CPU Pipelining Issues

What have you been This pipe stuff makes
beating your head /my head hurt!

against? \ @

Finishing up Chapter 6
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Pipelining

Improve performance by increasing instruction throughput
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| deal speedup is number of stagesin the pipeline. Do we
achieve this?
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Pipelining

What makes it easy
all instructions are the same length
just a few instruction formats

memory operands appear only in loads and stores

What makes it hard?

structural hazards: suppose we had only one memory
control hazards: need to worry about branch instructions

data hazards: an instruction depends oh a previou5 instruction

Individual Instructions still take the same number of cycles

But we've improved the through-put by increasing the
humber of simultaneously executing instructions
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Structural Hazards
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Data Hazards

Problem with starting next instruction before first is

finished

dependencies that “go backward in time” are data hazards
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Software Solution

Have compiler guarantee no hazards

Where do we insert the “nops” 2

sub $2, $1, $3

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Problem: this really slows us down!
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Forwarding

Use temporary results, don’t wait for them to be written register file
forwarding to handle read/write to same register ALU forwarding

Time (in clock cycles) >
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Can't always forward

Load word can still cause a hazard:

an instruction tries to read a register following a load instruction that writes to
the same register.

Time (in clock cycles) N
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Thus, we need a hazard detection unit to “stall” the instruction
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Stalling

We can stall the pipeline by keeping an instruction in the
same stage
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Branch Hazards

When we decide to branch, other instructions are in the

[ []
pipeline!
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We are predicting “branch not taken”
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-
2 @~ [

52 add $14, $2, $2

Comp 411 - Spring 2007 04/05/07

L18 - Pipeline Issues 10



Improving Performance

Try to avoid stalls! E.g., reorder these instructions:

lw $t0, O(S$t1)
lw $t2, 4($t1)
sw $t2, 0($t1l)
sw $t0, 4($t1)

Add a “branch delay slot”

the next instruction after a branch is always executed

rely on compiler to “fill” the slot with something useful

5uperscalar: start more than one instruction in the same
cycle
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Dynamic Scheduling

The hardware performs the “scheduling”
hardware tries to find instructions to execute
out of order execution is poesible

speculative execution and dynamic branch prediction

All modern processors are very complicated
Pentium 4: 20 stage pipeline, 6 simultaneous instructions
PowerPC and Pentium: branch history table
Compiler technology important
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Pipeline Summary (I)

e Started with unpipelined implementation
— direct execute, 1 cycle/instruction

— it had a long cycle time: mem + regs + alu + mem + wb

* We ended up with a 5-stage pipelined implementation
— increase throughput (3x?7?)
— delayed branch decision (1 cycle)
Choose to execute instruction after branch
— delayed register writeback (3 cycles)
Add bypass paths (6 x 2 = 12) to forward correct value
— memory data available only in WB stage

Introduce NOPs at IRAY, to stall IF and RF stages
until LD result was ready
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Pipeline Summary (II)

Fallacy #1: Pipelining is easy
Smart people get it wrong all of the time!
Fallacy #2: Pipelining is independent of ISA

Many ISA decisions impact how easy/costly it is to
implement pipelining (i.e. branch semantics, addressing
modes).

Fallacy #3: Increasing Pipeline stages improves
performance

Diminishing returns. Increasing complexity.
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RISC = Simplicity???

“The P.T. Barnum World’s Tallest Dwarf Competition”

World's Most Complex RISC?

VLIS,
Super-Scalars

Addressing
features, eg
index registers

Pipelines, Bypasses,
Annulment, ..., ...

Primit ive Machines
wit h direct
implement at ions

Generalizat ion of
registers and
operand coding

Complex inst ructions,
addressing modes
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Chapter 7 Preview

Memory Hierarchy
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Memory Hierarchy

Memory devices come in several different flavors

SRAM — Static Ram
fast (1 to 10ns)
expensive (>10 times DRAM)
small capacity (< ¥4 DRAM)
DRAM — Dynamic RAM
16 times slower than SRAM (50ns — 100ns)
Access time varies with address
Affordable ($160 / gigabyte)
1 Gig considered big
DISK
Slow! (10ms access time)
Cheap! (< $1/ gigabyte)
Big! (1Tbyte is no problem)
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Memory Hierarchy

Users want large and fast memories!

Try to give it to them

build a memory hierarchy
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Locality

A principle that makes having a memory hierarchy a good
idea

If an item is referenced,

temporal locality: it will tend to be referenced again soon

spatial locality: nearby items will tend to be referenced
soon.

Why does code have locality?
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