
1

JUST-IN-TIME PIXELS

Mark Mine and Gary Bishop

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

Abstract

This paper describes Just-In-Time Pixels, a
technique for generating computer graphic images
which are consistent with the sequential nature of
common display devices. Motivation for Just-In-
Time Pixels is given in terms of an analysis of the
sampling errors which will occur if the temporal
characteristics of the raster scanned display are
ignored. Included in the paper is a discussion of
Just-In-Time Pixels implementation issues. Also
included is a discussion of approximations which
allow a range of tradeoffs between sampling
accuracy and computational cost. The application
of Just-In-Time Pixels to real-time computer
graphics in a see-through head-mounted display is
also discussed.

Keywords: Animation, temporal sampling, head
mounted displays

1. Introduction

The sequential nature of the raster scanned
display has been largely ignored in the production
of computer animated sequences. Individual frames
(or at best fields) are computed as if all the lines in
an image are presented to the observer
simultaneously. Though this is true in animation
displayed from movie film, it is inconsistent for
conventional CRT based displays which presents
the individual pixels of an image sequentially over a
period of almost 17 milliseconds. In a typical CRT
device, the time of display of each pixel is different
and is determined by its X and Y coordinate within
the image. Though the period between successive
scans is short enough to produce the perception of a
continuously illuminated display without flicker,
the electron beam in fact only illuminates a tiny
region of the display at any one time, and this
region stays illuminated only for a fraction of a
millisecond.

The presentation of an image that was
computed as a point sample in time on a display
device that sequentially presents the image pixel by
pixel represents an incorrect sampling of the
computer generated world. Since the position and
orientation of the camera and the position of the

objects in the world do not necessarily remain fixed
during the period of time required for image scanout,
the generated pixel values are inconsistent with the
state of the world at the time of their display. This
incorrect sampling results in perceived distortion of
objects in a scene moving relative to the camera.
This distortion can easily be seen in a sequence
depicting a vertical line moving across the screen.
The line will appear to tilt in the direction of
motion because the pixels on scanlines further down
the screen do not properly represent the position of
the line at the time at which they are displayed.

The goal of Just-In-Time Pixels (JITP) is the
generation of pixels that are consistent with the
state of the world at the time of their display. This
state of the world includes both the position and
orientation of the virtual camera and the position of
all the objects in the scene. By using the computed
trajectory and velocity of the camera and objects,
each pixel is rendered to depict the relative
positions of the camera and objects at the time at
which the individual pixel will be displayed.

The intended application for Just-in-Time-
Pixels, at the University of North Carolina in
Chapel Hill (UNC), is in maintaining registration
between the virtual and the real world in a see-
through head-mounted-display system. It is our
goal to produce a display system that allows the real
world to be augmented with computer generated
objects that remain registered in 3-space as the user
moves through the workspace. An example of such a
system is the ultrasound visualization system
described by Bajura, Fuchs, and Ohbuchi [Bajura
92]. Failure to account for the distortion produced
by the image scanout delay may result in significant
misregistration during user head motions.

2. Just-In-Time Pixels

As stated in the introduction, when using a
raster display device, the pixels that make up an
image are not displayed all at once but are spread out
over time. In a conventional graphics system
generating NTSC video, for example, the pixels at
the bottom of the screen are displayed almost 17 ms
after those at the top. Matters are further aggravated
when using NTSC video by the fact that not all 525
lines of an NTSC image are displayed in one raster

2

scan but are in fact interlaced across two fields. In
the first field only the odd lines in an image are
displayed, and in the second field only the even.
Thus, unless animation is performed on fields (i.e.
generating a separate image for each field), the last
pixel in an image is displayed more than 33 ms after
the first. The problem with this sequential readout
of image data, is that it is not reflected in the
manner in which the image is computed.

Typically, in conventional computer graphics
animation, only a single viewing transform is used
in generating the image data for an entire frame.
Each frame therefore, represents a point sample in
time which is inconsistent with the way in which it
is displayed. As a result, as shown in figure 1, the
resulting image does not truly reflect the position of
objects (relative to the view point of the camera) at
the time of display of each pixel.

CAMERA
ROTATION

OBJECT

SCANLINE X SCANLINE Y

PERCEIVED
OBJECT

VIEWING
FRUSTUM
TIME Tx

VIEWING
FRUSTUM
TIME Ty

IMAGE
SCANOUT
AT TIME Tx

IMAGE
SCANOUT
AT TIME Ty

KEY:
 Tx - Time of display of scanline x
 Ty - Time of display of scanline y

figure 1: Image generation in conventional
computer graphics animation

A quick “back of the envelope” calculation can
demonstrate the magnitude of the errors that result if
this display system delay is ignored. Assuming, for
example, a camera rotation of 200 degrees/second (a
reasonable value when compared with peak
velocities of 370 degrees/second during typical head
motion - see [List 83]) we find:

Assume:
1) 200 degrees/sec camera rotation
2) camera generating a 60 degree Field of

View (FOV) image
3) NTSC video

- 60 fields/sec NTSC video
- ~600 pixels/FOV horizontal

resolution

We obtain:

200
degrees

sec
× 1

60

sec

fields
= 3.3

degrees

field
 camera rotation

Thus in a 60 degree FOV image when using
NTSC video:

3.3 degrees × 1

60

FOV

degrees
× 600

pixels

FOV
= 33 pixels error

Thus with camera rotation of approximately
200 degrees/second, registration errors of more than
30 pixels (for NTSC video) can occur in one field
time. The term registration is being used here to
describe the correspondence between the displayed
image and the placement of objects in the computer
generated world.

Note that even though the above discussion
concentrates on camera rotation, the argument is
valid for any relative motion between the camera
and virtual objects. Thus, even if the camera's view
point is unchanging, objects moving relative to the
camera will exhibit the same registration errors as
above. The amount of error is dependent upon the
velocity of the object relative to the camera’s view
direction. If object motion is combined with
rotation the resulting errors are correspondingly
worse.

The ideal way to generate an image, therefore,
would be to recalculate for each pixel the position
and orientation of the camera and the position and
orientation of the scene’s objects, based upon the
time of display of that pixel. The resulting color
and intensity generated for the pixel will be
consistent with the pixel’s time of display. Though
objects moving relative to the camera would appear
distorted when the frame is shown statically, the
distorted JITP objects will actually appear
undistorted when viewed on the raster display. As
shown in figure 2, each pixel in an ideal Just-In-
Time Pixel renderer represents a sample of the
virtual world that is consistent with the time of the
pixel’s display.

In an ideal JITP renderer, therefore, both the
viewing matrix and object positions are recomputed
for each pixel. Acceptable approximations to Just-
In-Time Pixels can be obtained, however, with
considerably less computation. Examples include
the recomputation of world state only once per
scanline and the maintenance of dual display lists.

3

These methods, and an analysis of the errors they
introduce, are discussed below.

KEY:
 Tx - Time of display of scanline x
 Ty - Time of display of scanline y

CAMERA
ROTATION

OBJECT

PERCEIVED
OBJECT

VIEWING
FRUSTUM
TIME Tx

VIEWING
FRUSTUM
TIME Ty

IMAGE
SCANOUT
AT TIME Tx

IMAGE
SCANOUT
AT TIME Ty

SCANLINE X SCANLINE Y

figure 2: Image generation using Just-In-Time
Pixels

3. Just-In-Time Pixels Approximations

3.1 Scanline Approximations

Since the time to display a single scanline is
small (approximately 65 microseconds for NTSC
video) a single viewing transform can be used to
compute the pixel data for an entire scanline.
Though this represents only an approximation of a
true Just-In-Time Pixels renderer (one viewing
transform per pixel) it is a significant improvement
over the single viewing transform per image used in
most conventional graphics systems. This can be
shown by performing more “back of the envelope”
calculations similar to the ones in section 2.0:

200
degrees

sec
× 1

60

sec

fields
× 1

262.5

field

scanlines

= 0.013
degrees

scanline
 camera rotation

Thus in a 60 degree FOV image when using
NTSC video:

0.013 degrees × 1

60

FOV

degrees
× 600

pixels

FOV

= 0.13 pixels error

Thus less than a pixel error for NTSC video
resolutions.

3.2 Dual Display List Approximation

Another potential simplification reduces the
number of transformations required per image while
still taking into account the raster scan used in the
display of the image. Instead of using a separate
viewing transform for each scanline, two display
lists are maintained: one representing the position
of the objects at the start of display of each field and
the second representing the position of the objects
at the end of display of that field 16.67 ms later
(less the vertical retrace interval). For each field,
the data in the two display lists is transformed based
upon the predicted view point of the camera at the
two times (start of field and end of field). The data
for the intermediate scanlines is then generated by
interpolating the position of object verticies
between the two positions. Thus instead of
transforming all the objects for every scanline, each
object would be transformed only twice. The
resulting scanlines, however, would represent an
approximation to Just-In-Time pixels.

For example, if we define:

T0 the time of display of the first scanline in
an image

T1 the time of display of the last scanline in
an image

P0 position of vertex P at time T0
P1 position of vertex P at time T1

then we can compute the data for some scanline x:

tx time of display of scanline x
P(tx) Position of vertex P at time tx :

T0 ≤ tx ≤ T1
where

P tx()=P1 tx−T0() T1−T0()
 +P0 1− tx−T0() T1−T0()()

4. Just-In-Time Pixels and Real-Time
Computer Graphics

4.1 Application of Just-In-Time Pixels in
Real-time Computer Graphics

One of the proposed areas of application of the
Just-In-Time-Pixels paradigm at the University of
North Carolina, is in the generation of images for
see-through head-mounted displays (HMDs). Unlike
a conventional HMD, wherein the user is totally

4

immersed in a computer generated world, a see-
through head-mounted display serves to augment the
real world by overlaying computer graphic images
on top of the real world. Obstetricians, for
example, could view ultrasound data overlaid on top
of a patients body, “seeing” the ultrasound image of
the baby and its position relative to the mother
[Bajura 92]. Similarly, architects could envision
building modifications in place, getting a better
understanding of the interaction of the proposed
changes with the existing structure.

Thus it can be seen that the registration of
virtual images and real world objects in a see-
through HMD is of paramount importance. Lack of
proper registration will result in virtual objects
being incorrectly positioned relative to the real
world (a virtual glass, for example, might be
floating several mm above the real surface it’s
supposed to be resting on). This registration,
which is dependent upon many factors such as
tracking system accuracy and distortion due to the
HMD optics, is complicated by the presence of
delays due to image scanout discussed in section
2.0. The use of a single viewing transform to
compute the data for an entire image results in errors
in the registration of virtual objects and the real
world just as it results in errors in the sampling of
the computer generated world in computer
animation.

Currently at UNC, therefore, implementation is
underway of a system that renders images using the
Just-In-Time-Pixels paradigm. This system is
intended to be used in a see-through HMD to help
reduce the registration errors between virtual objects
and the real world. In a real-time JITP system,
instead of computing pixel values based upon the
predicted position and velocity of the virtual
camera, each pixel is computed based upon the
position and orientation of the user’s head at the
time of display of that pixel. Generation of a Just-
In-Time pixel in real time, therefore, requires
knowledge of when a pixel is going to be displayed
and where the user is going to be looking at the
time. This implies the continuous and parallel
execution of the following two central functions:

1) Synchronization of image generation and
image scanout

2) Determination of the position and
orientation of the user’s head at the time of
display of each pixel

By synchronizing image generation and image
scanout, the JITP renderer can make use of the
details of how the pixels in an image are scanned out
to determine when a particular pixel is to be
displayed. By knowing what scanline the pixel is
on, for example, and how fast the scanlines in an
image are displayed, the JITP renderer can easily
calculate the time of display of that pixel.

Determination of where the user is looking can
be accomplished through use of a conventional head
tracking system (magnetic or optical for example).
Determination of where the user is looking at the
time of display of a pixel requires the use of a
predictive tracking scheme. This is due to the
presence of delays between the sampling of the
position and orientation of the user’s head and the
corresponding display of a pixel. Included in the
end-to-end delays is the time to collect tracking
data, image generation time and the delays due to
image scanout.

Estimation of user viewpoint at the time of
display of each pixel is accomplished through use of
a Kalman filter. Though impossible to predict the
true position of the user's head at pixel display time,
the Kalman filter produces an estimated view point
based upon the user’s past head motions. Note that
the predictive tracking techniques depend upon a
detailed knowledge of when a pixel is to be
displayed in order to accurately predict the future
head position for that time.

4.2 Enhancements: Beam Racing and
Just-In-Time Pixels

In the current implementation, the calculations
for each scanline are pushed as late as possible.
Ideally data for each scanline is transferred to the
frame buffer just before it is read out by the raster
scan. This technique, known as beam-racing, was
first used in some early flight simulators. By
pushing the graphics calculation as late as possible,
beam racing allows image generation delays to be
combined with display system delays. The result is
lower overall end-to-end delay which simplifies the
task of predicting the future position and
orientation of the user’s head. Prediction also
benefits from the fact that the delayed computation
makes it possible to use the latest available
tracking data in the generation of the predicted user
view point.

Though a Just-In-Time-Pixels renderer can
benefit from the use of beam-racing, the two are not
dependent upon one another and are in fact
orthogonal concepts. A Just-In-Time-Pixels
renderer, for example, can be implemented without
beam-racing. In such a system, image data is
computed for the predicted time of scanout of a
pixel, but computation of the entire image is
completed prior to the scanout of the first pixel.
This is the type of system that would be useful in the
generation of pre-computed animation sequences
(see section 2.0 above).

Alternately beam-racing can be implemented
without using Just-In-Time Pixels (as was done in
the early flight simulators). In such a system, the
entire image is computed as though it were a point
sample in time (i.e. one viewing transform is used
to compute the pixel values for the entire frame) but

5

the computation of each pixel (or scanline) is
completed just prior to its scanout. The advantage
(beyond the reduction of end-to-end delays) is that
the size of frame buffers can be minimized since data
from only a few pixels and not an entire image must
be stored.

4.3 Implementation: Distribution of
Computat ion

Incorporation of the Just-In-Time-Pixels
paradigm into a real-time computer graphics system
can have a considerable impact on the amount of
computation required to generate each image. Even
if only a scanline approximation to the Just-In-
Time-Pixel paradigm (as described in section 3.
above) is implemented, the objects in the computer
graphic database will have to undergo a
significantly greater number of transformations (by
factor of 256 when compared to animation on fields)
in order to determine the position of each object
(relative to the virtual camera) at the time of display
of each pixel. This suggests the need for the
distribution of computation across multiple
processors.

In the current implementation of Just-In-Time
Pixels currently at UNC for example, computation is
divided among the multiple graphics processors
(GP) available in the Pixel-Planes 5 system. Pixel-
Planes 5 is a high-performance, scalable
multicomputer for 3D graphics designed and built at
UNC. GPs are Intel i860 based processors that are
used to perform geometric transformations and other
calculations in the Pixel-Planes graphics computer.

In the current JITP system, one GP is
designated as the Master GP and is primarily
responsible for the synchronization of image
computation with display scanout and the
distribution of tracking data to the remaining GPs.
The remaining GPs are designated as slave GPs. The
main task of the slave GPs is the computation of the
pixel data for the resulting image. To distribute the
computation among the slave GPs, data for
successive scanlines is divided among the available
GPs in the system. Thus in a system with n-slave
GPs, each slave GP is responsible for computing the
data for every nth scanline in the image.

By dividing the computation for successive
scanlines among multiple GPs, each GP is given
sufficient time to calculate the pixel data for a
scanline. Without this division of labor, the
available computation time (65 microseconds for
one scanline) would be insufficient to generate an
image of reasonable complexity.

5. Conclusions

Just-In-Time Pixels has been presented as a
method for generating images that are consistent
with their display: the raster scan out of one pixel at

a time. The purpose of this is to eliminate the errors
in an image which are a result of using a single
viewing transform to compute the data for an entire
image. Instead, each pixel is generated so that it is
consistent with the user’s view at the time of
display of that pixel. The development of Just-In-
Time Pixels is part of the overall program at UNC to
reduce and compensate for the end-to-end delays
inherent in Head-Mounted Display systems. The
goal: stationary virtual objects that appear
stationary in the real world. It is hoped that by
minimizing the end-to-end delays and compensating
for the nature of the display devices in use, the
feeling of presence in the virtual world will be
augmented and the feeling of “swimming” through
the virtual scene eliminated.

References

[Bajura 1992] Bajura, M., Fuchs, H., Ohbuchi, R.,
"Merging Virtual Objects with the Real World:
Seeing Ultrasound Imagery within the Patient."
Computer Graphics (Proceedings of
SIGGRAPH' 92), 26(2),pp203-210.

[List 1983] List, U. “Nonlinear Prediction of Head
Movements for Helmet-Mounted Displays”
Technical Paper AFHRL-TP-83-45, Dec. 1983.

