Control

Only 12 classes to go!

John Backus dead at 62
Phase-change Flash memory
Today Control

Next-time Quiz review

Comp 411 - Spring 2007 3/20/07 L15 - Control 1

John Backus

3 December 1924 — 17 March 2007

As projectleader with IBM John Backus developed in the
early 1950's with his team: Fortran - Formula Translator.
The first high level programming language. This language
is most widely used in physics and engineering.

Comp 411 - Spring 2007 3/20/07 L15 - Control 2

Phase-Change Flash Memory

Phase-change
"bridge"

Phase-change
material
Drain

via

Word source
line

Comp 411 — Spring 2007 3120107

L15 — Control 3

Synchronous Systems

data Combinational

logic

\ 4

Latch

\ 4

v

Latch

Clock edge

..............................

......
...............................

i leading
i ..edge...

On the leading edge of the clock, the input of a latch is
transferred to the output and held.

We must be sure the combinational logic has settled before
the next leading clock edge.

Comp 411 - Spring 2007 3/20/07 L15 - Control 4

Asynchronous Systems

data Combinational
Latch . Latch
logic /

valid — I

\ 4

v

\ 4 \ 4

No clock!

The data carries a “valid” signal along with it
System goes at greatest possible speed.
Only “computes” when necessary.

Everything we look at will be synchronous

Comp 411 - Spring 2007 3/20/07 L15 - Control 5

Fetching Sequential

Instructions

Comp 411 - Spring 2007

\ 4

o

\ 4

S
]

A 4

Read Address

Instruction
Memory

Instruction

v

3120107

How about branch?

L15 — Control ©

Datapath for R-type Instructions

ALU Operation

3
Inst Bits 25-21—“—»| Read Reg. 1 32 N
yd N
Inst Bits 20—16—54* Read Reg. 2 data 1=]
| 5 | >
Inst Bits 15-11——>—>{ Write Reg. 39
data 2 74—
32

~#—> Write Data

RegWrite

Comp 411 - Spring 2007 3/20/07 L15 - Control 7

Fun with MUXes

Select 0 Remember the MUX?

INn 3—=

node

Select 1

Select 0 _‘/'_ Out

N 1—w
This will route 1 of 4
In 0——‘/‘_ different 1 bit values

to the output.

Comp 411 - Spring 2007 3/20/07 L15 - Control &

MUX Blocks

Select
510 Select

[1] L3

2 — In —— Out
Out

Input
w
|

The select signal determines which of the inputs is connected
to the output

Comp 411 - Spring 2007 3/20/07 L15 - Control 9

Inside there is a 32 way MUX per bit

Read Reg 1

|

Register 0

Register 1

Register 2

Data 1

Register 3 32 to1 MUX R

Register 4

Register ...

LOT'S OF
CONNECTIONS!

Register 30
Register 31 /

And this is just one port!
For EACH bit in the 32 bit register

Comp 411 - Spring 2007 3/20/07 L15 - Control 10

Our Register File has 3 ports

This is one reason we have only a
2 Read Ports small number of registers

/ \\ What's another reason?

5
Inst Bits 25-21——— Redd Reg 1 32
data 1 F>—
Inst Bits 20—16—54* Read Reg. 2
32
iy 2N

47

5
Inst Bits 15-11——>—>{ Write Reg.
data 2
32
7z

7

Write Data

v

/ REALLY LOTS OF CONNECTIONS!
1 Write Port

RegWrite

Comp 411 - Spring 2007 3/20/07 L15 - Control

1"

Implementing Logical Functions

Suppose we want to map M input bits to N output bits

For example, we need to take the OPCODE field from the instruction and
determine what OPERATION to send to the ALU.

OPCODE bits
from instruction

Comp 411 - Spring 2007

* Map to ALU op ALU Operation
3

32 ‘\
A

32

y4 >

A

3120107 L15 — Control 12

We can get 1 bit out with a MUX

Put the INPUT HERE

Wire these to HIGH or LOW \
depending on the value you Select
want OUT for that INPUT 2 1 0

Input

For example, 3 input AND has Out

INPUT7 wired HIGH and all the
others wired LOW.

~NOoOooOk~WNREFO

Comp 411 - Spring 2007 3/20/07 L15 - Control 13

Or use a ROM

M-bit Address N-bit Result
Read-Only Memory >

\ 4

Comp 411 - Spring 2007 3/20/07 L15 - Control 14

Or use a PLA

Programmable Logic Array

M-bit Input Product Terms N-bit Output
AND Array > OR Array ”

\ 4

Think of the SUM of PRODUCTS form.
The AND Array generates the products of various input bits

The OR Array combines the products into various outputs

Comp 411 - Spring 2007 3/20/07 L15 - Control 15

Finite State Machines

*A set of STATES
*A set of INPUTS
*A set of OUTPUTS

A function to map the STATE and the INPUT into the next
STATE and an OUTPUT

Remember “Shoots and Ladders”?

Comp 411 - Spring 2007 3/20/07 L15 - Control 16

Traffic Light Controller

Comp 411 - Spring 2007 3/20/07 L15 - Control 17

Implementing a FSM

Function

» State

Clock

Comp 411 - Spring 2007 3/20/07 L15 - Control 16

Recognizing Numbers

Recognize the regular expression for floating point numbers

[\t]* [-+]2[0-9]*(. [0-9]%)? (e[-+]?[0—-9]+)?

Examples: “a” matches itself

+123.456€25 “[abc]” matches one of a, b, or c

456 “[a-z]” matches one of a, b, c, d, ..., X, y, Or Z
1.5e-10 “0*" matches zero or more 0’s (*”, “0”, “00”, “0000")

-123 “Z?” matches zero or 1 Z's

Comp 411 - Spring 2007 3/20/07 L15 - Control 19

Comp 411 - Spring 2007 3/20/07 L15 - Control 20

FSM Table

‘e’ : frac

IN: STATE NEW STATE

‘7 start start

‘0|'1|..|9:start whole
‘+' |- start sign

‘.start frac

‘011]...]1'9 :sign whole
‘" osign frac

‘011 |...|'9:whole whole

‘" :whole frac
“’whole done

‘e’ :whole exp

Comp 411 - Spring 2007

01 ...

‘' frac

01 ...

L exp

| ‘9’ : frac

exp

done

| ‘9" : exp

done

frac

exp

STATE ASSIGNMENTS

start
Sign
whol e
frac
exp
done
error

3120107

0

O O A W DN B

000
001
010
011
100
101
110

L15 — Control 21

FSM Implementation

. 8
char in £

state

\\w

ROM or PLA

\\w

Our PLA has:

11 inputs

5 outputs

Comp 411 - Spring 2007

3120107

»elror

» 0k

L15 — Control 22

FSM Take Home

With JUST a register and some logic, we can implement
complicated sequential functions like recognizing a FP
humber.

This is useful in its own right for compilers, input routines,
etc.

The reason we’re looking at it here is to see how designers
implement the complicated sequences of events required
to implement instructions

Think of the OP-CODE as playing the role of the input
character in the recognizer. The character AND the state
determine the next state (and action).

Comp 411 - Spring 2007 3/20/07 L15 - Control 23

