Transistors, Logic, and Math

4) Gates
5) Truth-tables
6) Multiplexer Logic

Comp 411 - Spring 2007 2/22/07 L10 - Transistors Logic Math 1

CMOS Inverter

(L vout
T i Valid “"————_

a| i

V VvV Invalid

in out

!
: O -

Valid “O0% | o~

only a narrow range
of input voltages
result in “invalid”
A % y output values.
(this diagram is

inverter

greatly

exaggerated)
Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 2

A Two Input Logic Gate

What function does

—o{ |: —o{ |: this gate compute?

g A B C
A B 0 0
] 0 1
B B 1 0
- t 1

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 3

Here's Another...

B 41
T What function does
this gate compute?
il A B |C
> 0 0
(| I
A ——|H = 10
1t 1

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 4

CMOS Gates Like to Invert

OBSERYATION: CMOS gates tend to be

inverting!

Precisely, one or more “O” inputs are B N y]
hecessary to generate a “1” output, and 1
one or more “1” inputs are necessary to

generate a “0O” output. Why? _O{

Y

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 5

Now We're Ready to Design Stuff!

We need to start somewhere -- usually it’s the functional

specification o
Argh.. I'm tired of word games

A
— | IfCis1 then Y}
B copy B to Y,
—— otherwise copy
c rwise Truth Table

If you are like most engineers you'd rather
see a table, or formula than parse a logic
puzzle. The fact is, any combinational
function can be expressed as a table.

These "truth tables"” are a concise
description of the combinational system's
function. Conversely, any computation
performed by a combinational system can
expressed as a truth table.

= = ===, 00000

=, 00, 00|
P OrLrOrr O O|>»
= = 0 0+ O = 0O|X

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math &

Where Do We Start?

We have a bag of gates.

We want to
build a computer.

What do we do?

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 7

A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?
AND OR NAND NOR

AB |Y AB Y AB Y AB Y
oo(0O 00|O0 O00|1 O00]1
o1fo o011 oO01|1 O1{O
100 10(1 101 10|(O
11 | 1 111 110 11 |0

Hum... all of these have 2-inputs (no surprise)

... 2 inputs have 4 permutations, giving 22 output cases
How many permutations of 4 outputs are there? 24

2N
Generalizing, there are 2 , N-input gates!

Comp 411 - Spring 2007 2/22/07

L10 - Transistors Logic Math &

There Are Only So Many Gates

How many of
these gates
can be

There are only 16 possible 2-input gates implemented
using a single
... some we know already, others are just silly CMOS gate?
2
r Y ¢
N
P |z X |N N N
U|E A A B X N[N|O o Alo
T|R N » > O O|O|O|T|<«<=|T |<«<=|N|N
AB|O DB A A B R RIR|R|B|B[A|A[D]|E
00 |[e—e—6—6—6—06—0—=0 1| 1 [1| 1 |1 |1 |1]1
01/0 0 0 0 1 1 1 1|ofofofo 1|1 |1]1
10/0 0 1 1 00 1 1|ojof1|1]ofof1]1
11/0 + 0o + 0 + 0 +(0o)+|o)+ |0+ (0)+

Do we need all of these gates?
Nope. After all, we describe them all using AND, OR, and NOT.

Comp 411 — Spring 2007 2/22/07 L10 - Transistors Logic Math 9

We Can Make Most Gates Out of Others

B>A XOR
AB AB

y y
000 00| o)
01 | 1 01 |1 Y
10 | 0 10 | 1

ol L

11 11
A A
D D

How many different gates do we really need?

o>

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 10

One Will Do!

NANDs and NORs are universal

 » = o = 4O r

= = E>

I _
" =2)-=3J>r0r

—{

Ahl, but what if we want more than 2-inputs

Comp 411 - Spring 2007 2/22/07 L10 = Tran

sistors Logic Math 11

I Think That I Shall Never See

a Gate Lovely as a ...

o) > >

I \2" D\
ZIOQZN 22 21

N-input TREE has O(_log N) Jevels. ..

Signal propagation takes O(_!°9 N) gate delays.

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 12

Here's a Design Approach

1) Write out our functional spec as a
Truth Table truth table

C B A|Y 2)Write down a Boolean expression for
O 0 oo every ‘" in the output

O 0 1|1

0 1040 Y =CBA+CBA+CBA +CBA

O 1 1|1

1 0 0O

1 0 190 3) Wire up the gates, call it a day, and
1 1 041 go homel

1 1 1|1

_it's systematic] This approach will always give us logic
e e expressions in a particular form:

V) _ve get to go homel!

SUM-OF-PRODUCTS

e

-~

\

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 13

Straightforward Synthesis

We can implement
SUM-OF-PRODUCTS
with just three levels of

logic.

INVERTERS/AND/OR

Comp 411 - Spring 2007 2/22/07

B
C
A
B
C

A
B
C

}_

>o—
o—

}
}_
)

L10 - Transistors Logic Math 14

Useful Gate Structures

IA—B-:Z"‘E] “Pushing Bubbles”
3 - <
hiarDs
L = T = A
:}’_ — B 1/ =/
s —_(yg) s
T T
Al >0 A B

oD ra = | 4 O3 o>

—{>0- —>—

Comp 411 — Spring 2007 2/22/07 L10 - Transistors Logic Math 15

An Interesting 3-Input Gate

Based on C, select the A or B input to be

copied to the output Y.

A
) If Cis 1 then Y
copy B to Y,
otherwise copy
C AtoY

2-input Multiplexer

B A—’o

).J)i)]— > B —’jl —’Gafe
symbol

) C
schematic

>
5

Comp 411 - Spring 2007 2/22/07

Truth Table

= = == 0 000|O0

= = 00 r»r OO0|W

= O L, O 0O = 0l|>»
= = 0O 0= 0 = 0|X

L10 — Transistors Logic Math 16

A 4-input Mux
(implemented as
a tree)

IO_O\
b y
'2—0\
5 | l‘i
S, 5

Comp 411 - Spring 2007

MUX Shortcuts

A 4-bit wide Mux

27122107

L10 - Transistors Logic Math 17

Mux Logic Synthesis

Consider implementation of some arbitrary
Boolean function, F(A,B)

Full-Adder
... using a MULTIPLEXER Carry Out Logic
as the only circuit element:
0o~
A B Cin Couf/)o 1
11+ -~
1 1 11 A.B.G

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 18

Arithmetic Circuits

Didn’t | learn how
to do addition in
the second grade?
UNC courses aren’t
what they used to

be... ~ ‘-

Finally; time to

build some
serious
functional ,
We'll need
blocks
a lot of
boxes
/

Comp 411 - Spring 2007 2/22/07 L10 - Transistors Logic Math 19

Review: 2's Complement

A

A 4

N bits

_2N-1 2N—2 X X X 25 22 21 20

/ Range: — 2N to 2N1—1 T
“sign bit” “binary” point

&-bit 2's complement example:
MO101M0 =27 +26 + 244+ 224+ 2'=—-1286 + 64 + 16 + 4 + 2 =—42

If we use a two’s-complement representation for signed integers, the
same binary addition procedure will work for adding both signed and
uhsighed numbers.

By moving the implicit “binary” point, we can represent fractions too:
MO1.OM0 =-22+ 224+ 204224+ 2°=-8+4+1+0.25 + 0.125 = - 2.625

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 20

Binary Addition

Here’s an example of binary addition as one might do it by “hand™

ies f
thof ‘/|org3iror:f:c;loun|:1n
Adding two N-bit A 1 10 1
numbers produces B:-+ 0101

an (N+1)-bit result ——_ 7 10010 |A lB
coFA ci—
Let’s start by building a block that adds one column: f

Then we can cascade them to add two numbers of any size...

A|5 B|5 /5|\2 B|2 Pi1 B|1 P|\O B|O
A B A B A B A B
co FA ci co FA ci co FA ¢ co FA ci
|/ S S S S
| | | | —
54 55 S0 S1 S0 -

Comp 411 - Spring 2007

L10 - Transistors Logic Math 21

Designing a Full Adder: From Last Time

1) Start with a truth table: C ABIC, S
i 0000 O

2) Write down eqns for the 001lo 1
“1” outputs 0100 1
01110

C0=_iAB+CKB+CAB+CAB 13(1)(1) (1)
S5 = CAB + CAB + CAB + CAB {101 o
1111 1

3) Simplifing a bit

C,=C(A +B)+AB C,=C(A0B)+AB

S=CUAUCB S=Co(AOB)

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 22

For Those Who Prefer Logic Diagrams ..

C,=C(A0B)+AB B
5=C,0(ADB) — /
Lo LY
ogic / ﬁ /
/
* A little tricky, but only / - Cl
5 gates/bit ,' (
et
_____ /
“Sum”
5

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 23

Subtraction: A-B = A + (-B)

Using 2’s complement representation: —-B = ~B + 1

N\

~ = bit-wise complement
SIS D
o) 1

So let’s build an arithmetic unit that does both addition and subtraction.
Operation selected by control input:

B3 B|2 B|1 B|O
Subtract
li)))

S

A B A B A B A B
co FA ci co FA ci co FA ci co FA ¢

R i i i

54 53 S0 51 SO

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 24

Condition Codes

Besides the sum, one often wants four other bits ﬁo compare A and B,
of information from an arithmetic unit: perform A-B and use

Z (zero): result is = O big NOR gate condition codes:

Signed comparison:

N (negative): result is < O Sv1 LT NOV
C (carry): indicates that add in the most :;E ?_(oY)
significant position produced a carry, e.g., N(Eg 7
“1+(-1)” fromlast FA

GE ~(NaV)

V (overflow): indicates that the answer has Gr ~(Z+(Nav))

too many bits to be represented correctly by

the result width, e.g., (2" - 1)+ (2- 1)” Unsigned comparison:
LTU C
NeA B LEU C+Z
V=A B N+A B N
=1 1-1 I-1i-1 U ~C
-or= GIu ~(C+2)

V=00 nye]
| —] | —]

Comp 411 — Spring 2007 2/22/07 L10 - Transistors Logic Math 25

Tpy of Ripple-Carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when

AB
adding 11...111 to 00...001.
tep = (Proxor +Peoanp + Trpor) +(N-2)*(top or + trpanp) + troxor = ©(N)
“ U J\) Cl
Y Y~ Y
A,B to CO Clto CO Cly.,to Sy o ?
S

©O(N) is read “order N” and tells us that the latency of our adder
grows in proportion to the number of bits in the operands.

Comp 411 — Spring 2007 2/22/07 L10 - Transistors Logic Math 26

Adder Summary

Adding is not only a common, but it is also tends to be one of the most
time-critical of operations. As a result, a wide range of adder
architectures have been developed that allow a designer to tradeoff
complexity (in terms of the number of gates) for performance.

Smaller / Slower Bigger / Faster
Ripple Carry Carry Carry
Carry Skip Select Lookahead
A B A B
At this point we'll define a high-level)()()()(
functional unit for an adder, and Add sub N Add/Sub
specify the details of the
implementation as necessary.
S S

Comp 411 - Spring 2007 2/22/07

L10 - Transistors Logic Math 27

Shifting Logic

(X >> 1) = 00001010, = 10,,

Signed or “Arithmetic” Right Shift:
(-X >> 1) = (11101100, >> 1) = 11110110, = -10,, SHLI

7Ty
[[—R
Shlftll’lg is a common operation that 1 7
is applied to groups of bits. Shifting Xe ;\X R
can be used for alignment, as well as 1 ©
for arithmetic operations. Xs ;\X R
1 5
X << 1 is approx the same as 2*X X4 /K
011 R
X>>1 can be the same as X/2 1 4
X, ;\\
For example: “H-Rs
X = 20,, = 00010100, % Lo\ °
Left Shift: N J\ ?
(X << 1) = 00101000, = 40, 1 1 R,
Right Shift: :
g X, ;\x
<

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 28

Boolean Operations

It will also be useful to perform logical operations on groups of bits.
Which ones?

ANDing is useful for “masking” off groups of bits.
ex. 10101110 & 00001111 = OO0O01M10 (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex. 10101110 & 00001111 = OO001110 (O’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex. 10101110 | 00001111 = 10101111 (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
ex. 10101110 * 0000111 = 10100001 (I's complement last 4 bits)

NORing is useful.. Uhm, because John Hennessy says it is!
ex. 10101110 # OOO0O01111 = 01010000 (O’s complement, 1's clear)

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 29

Boolean Unit

It is simple to build up a Boolean unit using primitive gates
and a mux to select the function.

Since there is no interconnection A B
between bits, this unit can This logic
be simply replicated at each plock e

repeated

position. The cost is about for each bit

. (i.e. 32
7 gates per bit. One for times)
each primitive function, 00 01 10 i /
and approx 3 for the Bool \'
4-input mux. | A\?

Q

This is a straightforward, but not too elegant of a design.

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 30

An ALU, at Last

Now we’re ready for a big one!l An Arithmetic Logic Unit.

A B

V

7

Sub Bidirectional
: ysddlsm/ e/ Barrel Boolean
Shifter

Bool 4 d

Comp 411 — Spring 2007 2/22/07 L10 — Transistors Logic Math 31

