#### Control

Only 12 classes to go!

John Backus dead at 82

Phase-change Flash memory

Today Control

Next-time Quiz review

#### John Backus

3 December 1924 – 17 March 2007



As projectleader with IBM John Backus developed in the early 1950's with his team: Fortran - Formula Translator. The first high level programming language. This language is most widely used in physics and engineering.

### Phase-Change Flash Memory



## Synchronous Systems



On the leading edge of the clock, the input of a latch is transferred to the output and held.

We must be sure the combinational logic has *settled* before the next leading clock edge.

## Asynchronous Systems



No clock!

The data carries a "valid" signal along with it

System goes at greatest possible speed.

Only "computes" when necessary.

Everything we look at will be synchronous

# Fetching Sequential Instructions



How about branch?

# Datapath for R-type Instructions



### Fun with MUXes



Remember the MUX?

This will route 1 of 4 different 1 bit values to the output.

#### **MUX Blocks**



The select signal determines which of the inputs is connected to the output

L15 - Control 9

# Inside there is a 32 way MUX per bit



For EACH bit in the 32 bit register

LOT'S OF CONNECTIONS!

And this is just one port!

## Our Register File has 3 ports



## Implementing Logical Functions

Suppose we want to map M input bits to N output bits

For example, we need to take the OPCODE field from the instruction and determine what OPERATION to send to the ALU.



## We can get 1 bit out with a MUX



#### Or use a ROM



#### Or use a PLA

Programmable Logic Array



Think of the SUM of PRODUCTS form.

The AND Array generates the products of various input bits

The OR Array combines the products into various outputs

### Finite State Machines

- A set of STATES
- A set of INPUTS
- A set of OUTPUTS
- •A function to map the STATE and the INPUT into the next STATE and an OUTPUT

Remember "Shoots and Ladders"?

# Traffic Light Controller



# Implementing a FSM



## Recognizing Numbers

Recognize the regular expression for floating point numbers

Examples:

+123.456e23

.456

1.5e-10

-123

"a" matches itself

"[abc]" matches one of a, b, or c

"[a-z]" matches one of a, b, c, d, ..., x, y, or z

"0\*" matches zero or more 0's ("", "0", "00", "0000")

"Z?" matches zero or 1 Z's

# FSM Diagram



### FSM Table

#### IN: STATE à NEW STATE

'': start à start

'0' | '1' | ... | '9' : start à whole

'+' | '-' : start à sign

'.': start à frac

'0' | '1' | ... | '9' : sign à whole

'.': sign à frac

'0' | '1' | ... | '9' : whole à whole

'.': whole à frac

'': whole à done

'e': whole à exp

'e': frac à exp

'0' | '1' | ... | '9' : frac à frac

'': frac à done

'0' | '1' | ... | '9' : exp à exp

'': exp à done

#### STATE ASSIGNMENTS

start = 0 = 000

sign = 1 = 001

whole = 2 = 010

frac = 3 = 011

exp = 4 = 100

done = 5 = 101

error = 6 = 110

# FSM Implementation



Our PLA has:

- •11 inputs
- •5 outputs

#### FSM Take Home

- With JUST a register and some logic, we can implement complicated sequential functions like recognizing a FP number.
- This is useful in its own right for compilers, input routines, etc.
- The reason we're looking at it here is to see how designers implement the complicated sequences of events required to implement instructions
- Think of the OP-CODE as playing the role of the input character in the recognizer. The character AND the state determine the next state (and action).