Quiz 1 Warm Up

• Format
 – Multiple choice
 – 25-30 questions
 – Open Book
 – Open Notes
 – No computers
 – No calculators
Sample Question #1

In a certain state automotive tags are assigned a unique ID composed of eight characters as follows: the first three characters are letters (A-Z), followed by a dash (-), and 4 decimal digits (0-9).

Q1) How many bits of information are in a tag as described above?

(A) 8×8
(B) $\log_2(26^3 \times 10^4)$
(C) $3 \times 5 + 1 + 4 \times 4$
(D) $\log_2\left(\frac{256^8}{26^3 \times 10^4}\right)$
(E) none of the above
Sample Question #2

Q2) If you are told that the numeric part of the tag’s ID (from the first question) is a palindrome (the same number forwards as backwards), how many bits of information are you given?

(A) 0
(B) 2×4
(C) $\log_2(26^3 10^2)$
(D) $\log_2((26^3 10^4)/ (26^3 10^2))$
(E) none of the above
Q3) What hexadecimal number is equivalent to -33 in an 8-bit 2’s complement representation?

(A) 0x21
(B) 0xA1
(C) 0xDE
(D) 0xDF
(E) none of the above
Q4) What is the most negative number representable in a 12-bit 2’s complement binary number?

(A) -1024
(B) -2047
(C) -2048
(D) -4095
(E) -4096
Sample Question #5

There are 3 basic instruction formats in the MIPS instruction set architecture. They are:

<table>
<thead>
<tr>
<th>R-type:</th>
<th>op</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>shamt</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-type:</td>
<td>op</td>
<td>rs</td>
<td>rt</td>
<td></td>
<td>16-bit constant</td>
<td></td>
</tr>
<tr>
<td>J-type:</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td>26-bit constant</td>
<td></td>
</tr>
</tbody>
</table>

Q5) What aspect of the instruction’s machine language encoding distinguishes between these different formats?

(A) The presence or absence of an appropriately sized constant field in the instruction
(B) The number of register fields in the instruction
(C) The value of the opcode field
(D) Either appending an “i” to the end of a normal instruction or beginning the instruction with a “j”
(E) None of the above
Sample Question #6

Q6) Which of the following statements best describes the use of the rt field by the MIPs sw instruction.

(A) The contents of the rt register are added to the signed 16-bit constant and used as a memory address

(B) The contents of the rt register are added to 4 times the signed 16-bit immediate field and used as a memory address

(C) The contents of rt are stored into memory

(D) The contents of the memory location with the address pointed to by rt are stored in memory

(E) The 5-bit value encoded in the rt field is stored in memory
Sample Question #7

Consider the following 5 MIPS instructions:

A: lui $t1,4096
B: la $t0,4096($t1)
C: lw $t0,4096($t1)
D: addi $t0,$t1,4096
E: sw $t0,4096($t0)

Q7) When executed in sequence, at what memory address (in hexadecimal) will the contents of $t0 be stored by the instruction labeled E?

(A) 0x00001000
(B) 0x10001000
(C) 0x10002000
(D) 0x40964096
(E) The address cannot be determined from the instruction sequence alone
Sample Question #8

Consider the following 5 MIPS instructions:

A: lui $t1,4096
B: la $t0,4096($t1)
C: lw $t0,4096($t1)
D: addi $t0,$t1,4096
E: sw $t0,4096($t0)

Q8) Which two instructions perform identical operations?

(A) Instructions labeled A and D
(B) Instructions labeled B and C
(C) Instructions labeled B and D
(D) Instructions labeled B, C, and D
(E) No two instructions are the same
Sample Question #9

Consider the following 5 MIPS instructions:

A: lui $t1,4096
B: la $t0,4096($t1)
C: lw $t0,4096($t1)
D: addi $t0,$t1,4096
E: sw $t0,4096($t0)

Q9) Which maximal set of instructions could be removed from the given sequence and have no effect on the results of the instruction labeled E?

(A) The instructions labeled A and B
(B) The instructions labeled B and C
(C) The instructions labeled B, C, and D
(D) The instructions labeled A, B, C, and D
(E) None can be removed.
Sample Question #10

Consider the following “C” language code fragment:

```c
if (a == 0) {
    a = 1;
} else {
    a = 0;
}
```

Q10) Which of the following MIPS instruction sequences performs the same operation as the given code fragment?

(A) lw $t0,a
 bne $t0,$0,L1
 addi $t0,$0,1
 b L2
 L1: add $t0,$0,$0
 L2: sw $t0,a

(B) lw $t0,a
 beq $t0,$0,L1
 addi $t0,$0,1
 sw $0,a
 b L2
 L1: addi $t0,$0,1
 sw $t0,a
 L2:

(C) lw $t0,a
 sltiu $t0,$t0,1
 sw $t0,a

(D) lw $t0,a
 addi $t1,$0,1
 bne $t0,$0,L1
 beq $t0,$0,L1
 addi $t1,$0,0
 L1: sw $t1,a
 L2:

(E) All of the above