Control

Only 12 classes to go!

John Backus dead at 62
Phase-change Flash memory
Today Control

Next-time Quiz review
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John Backus

3 December 1924 — 17 March 2007

As projectleader with IBM John Backus developed in the
early 1950's with his team: Fortran - Formula Translator.
The first high level programming language. This language
is most widely used in physics and engineering.
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Phase-Change Flash Memory
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Synchronous Systems

data Combinational
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On the leading edge of the clock, the input of a latch is
transferred to the output and held.

We must be sure the combinational logic has settled before
the next leading clock edge.
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Asynchronous Systems

data Combinational
Latch . Latch
logic /

valid — I

\ 4

v
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No clock!

The data carries a “valid” signal along with it
System goes at greatest possible speed.
Only “computes” when necessary.

Everything we look at will be synchronous
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Fetching Sequential

Instructions
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Datapath for R-type Instructions

ALU Operation

3
Inst Bits 25-21—“—»| Read Reg. 1 32 N
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Inst Bits 20—16—54* Read Reg. 2 data 1= ]
| 5 | >
Inst Bits 15-11——>—>{ Write Reg. 39
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Fun with MUXes

Select 0 Remember the MUX?

INn 3—=

node

Select 1

Select 0 _‘/'_ Out

N 1—w
This will route 1 of 4
In 0——‘/‘_ different 1 bit values

to the output.
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MUX Blocks

Select
510 Select

[ 1] L3

2 — In —— Out
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The select signal determines which of the inputs is connected
to the output
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Inside there is a 32 way MUX per bit

Read Reg 1

|

Register 0

Register 1

Register 2

Data 1

Register 3 32 to1 MUX R

Register 4

Register ...

LOT'S OF
CONNECTIONS!

Register 30
Register 31 /

And this is just one port!
For EACH bit in the 32 bit register
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Our Register File has 3 ports

This is one reason we have only a
2 Read Ports  small number of registers

/ \\ What's another reason?

5
Inst Bits 25-21——— Redd Reg 1 32
data 1 F>—
Inst Bits 20—16—54* Read Reg. 2
32
iy 2N

47

5
Inst Bits 15-11——>—>{ Write Reg.
data 2
32
7z
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Write Data

v

/ REALLY LOTS OF CONNECTIONS!
1 Write Port

RegWrite
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Implementing Logical Functions

Suppose we want to map M input bits to N output bits

For example, we need to take the OPCODE field from the instruction and
determine what OPERATION to send to the ALU.

OPCODE bits
from instruction
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We can get 1 bit out with a MUX

Put the INPUT HERE

Wire these to HIGH or LOW \
depending on the value you Select
want OUT for that INPUT 2 1 0

Input

For example, 3 input AND has Out

INPUT7 wired HIGH and all the
others wired LOW.

~NOoOooOk~WNREFO
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Or use a ROM

M-bit Address N-bit Result
Read-Only Memory >

\ 4
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Or use a PLA

Programmable Logic Array

M-bit Input Product Terms N-bit Output
AND Array > OR Array ”

\ 4

Think of the SUM of PRODUCTS form.
The AND Array generates the products of various input bits

The OR Array combines the products into various outputs
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Finite State Machines

*A set of STATES
*A set of INPUTS
*A set of OUTPUTS

A function to map the STATE and the INPUT into the next
STATE and an OUTPUT

Remember “Shoots and Ladders”?
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Traffic Light Controller
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Implementing a FSM

Function

» State

Clock
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Recognizing Numbers

Recognize the regular expression for floating point numbers

[ \t]* [-+]2[0-9]*(. [0-9]%)? (e[-+]?[0—-9]+)?

Examples: “a” matches itself

+123.456€25 “[abc]” matches one of a, b, or c

456 “[a-z]” matches one of a, b, c, d, ..., X, y, Or Z
1.5e-10 “0*" matches zero or more 0’s (*”, “0”, “00”, “0000")

-123 “Z?” matches zero or 1 Z's
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FSM Table

‘e’ : frac

IN: STATE NEW STATE

‘7 start  start

‘0|'1|..|9:start whole
‘+' |- start  sign

‘.start  frac

‘011]...]1'9 :sign whole
‘" osign  frac

‘011 |...|'9:whole whole

‘" :whole frac
“’whole done

‘e’ :whole exp
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‘' frac
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L exp

| ‘9’ : frac
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| ‘9" : exp

done
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start
Sign
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frac
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done
error
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FSM Implementation

. 8
char in £

state

\\w

ROM or PLA

\\w

Our PLA has:

11 inputs

5 outputs
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FSM Take Home

With JUST a register and some logic, we can implement
complicated sequential functions like recognizing a FP
humber.

This is useful in its own right for compilers, input routines,
etc.

The reason we’re looking at it here is to see how designers
implement the complicated sequences of events required
to implement instructions

Think of the OP-CODE as playing the role of the input
character in the recognizer. The character AND the state
determine the next state (and action).
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