SUM-OF-PRODUCTS

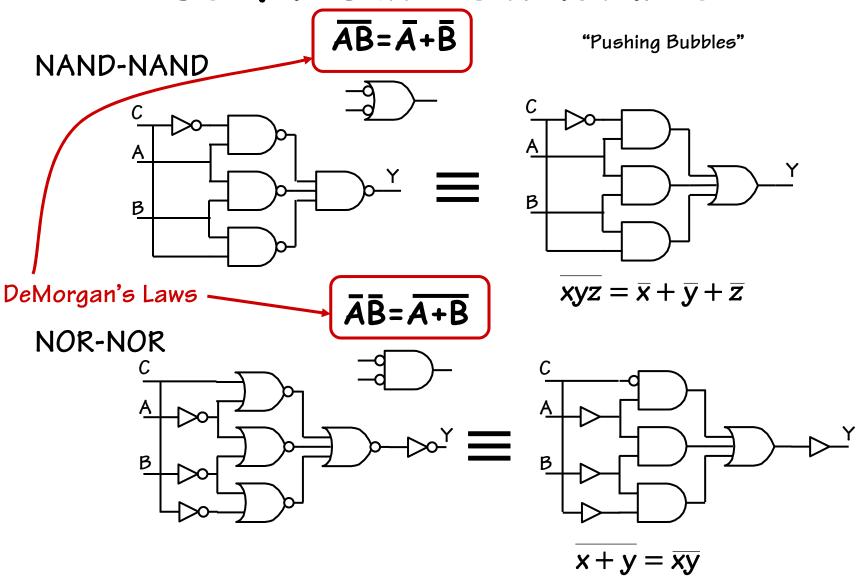
Straightforward Synthesis

We can implement
SUM-OF-PRODUCTS
with just three levels of logic.

INVERTERS/AND/OR



Useful Gate Structures



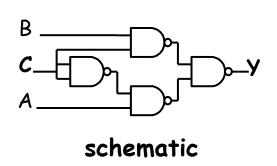
An Interesting 3-Input Gate

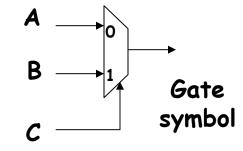
Based on C, select the A or B input to be copied to the output Y.

Truth Table

Α		
В	If C is 1 then copy B to Y,	У
С	otherwise copy A to Y	

2-input Multiplexer

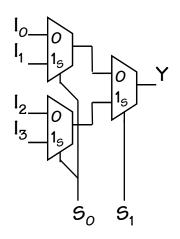


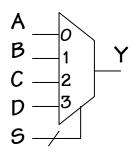


C	В	A	У
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

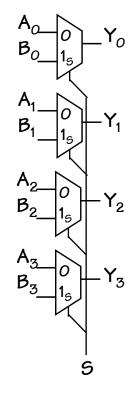
MUX Shortcuts

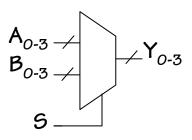
A 4-input Mux (implemented as a tree)





A 4-bit wide Mux





Mux Logic Synthesis

Consider implementation of some arbitrary Boolean function, F(A,B) Full-Adder Carry Out Logic ... using a MULTIPLEXER as the only circuit element: Cin Cout 0 C_{out} 0 0 6 1 0 A,B,C_i

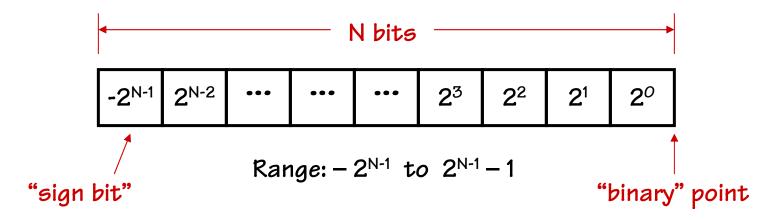
Arithmetic Circuits

Didn't I learn how to do addition in the second grade? UNC courses aren't what they used to be...

01011 +00101 10000

Finally; time to build some serious functional blocks

Review: 2's Complement



8-bit 2's complement example:

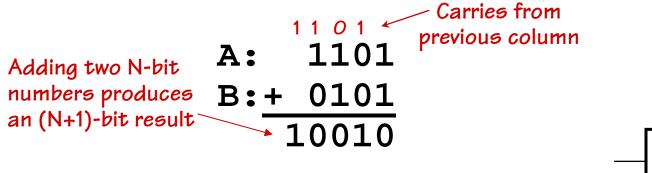
$$11010110 = -2^7 + 2^6 + 2^4 + 2^2 + 2^1 = -128 + 64 + 16 + 4 + 2 = -42$$

If we use a two's-complement representation for signed integers, the same binary addition procedure will work for adding both signed and unsigned numbers.

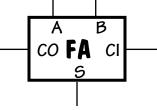
By moving the implicit "binary" point, we can represent fractions too: $1101.0110 = -2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} = -8 + 4 + 1 + 0.25 + 0.125 = -2.625$

Binary Addition

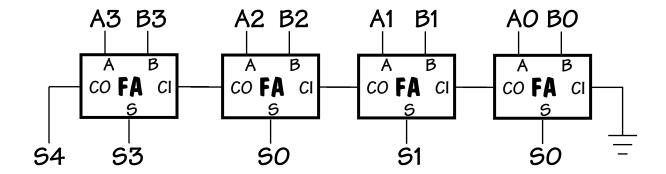
Here's an example of binary addition as one might do it by "hand":



Let's start by building a block that adds one column:



Then we can cascade them to add two numbers of any size...



Designing a Full Adder: From Last Time

- 1) Start with a truth table:
- 2) Write down eqns for the "1" outputs

$$C_o = \overline{C_i} AB + C_i \overline{A}B + C_i A\overline{B} + C_i AB$$

$$S = \overline{C_i} \overline{A}B + \overline{C_i} A\overline{B} + C_i \overline{A}B + C_i AB$$

3) Simplifing a bit

$$C_o = C_i(A + B) + AB$$

 $S = C_i \oplus A \oplus B$

$$C_o = C_i(A \oplus B) + AB$$

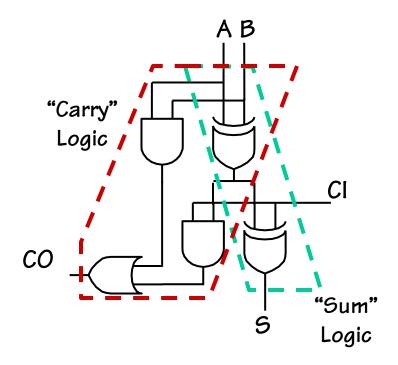
 $S = C_i \oplus (A \oplus B)$

For Those Who Prefer Logic Diagrams ...

$$C_o = C_i(A \oplus B) + AB$$

 $S = C_i \oplus (A \oplus B)$

A little tricky, but only
 5 gates/bit

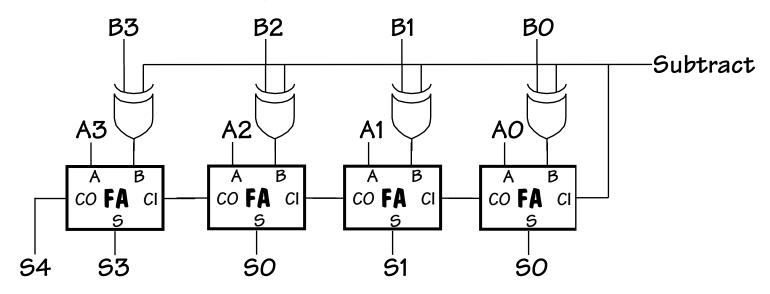


Subtraction: A-B = A + (-B)

Using 2's complement representation: -B = -B + 1

~ = bit-wise complement

So let's build an arithmetic unit that does both addition and subtraction. Operation selected by control input:



Condition Codes

2/22/07

Besides the sum, one often wants four other bits of information from an arithmetic unit:

$$Z$$
 (zero): result is = O

big NOR gate

N (negative): result is
$$< O$$
 S_{N-1}

C (carry): indicates that add in the most significant position produced a carry, e.g., "1 + (-1)" from last FA

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., " $(2^{i-1}-1)+(2^{i-1}-1)$ "

To compare A and B, perform A-B and use condition codes:

Signed comparison:

LE
$$Z+(N\oplus V)$$

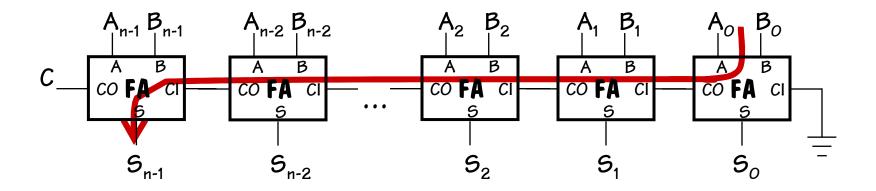
GE
$$\sim (N \oplus V)$$

GT
$$\sim (Z+(N\oplus V))$$

Unsigned comparison:

$$GTU \sim (C+Z)$$

T_{PD} of Ripple-Carry Adder



Worse-case path: carry propagation from LSB to MSB, e.g., when adding 11...111 to 00...001.

$$t_{PD} = (t_{PD,XOR} + t_{PD,AND} + t_{PD,OR}) + (N-2)*(t_{PD,OR} + t_{PD,AND}) + t_{PD,XOR} \approx \Theta(N)$$
A,B to CO

Cl to CO

Cl to CO

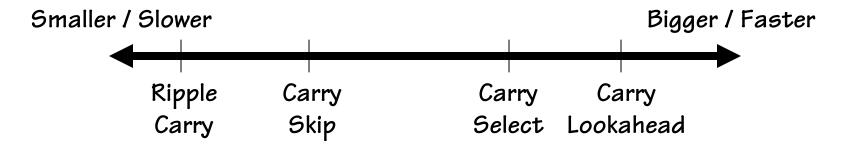
Cl to S_{N-1}

CO

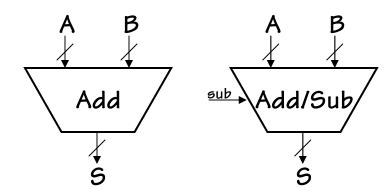
 $\Theta(N)$ is read "order N" and tells us that the latency of our adder grows in proportion to the number of bits in the operands.

Adder Summary

Adding is not only a common, but it is also tends to be one of the most time-critical of operations. As a result, a wide range of adder architectures have been developed that allow a designer to tradeoff complexity (in terms of the number of gates) for performance.



At this point we'll define a high-level functional unit for an adder, and specify the details of the implementation as necessary.



Shifting Logic

Shifting is a common operation that is applied to groups of bits. Shifting can be used for alignment, as well as for arithmetic operations.

X << 1 is approx the same as 2*X

X >> 1 can be the same as X/2

For example:

$$X = 2O_{10} = 00010100_2$$

Left Shift:

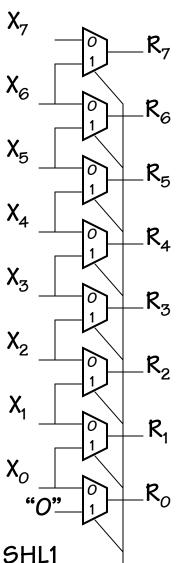
$$(X << 1) = 00101000_2 = 40_{10}$$

Right Shift:

$$(X >> 1) = 00001010_2 = 10_{10}$$

Signed or "Arithmetic" Right Shift:

$$(-X >> 1) = (11101100_2 >> 1) = 11110110_2 = -10_{10}$$



Boolean Operations

It will also be useful to perform logical operations on groups of bits. Which ones?

ANDing is useful for "masking" off groups of bits.

ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

ANDing is also useful for "clearing" groups of bits.

ex. 10101110 & 00001111 = 00001110 (0's clear first 4 bits)

ORing is useful for "setting" groups of bits.

ex. 10101110 | 00001111 = 10101111 (1's set last 4 bits)

XORing is useful for "complementing" groups of bits.

ex. $10101110 ^00001111 = 10100001 (1's complement last 4 bits)$

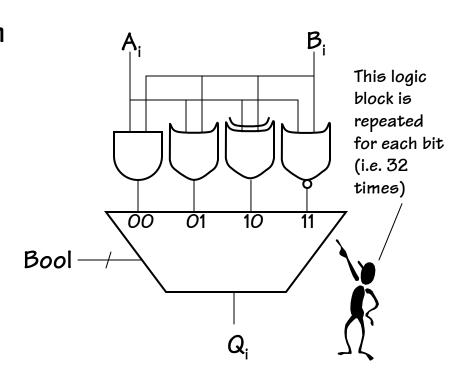
NORing is useful.. Uhm, because John Hennessy says it is!

ex. 10101110 # 00001111 = 01010000 (0's complement, 1's clear)

Boolean Unit

It is simple to build up a Boolean unit using primitive gates and a mux to select the function.

Since there is no interconnection between bits, this unit can be simply replicated at each position. The cost is about 7 gates per bit. One for each primitive function, and approx 3 for the 4-input mux.



This is a straightforward, but not too elegant of a design.

An ALU, at Last

Now we're ready for a big one! An Arithmetic Logic Unit.

