CPU Pipelining Issues

What have you been This pipe stuff makes
beating your head /my head hurt!

against? \ @

Finishing up Chapter 6

Comp 411 - Spring 2007 04/05/07 L18 — Pipeline Issues 1

Pipelining

Improve performance by increasing instruction throughput

Program0
execution(]
order(]

(in instructions)

lw $1, 100($0)

Time

Iw $2, 200($0)

L lw $3, 300($0)

Program(J
execution(]
order(]

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

v

2 4 6 8 10 12 14 16 18
T T T T T T T T T >
Instruction(l Datall
fetch Reg ALU access Reg
< > Instruction] Datal
8 ns fetch Reg ALU access Reg
< 3 >l Instruction
ns fetch
4___ L
8 ns
2 4 6 8 10 12 14
T T T T T T T >
Instruction || Datall
fetch Reg ALU access Reg
<+——>|Instruction||! Datall
2ns fetch Reg ALU access Reg
<+—Pnstruction ! Data’]
2ns fetch Reg ALU access Reg

—— PP ¢—— P ¢—>

2 ns 2 ns

2 ns

2 ns

2ns

| deal speedup is number of stagesin the pipeline. Do we
achieve this?

Comp 411 - Spring 2007

04/05/07

L18 - Pipeline Issues 2

Pipelining

What makes it easy
all instructions are the same length
just a few instruction formats

memory operands appear only in loads and stores

What makes it hard?

structural hazards: suppose we had only one memory
control hazards: need to worry about branch instructions

data hazards: an instruction depends oh a previou5 instruction

Individual Instructions still take the same number of cycles

But we've improved the through-put by increasing the
humber of simultaneously executing instructions

Comp 411 - Spring 2007 04/05/07 L18 — Pipeline Issues 3

Structural Hazards

Inst | Reg ALU Data Reg
Fetch | Read Access | Write
Inst Reg ALU Data Reg
Fetch |Read Access | Write
Inst Reg ALU Data Reg
Fetch |Read Access | Write
Inst Reg ALU Data Reg
Fetch | Read Access | Write

Comp 411 - Spring 2007

04/05/07

L18 — Pipeline Issues 4

Data Hazards

Problem with starting next instruction before first is

finished

dependencies that “go backward in time” are data hazards

Time (in clock cycles)

CCo
-20

Reg

Valueof 7 CC1 CC2 CC3 CC4 CC5 CC6 CcC7 CC38
register $2: 10 10 10 10 10/-20 -20 -20 -20
Program]
execution(]
order(]
(in instructions)]]]
sub $2,$1,$3 | IM Reg[| E |— -[DM
and $12, $2, $5 IM +— J:i: H %— —|:DM ‘< HReg
or $13, $6, IM Li: B % —|:DM— — Reg
add $14, M < %— —|: DM | —{Reg
sw $15, 100 M — _E[H %ﬁj B
Comp 411 - Spring 2007 04/05/07

L18 — Pipeline Issues 5

Software Solution

Have compiler guarantee no hazards

Where do we insert the “nops” 2

sub $2, $1, $3

and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Problem: this really slows us down!

Comp 411 - Spring 2007 04/05/07 L18 - Pipeline Issues 6

Forwarding

Use temporary results, don’t wait for them to be written register file
forwarding to handle read/write to same register ALU forwarding

Time (in clock cycles) >

CC1 CC2 CC3 CC4 CC5 CC6 CCc7 ccs8 CC9

Value of register $2 : 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EXIMEM : X X X -20 X X X X X
Value of MEM/WB : X X X X -20 X X X X

Program(]
execution order(]

(in instructions)] M] .
sub $2,$1,$3 | IM ~{ }—EReg: E I— -|: DM [

and $12, $2, $5 IM — HqReg[| %— -\—_DM — Reg

or $13, $6, M — H4 [-[DM | HReg

add $14, $2, M H H B— —[DM— — Reg
sw $15, 100 M | -E[= % ﬂT_H—Reg

A

Comp 411 - Spring 2007 04/05/07 L18 — Pipeline Issues 7

Can't always forward

Load word can still cause a hazard:

an instruction tries to read a register following a load instruction that writes to
the same register.

Time (in clock cycles) N

Program(J CC1 CC2 CcCc3 CC4 CC5 CC6 CC7 ccs8 CC9
execution(]
order(]

(in instructions)]]] .
Iw $2, 20($1) | IM Reg[| -[DM |
and $4, $2, $5 M = _AB-—[DM— :l
or $8, $2, $6 IM =P AB- —[DM {Reg
add $9, $4, IM o] 497 —[DM HReg
slt $1, $6, $7 M FReg[] %— ﬂT_H—Reg

Thus, we need a hazard detection unit to “stall” the instruction

Comp 411 - Spring 2007 04/05/07 L18 - Pipeline Issues &

Stalling

We can stall the pipeline by keeping an instruction in the
same stage

Comp 411 - Spring 2007

Program(] Time (in clock cycles)
execution’] CC1 CC2
order(]
(in instructions)
Iw $2, 20($1) IM ~|:|.E Reg
and $4, $2, $5 M —
or $8, $2, $6
add $9, $4,
slt $1, $6, $7

CC3 CC4

/)
Q_ﬁf‘;&
Iafst

L bubble —->
Qg

04/05/07

CC6 CcC7

M

cCcs8 CC9
—{ Reg
—|: DM [H — Reg

CCc 10

H

Reg

L18 - Pipeline Issues 9

Branch Hazards

When we decide to branch, other instructions are in the

[[]
pipeline!
Program(] Time (in clock cycles)
gfgg:‘mtioni cc1 cc2 cc3 cc4 ccs ccé cc7 ccs cco

(in instructions)

40 beq $1, $3, 7 I '@.I-’ DM
wants1z 2.5

48 or $13, $6, $2

0o

[

i
}@
N, J

We are predicting “branch not taken”
heed to add hardware for flushing instructions if we are wrong

-
2 @~ [

52 add $14, $2, $2

Comp 411 - Spring 2007 04/05/07

L18 - Pipeline Issues 10

Improving Performance

Try to avoid stalls! E.g., reorder these instructions:

lw $t0, O(S$t1)
lw $t2, 4($t1)
sw $t2, 0($t1l)
sw $t0, 4($t1)

Add a “branch delay slot”

the next instruction after a branch is always executed

rely on compiler to “fill” the slot with something useful

5uperscalar: start more than one instruction in the same
cycle

Comp 411 - Spring 2007 04/05/07 L18 — Pipeline Issues 11

Dynamic Scheduling

The hardware performs the “scheduling”
hardware tries to find instructions to execute
out of order execution is poesible

speculative execution and dynamic branch prediction

All modern processors are very complicated
Pentium 4: 20 stage pipeline, 6 simultaneous instructions
PowerPC and Pentium: branch history table
Compiler technology important

Comp 411 - Spring 2007 04/05/07

L18 — Pipeline Issues 12

Pipeline Summary (I)

e Started with unpipelined implementation
— direct execute, 1 cycle/instruction

— it had a long cycle time: mem + regs + alu + mem + wb

* We ended up with a 5-stage pipelined implementation
— increase throughput (3x?7?)
— delayed branch decision (1 cycle)
Choose to execute instruction after branch
— delayed register writeback (3 cycles)
Add bypass paths (6 x 2 = 12) to forward correct value
— memory data available only in WB stage

Introduce NOPs at IRAY, to stall IF and RF stages
until LD result was ready

Comp 411 - Spring 2007 04/05/07

L18 — Pipeline Issues 13

Pipeline Summary (II)

Fallacy #1: Pipelining is easy
Smart people get it wrong all of the time!
Fallacy #2: Pipelining is independent of ISA

Many ISA decisions impact how easy/costly it is to
implement pipelining (i.e. branch semantics, addressing
modes).

Fallacy #3: Increasing Pipeline stages improves
performance

Diminishing returns. Increasing complexity.

Comp 411 - Spring 2007 04/05/07 L18 - Pipeline Issues 14

Comp 411 - Spring 2007

RISC = Simplicity???

“The P.T. Barnum World’s Tallest Dwarf Competition”

World's Most Complex RISC?

VLIS,
Super-Scalars

Addressing
features, eg
index registers

Pipelines, Bypasses,
Annulment, ..., ...

Primit ive Machines
wit h direct
implement at ions

Generalizat ion of
registers and
operand coding

Complex inst ructions,
addressing modes

04/05/07

L18 - Pipeline Issues 15

Chapter 7 Preview

Memory Hierarchy

Comp 411 - Spring 2007 04/05/07 L18 — Pipeline Issues 16

Memory Hierarchy

Memory devices come in several different flavors

SRAM — Static Ram
fast (1 to 10ns)
expensive (>10 times DRAM)
small capacity (< ¥4 DRAM)
DRAM — Dynamic RAM
16 times slower than SRAM (50ns — 100ns)
Access time varies with address
Affordable ($160 / gigabyte)
1 Gig considered big
DISK
Slow! (10ms access time)
Cheap! (< $1/ gigabyte)
Big! (1Tbyte is no problem)

Comp 411 - Spring 2007 04/05/07

L18 — Pipeline Issues 17

Memory Hierarchy

Users want large and fast memories!

Try to give it to them

build a memory hierarchy

CPU

|

Level 1 Increasing distance O

from the CPU in [J

access time
Levels in thel] Level 2
memory hierarchy/ \
/ Leveln \
v

Size of the memory at each level

Comp 411 - Spring 2007 04/05/07 L18 — Pipeline Issues 18

Locality

A principle that makes having a memory hierarchy a good
idea

If an item is referenced,

temporal locality: it will tend to be referenced again soon

spatial locality: nearby items will tend to be referenced
soon.

Why does code have locality?

Comp 411 - Spring 2007 04/05/07 L18 - Pipeline Issues 19

