
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 411 Computer Organization
Spring 2010

Problem Set #2
Issued Wednesday 27 Jan 10; Due Wednesday, 3 Feb 10

Homework Information: Some of the problems are probably too long to be done the night
before the due date, so plan accordingly. Late homework will not be accepted. Feel free to get
help from others, but the work you hand in should be your own.

Problem 1. “Some Assembly Required” (20 points)

The conversion of a mnemonic instruction to its binary representation is called assembly. This
tedious process is generally delegated to a computer program for a variety of reasons. The first is
that it alleviates the need to keep track of all the various bit encodings for each type of
instruction. A second reason is that frequently the precise encoding of an instruction cannot be
determined in a single pass. This is particularly true when referencing labels. In the following
exercises, you will get a taste of what the task of translating from assembly to machine language
is like.

Give binary and hexadecimal encodings for the following instructions:

(A) sll $t1, $t2, 4
(B) addi $t1, $t1, -16
(C) add $3, $2, $1
(D) and $t2, $a0, $t0
(E) ori $t1, $2, 1
(F) sra $a0, $a0, 2
(G) lui $t1, 0xabef
(H) loop: bne $t1, $0, loop

Problem 2. “Diss Assembly” (20 points)

The inverse of assembly is disassembly, which involves translating an encoded binary instruction
into its mnemonic representation. The process involves breaking an instruction into its
constituent fields and decoding each instruction part.

For each of the following 32-bit numbers, given in hexadecimal, decode the corresponding MIPS
instruction mnemonics, or otherwise indicate that it is an invalid instruction.

(A) 0x11400003
(B) 0x28850010
(C) 0x308a0001
(D) 0x3c03c0de
(E) 0x2002fff0
(F) 0x00004820
(G) 0x8c440010

Comp 411 – Spring 2010 -Page 1 of 3- Problem Set #2

Problem 3. “Faking it” (30 points)

MIPS assembly language provides opcode mnemonics for instructions that are not part of the
instruction set architecture. For the most part, these pseudoinstructions can be generated using a
sequence of one or more “true” MIPS instructions.

Find a “true-instruction” equivalent for each of the following pseudo-instructions (some are
official MIPS pseudoinstructions, some are modified, and others are made up). Try to implement
each of these using as few real MIPS instructions as possible (one in most cases).

(A) move rB, rA
Reg[rA] ← Reg[rB]
Move register rB to rA

(B) not rA, rB
Reg[rA] ← ~Reg[rB]
Put the bitwise complement of register rB into register rA

(C) neg rA, rB
Reg[rA] ← -Reg[rB]
Put the negative (2’s complement) of register rB into register rA

(D) pow2 rA, rB
 Reg[rA] ← 2rB

Load register rA with 2 raised to the power specified by rB

(E) inc rA
 Reg[rA] ← Reg[rA] + 1
 Increment (add 1 to) rA and place result in rA

(F) sign rA,rB
if (Reg[rB] < 0)

Reg[rA] ← -1
 else if (Reg[rB] > 0)

Reg[rA] ← 1
 else

Reg[rA] ← 0
 Set rA to -1 if rB is negative, to 1 if rB is positive, otherwise set to 0

Comp 411 – Spring 2010 -Page 2 of 3- Problem Set #2

Problem 4. “Loading up at the Store” (30 points)

The MIPS ISA provides access to memory exclusively through load (lw) and store (sw)
instructions. Both instructions are encoded using the I-format, thus providing three operands, two
registers and a 16-bit sign-extended constant. The memory address is computed by adding the
contents of the register specified in the rs register field to the sign-extended 16-bit constant.
Then either the contents of the specified memory location are loaded in the register specified in
rt instruction field (lw), or that register’s contents are stored in the indicated memory location
(sw).

(A) It is possible to “directly” address a limited range of 32-bit memory locations by encoding
the rs field as $0. How many memory locations can be addressed this way? Is this range of
memory locations contiguous?

The intermediate result implied when computing a memory location is often called the
instruction’s “effective address”. In the MIPS ISA the effective address is computed as

Reg[rs] + immsign_extend

(B) When addressing words in memory what restrictions, if any, must be placed on the result of
the effective address calculations?

(C) MIPS assemblers often provide a pseudoinstruction for loading an effective address into a
register called “la” for load address. The syntax of this pseudoinstruction matches the lw
instruction, and an example is shown below:

la $t0, 100($t1)

What actual instruction or instruction sequence is used to implement this pseudoinstruction?

(D) MIPS does not provide any instruction for specifying a memory address with a variable
offset from rs (i.e., allows only an immediate constant to be specified as the offset). Such a
construct, if available, would be useful for implementing array accesses. Give a multiple-
instruction sequence to accomplish this type of memory access using available MIPS
instructions. Assume the array’s base address (i.e., the location of its 0th member) is in register
$t0, and the index is located in $t1. Comment on any restrictions, or additional processing that
must be performed, on the index before the lw.

(E) In what way are store instructions, like sw, unique among the MIPS ISA in their use of the rt
register field?

Comp 411 – Spring 2010 -Page 3 of 3- Problem Set #2

	Problem 1. “Some Assembly Required” (20 points)
	Problem 2. “Diss Assembly” (20 points)
	(E) 0x2002fff0
	(F) 0x00004820
	Problem 3. “Faking it” (30 points)

