
Post-Rendering Image Warping for Latency Compensation
UNC-CH Computer Science Technical Report #96-020

William R. Mark, Gary Bishop, Leonard McMillan
January 10, 1996*

* Public Release on Nov. 25, 1996

(with author list and acknowledgements added).

Abstract
Systems that provide remote viewing of three-dimensional

data with interactive viewpoint control must confront two key
problems: latency and bandwidth. The straightforward
approach of transmitting and displaying rendered images
results in a delay of one round-trip between viewpoint change
and the corresponding change in the displayed image. We avoid
this delay by transmitting a representation of the scene to the
user’s machine, which then locally closes the viewpoint-to-
display loop. If the scene representation is geometry-based,
the bandwidth, user-side storage, and user-side graphics
rendering capability required for updates to the scene are
unbounded. We show that an image-based representation can
allow for arbitrary scene changes, while requiring only fixed
bandwidth, storage, and rendering power. We demonstrate a
system that renders images on a “rendering server”, and then
transmits them to the user’s machine where image warping
using per-pixel disparity values compensates for system
latency and synthesizes stereo images for display. We also
develop enhancements to the warping technique that improve
its quality and speed.

Introduction
In this paper we address the problem of rendering imagery at

one location for a user who is controlling the view from a
second location. If the user and rendering engine are separated
by a significant distance–they could be on opposite sides of a
continent or of the world–then we are presented with two major
difficulties: latency and limited bandwidth.

Latency is unavoidable because of the distances involved.
When we send messages over a communications link which is
several thousand miles long, even the delay caused by the speed
of light becomes significant. Any actual system will also add
latency caused by rendering and other computations. Limited
bandwidth is a secondary difficulty since it restricts the ways in
which we can attack the latency problem. Although high
bandwidth is becoming cheaper and more widely available, we
do not believe that it will become either “unlimited” or “free” in
the near future.

The real-time remote image display system we have built
and describe in this paper tackles the dual problems of latency
and bandwidth in a very general way, without constraints on the
scene or its dynamics. Our system generates and transmits an
image-based representation from a rendering server to the user’s
system. The required transmission bandwidth is independent of
scene complexity and depends only on the user’s display

resolution. The user’s system then warps the image-based
representation to produce the final displayed image.

Image-based representations and image-based rendering are
recent developments in computer graphics. Instead of using
geometric models as a scene description, image-based methods
use a series of reference images to model the scene. Image-
warping techniques like those discussed in [Wolberg90] are
used to reproject the reference images according to the desired
viewing parameters. In our system we have used the perturbed-
projective image warps described by [McMillan95a] to
reproject and render the desired image. This method augments
the typical image representation with a disparity value at each
pixel. From this point on we will refer to this class of
perturbed-projective image warps simply as an image warp.

This image warp has the important property that its cost is
proportional to display resolution, not to scene complexity.
As scenes rapidly become more complex while display
resolutions change slowly, image warping becomes more and
more attractive as an alternative to rendering.

There are a wide variety of uses for a system in which
images are rendered remotely, but viewed locally with local
viewpoint control. The application which initially drove our
research was the desire to make use of graphics supercomputers
from other locations without moving the actual machine or the
user. But since the image warp is relatively simple and its cost
is bounded by the display resolution, we believe that the user
side machine can eventually be made cheaply, opening up other
uses. In particular, our technique may be attractive for
applications consisting of many user-side machines which
must be inexpensive and a smaller number of central rendering
servers. In the future these user-side machines could be PC’s or
set-top boxes. Finally, we believe that there is a class of
applications where, because of the bandwidth limitations for
remote display systems, an image-based technique is the only
technically viable one. The key observation in favor of this
argument is that image-based representations of a scene provide
the optimal level-of-detail for representing an arbitrarily
complex scene.

In the rest of the paper we will discuss in more detail the
issue of latency in remote display, categorize this latency into
two types, and discuss our system’s approach. We discuss the
implications of limited bandwidth for remote display and the
advantages and disadvantages of our system with respect to
other techniques. We then describe our system and its
performance. We discuss some of the improvements we have
made to the image warping technique as part of our system. We
conclude with a discussion of ways in which our system can be

 3D Data

Warping
 Engine

 Image Image & Depth

Viewpoint

Rendering
Engine

Figure 1: Remote 3D Display

enhanced and integrated with other latency compensation
techniques.

Latency and Remote Display
We consider the general type of system in which visual

information is generated at one location, and viewed by a user
at a second location. The user controls the viewpoint and gaze
direction. This control can be in the form of head or gaze
tracking, joystick, or mouse control. In this type of system,
we can consider two kinds of latency: The first is the delay
between the user’s specification of a new viewpoint/view
direction and the display of the appropriate image (view
transform latency). The second is the delay between a change
in the underlying visual information and the display of this
changed information (scene change latency). In the first case,
we are changing how the data is viewed, but in the second case,
the data itself is changing. The key difference between these
two types of latency is the location where the change is
initiated -- at the user’s side for view transform latency, and at
the information-generating side for scene change latency.

Unless we can accurately predict future scene changes, there
is nothing we can do about scene change latency. We are
constrained by the speed of light -- the change is happening at
one location, and we simply can’t immediately find out about it
at a different location. In practice of course, most remote
display systems add significant additional latency above that
imposed by the speed of light, but even if this latency could be
eliminated the transmission link delay would remain.
Fortunately, scene change latency can not be perceived unless
we are interacting with the scene, thus creating a servo loop
from us to the scene and back. Without interaction, we are
simply viewing a delayed “movie” and have no way of knowing
that we seeing it with a time delay. Even with interaction,
scene change latencies of a significant fraction of a second may
be quite tolerable, depending on the application.The situation
for view transform latency is much more promising. Because
the change in the view transform is generated at the user’s side,
where the images of the scene are displayed, we can potentially
create an entirely local “view transform to display” servo-loop.
However, in order to close this loop locally, we must maintain
a representation of the scene at the user’s side which allows for
changes to viewpoint and gaze direction [Fig 1]. A geometry-
based representation would seem to be ideal, except that it
requires potentially unbounded storage and rendering
performance on the user side because scene complexity is
potentially unbounded. It also requires potentially unbounded
transmission bandwidth. We propose that an image-based
representation is an alternative for many applications. An
image-based representation’s storage requirements, required
rendering performance, and required transmission bandwidth are
all bounded by the display resolution, not by the scene
complexity.

A conventional image-based representation of a scene is
accurate for only one viewpoint, and while it can accommodate
arbitrary rotations, it can not be used to produce correct
displayed images after a translation. When compensating for
relatively short delays, such as those found in a non-distributed
system, the errors due to translation may be small enough that
they can reasonable be ignored. This approach is the one taken
by earlier image-based latency compensation schemes, such as
image shifting [Burbidge89, So92], and Regan & Pose’s
address recalculation [Regan94]. However, for the delays on
the order of 100’s of milliseconds encountered in remote
display systems, the errors due to translation are too large to
ignore. We overcome this rotation-only restriction by

augmenting our images with per-pixel disparity values, and
using the more general perturbed-projective image warp. This
image warp correctly handles translation.

A shortcoming of this image warp is that only pixels
visible in the source image are mapped to the output image.
This behavior introduces “blank” or “empty” areas in regions
of the output image that were occluded in the original image.
We will discuss these artifacts in more detail later, and propose
techniques for reducing or eliminating them.

Bandwidth and Remote Display
 Previous approaches to the remote display problem have

relied upon maintaining a geometric representation of all or
part of the scene on the viewer’s computer. Changes to the
scene sent from the “database” end are in the form of new
geometry or changes in modeling transforms for existing
geometry, or in some cases “higher-level” application-specific
information. The best known examples of this type of system
are based on the Distributed Interactive Simulation (DIS)
standard. [Zyda93, Katz94] DIS systems transmit new vehicle
locations (model transforms) to the user’s computer, as well as
simulation-specific events such as explosions. DIS also
transmits “predictive” information about future vehicle
locations. The DIS system is an extremely efficient user of
bandwidth, but it does so at the cost of maintaining a model on
the user’s machine, and by allowing only certain types of
easily described scene changes.

Consider a system which needs to remotely display models
of arbitrary complexity, and allow any number of arbitrary
changes to the model in a frame. Any geometry-based remote
display scheme will require potentially infinite bandwidth to
the user’s machine to transmit these changes. In contrast, our
image-based scheme requires a fixed bandwidth to transmit the
new image representation each frame. What we are really doing
is using the image-based representation as a means to represent
the geometry at an appropriate level of detail.

The crossover point where the image-based representation
becomes more efficient than a geometry based representation is
reached approximately when the number of polygons in the
geometry based representation is greater than the number of
pixels in the display. (In fact, it occurs somewhat earlier, since
a polygon is more complicated than a pixel). Today’s most
complex models have already passed this crossover point, and
as models continue to become more complex this situation will
become more common

For models which are large but below this crossover point,
we can still reap the computational benefits of the image warp.
The simple and regular structure of the warp computations
makes warping very competitive with traditional rendering
even for relatively simple models.

For many applications, it is not necessary to update the
image-based representation at 60Hz. Because the viewer’s
display updates are decoupled from updates to the image-based
representation, a system can present the user with a 60Hz
update rate for view transform changes, while presenting a
lower update rate for scene changes. The effect is that dynamic
objects in the scene appear to move in a discontinuous and
jerky manner, but the sense of presence the user gets from low
latency head rotation/translation is preserved. This idea is not
new -- see for example Gossweiler et al [Gossweiler93] -- but it
has important implications for our system. If there are few or
no moving objects in the scene, then we may be able to tolerate
scene update rates on the order of 1 Hz, thus reducing our
transmission link bandwidth requirements and making our
rendering server cheaper. However, if the scene update rate falls

below 1 Hz then the user has the opportunity to move too far
from the viewpoint for which the scene was rendered. When
such movements occur, the viewpoint coherency assumption
which is implicit in the use of the image-based representation
begins to break down. The result is undesirably large occlusion
artifacts which appear as the user’s viewpoint changes.

Additional Advantages of Image Representation
An image-based local-representation provides several

additional advantages beyond that of bounded bandwidth
requirements. If the scene being viewed is a model of a design
for a new ship, car, or aircraft, the geometric representation of
the model may be considered proprietary. By transmitting only
rendered images of the geometry, rather than the model itself,
the model owner retains control over the model. The generality
of our technique also makes it very simple to integrate with any
existing application. The technique does not depend on any
sort of application-specific information -- it only requires the
capability to generate images and their corresponding z-values
from appropriate viewpoints. The current implementation of
our system uses the Silicon-Graphics Performer rendering
library to generate our image-based representation, and we can
view any model which Performer is capable of loading.

The Remote Rendering System
We have constructed a proof-of-concept system to illustrate

the major ideas presented above. The system consists of two
Silicon Graphics Onyx computers connected via a 155 Mbit/sec
ATM link. One machine is on the “rendering” side of the link,
and the other is on the “user” (warping) side. The machines are
physically adjacent to each other, so we simulate latency over
the ATM link by buffering data on the user-side computer.

The rendering computer is a 2-processor SGI Onyx/Reality-
Engine 2. For each viewpoint transmitted from the user-side
computer, this rendering computer renders four sides of a cube
(we skip the top and bottom sides for performance reasons).
We use the Silicon Graphics Performer library to generate the
images, with a callback to read the RGB, and Z values from the
framebuffer. The disparity values required by the image warping
algorithm are calculated from the Z values. The X and Y image
space derivatives of the disparity are also calculated. The RGB
and disparity values are then transmitted to the user-side
computer over the ATM link. An ideal system would reduce
bandwidth requirements by compressing the RGB and disparity
values, but we have not implemented this improvement.

The user-side computer is a 4-processor SGI Onyx with an
attached head position/orientation tracker and head-mounted
display. Our image warping is done entirely in software. One
of the four Onyx processors is devoted to communications with
the rendering computer – sending viewpoints and receiving
rendered images. The other three processors perform the image
warping, using up-to-date position and orientation reports from
the tracker to compute final displayed images from the
intermediate images. By adding the appropriate position
offsets for each eye to the head position, our system can
generate stereo imagery for the head-mounted display without
requiring any additional information from the rendering
computer.

Our system currently has a typical frame rate of 7 frames per
second for monocular output at 320 x 240 resolution.* This

* Our resolution is actually a hybrid between 320 x 240 and

640 x 480. The final output image resolution is 640 x 480, but
the corresponding portion of the intermediate image
representation has approximately a 320x240 resolution.

output is for a 60 degree vertical field of view, so the four sides
of the cube which form the image-based intermediate
representation are each 416 by 421 resolution. The user-side
computer receives a complete new intermediate image-based
representation from the rendering machine approximately
every four seconds. Transmitting this representation uses less
than 25% of the 155 Mbit/sec ATM bandwidth. Despite the
excessively long interval between updates to the intermediate
image-based representation, a user in a headmounted display
feels a sense of presence.

Speedup Techniques: Clipping and Parallelism
We use the [McMillan95a] notation for the warp equations.

We do not have the space to explain the equations in detail
here, and we refer you to the original paper for a more complete
discussion.

′ =
+ + +
+ + +

x
ax b y c k

g x h y i m

δ
δ

′ =
+ + +
+ + +

y
dx ey f l

g x h y i m

δ
δ

where x , y represent the pixel location in the source image,

x' , y' represent the pixel location in the destination image, δ
represents the generalized disparity for the source pixel, and a -
m represent constants for a given pair of viewpoints and view
directions.

An important part of our system’s warping implementation
is its clipping of regions of the intermediate images which can
be guaranteed to fall off-screen. This clipping avoids the warp
algorithm’s expensive per-pixel calculations for pixels which
fall in these regions, thus providing a several-fold performance
increase over previous implementations. Our clipping
algorithm works as follows: The rendering computer
determines the maximum and minimum disparity values for each
row of the intermediate image, and passes these values to the
user-side computer along with the intermediate image. For a
given row in the intermediate image, the maximum and
minimum disparity values can be used in conjunction with the
location of the row to construct a quadrilateral in the projective
2-space used by the warp algorithm. This quadrilateral (actually
a parallelogram) is then clipped against the view frustum in the
conventional manner. If the quadrilateral lies entirely outside
the view frustum, then we skip the entire row. This case is
likely for rows in the one or two sides of the cube which fall
“behind” the viewer. If the quadrilateral is partially clipped,
then we determine from the clipped polygon’s new vertices
which portion of the row is potentially visible, and pass only
that portion to the per-pixel warper. Finally, if the polygon is
entirely “visible”, then we treat the entire row of the source
image as potentially visible.

A second important component of our warping
implementation is its parallelization across three processors.
Our serial implementation of the planar-to-planar warp relied
on the occlusion-compatible rendering order described in
[McMillan95a], but this rendering order presents challenges
when parallelizing. Our first attempt at parallelization
assigned the different occlusion-compatible regions to different
processors, but we got poor load balancing with this strategy
because the regions can differ greatly in size. Our current
parallel implementation instead uses a z-buffer to resolve
visibility, thereby avoiding the constraints imposed by the
occlusion compatible-rendering order. We do however pay a
price for the Z-buffering – an extra multiply to compute the Z
value, and the test/compare/modify cycle for each pixel which
is written. We hope to once again return to the occlusion-
compatible rendering order, but achieve better load balancing

by appropriately subdividing the occlusion-compatible
regions.

Image Reconstruction Kernel
McMillan and Bishop’s paper does not discuss the

implementation of their forward-mapping image reconstruction
technique. Our implementation writes pixels to the final image
in a splat-like manner. With this technique careful attention
must be paid to the size of the splatted pixels if the results are
to look acceptable. The further the new viewpoint is from the
viewpoint used to render the original image, the more
opportunity there is for significant change in pixel size from
the original to new images. Deviations from the correct new
size show up as holes or blotches in the final image. To avoid
these problems as much as possible, we carefully compute the
reconstruction kernel size. These computations are actually
more expensive than the ones used to determine the location of
the splat.

The expression we use for our axis-aligned reconstruction
kernel size is:

xsize
x

x

x

y

x

x

x

y
=

′
+

′
≈

′
+

∆
∆

∆
∆

∂
∂

∂
∂

'
,

and similarly for ysize. For the partial derivatives we have:

∂
∂

∂δ
∂

δ
′

=
− ′ + − ′

+ + +
x

x
x

c ix a g x

g x h y i m

()

and likewise for the others.
It is tempting to simplify the computation by assuming

∂δ
∂

∂δ
∂x y

= = 0 , but this simplification leads to small holes in

the destination image when the angle between the viewpoint
and the surface changes significantly between the source and
destination images. We instead approximate the disparity
derivatives by taking the difference of disparity values at
adjacent pixels, and use this result for the computation.

Discussion

Improving Quality of Final Images

The most obvious drawback of all single source-image
perturbed projective warping systems is that cracks appear in
the final image when the occlusion in the scene changes. There
is no information about surfaces which are occluded in the
original image, and when these surfaces become “exposed”
some erroneous data must be inserted. In the long term, this
problem will probably be the key one that needs to be resolved
if image-based rendering techniques are to find widespread
application. We currently see two reasonable approaches to
this problem -- multiple source images, and intelligent
“guesses”.

When multiple source images are available, the extra
images can be used to fill in the gaps left after warping the first
image. An interesting variation on this idea is the multi-valued
Z-buffer demonstrated by Nelson Max [Max95]. The extra
source images will not necessarily consume the same amount of
transmission bandwidth as the first source image, because for
most scenes they will be similar enough to the first image that
a warp-based compression should be very effective on them
The biggest challenge in using multiple source images is the
choice of rendering viewpoints for the extra images. These

viewpoints might be chosen to bracket the estimated future
position of the user, or to be as different as possible (within
some constraints) from the first source image.

Another variation on this theme would be to retain “old”
source images on the user-side, and attempt to use these images
to fill in gaps left by the current image.

A second approach to the occlusion problem is to attempt
to use intelligent “guesses” to fill in the gaps. There will
usually be two surfaces at the sides of a gap – one is the “front”
surface and the other is the “rear” surface. We will typically be
able to classify the surfaces at the gap by examining the
disparity (and possibly surface orientation) information carried
with the pixels. If we fill in the gap with the color of the
nearest pixel from the rear surface, we are making the
assumption that the rear surface continued behind the front
object. In most cases, this assumption will be correct if the
gap to be filled is small, and the error in the final image will be
much less noticeable.

A second major quality issue is that of aliasing. Because we
rely on correct Z-values, we render our intermediate images
without super-sampled anti-aliasing. In this context, a simple
solution to the aliasing problem is to transmit some
representation of the n-samples to the user-side computer (the
extra n-1 should compress very well), warp the n-samples, and
then perform the super-sampled averaging. This technique
should produce a high-quality anti-aliased final image, but it
would be of course be computationally expensive.

Compression of Transmitted Data

Although the bandwidth required for our technique is
bounded, it is still quite large. To provide the viewer with a 60
degree FOV looking in any direction requires that the
transmitted image-based representation contain approximately
twelve times the number of pixels required for the final 60
degree FOV. For 640x480 (NTSC) final resolution, the image-
based representation thus contains 2.8 million pixels. This
large size is mitigated by the fact that an image-based
representation is extremely compressible. Conventional
image compression techniques should be effective on the color
portion of the image, and work by Guenter [Guenter93] implies
that the disparity values should be highly compressible as well.

We can further compress our image-based representation by
taking advantage of its temporal coherence. Both ends of the
transmission link can generate “expected” next images, and
only the difference between the expected and actual images
needs to be transmitted. Typically the expected image is
generated from a block approximation of the flow field which is
transmitted across the link -- MPEG works this way for
example. Normally this flow field is estimated using
correlation techniques, but since our type of system is working
from rendered images, it can take advantage of per-pixel depth
information in conjunction with the view transform to compute
the exact flow field. Agrawala et al. [Agrawala95] have
described such a technique which uses the resulting flow field to
compute accurate 2D transformations for blocks of pixels.

It may be possible to improve on Agrawala’s strategy by
using an image warp to directly produce the “expected” images
(and depth values), bypassing the explicit computation and
transmission of a flow field. The resulting technique would be
similar in spirit to Guenter’s work compressing animation
sequences [Guenter93] but would not use object information.
This use an image warp is in addition to, but orthogonal to, its
use for latency compensation. The two uses complement each
other well, because they both require that depth or disparity
values be transmitted to the user-side computer.

Warping Speed

The most obvious drawback to our system’s current
implementation is the speed of the image warp. To get full
NTSC resolution with a 20 Hz frame rate would require
approximately a 12-fold increase in performance. Our next step
towards improved performance is to develop a fixed-point
formulation of the algorithm to replace our current floating-
point formulation. We have begun work on this task. A fixed-
point formulation of the algorithm can be implemented using
the new multimedia/graphics instruction set extensions which
have begun to appear recently, thus yielding faster software-
based implementations of the warp. An integer formulation of
the warp will also be amenable to hardware implementation. A
hardware assisted implementation of the algorithm will almost
certainly be necessary if our technique is to be used in low-end
machines such as PC’s and set-top boxes.

Prediction Techniques

If we could somehow accurately predict future viewpoints,
then any sort of local representation would be unnecessary -- we
could instead just render images using the predicted future
viewpoints and transmit them to the user side for unmodified
display. This technique would eliminate apparent view
transform latency completely, although scene change latency
would remain. Unfortunately, for the case of a viewpoint
controlled by head position, no known predictive tracking
algorithm is sufficiently accurate over the necessary prediction
interval of hundreds of milliseconds. Furthermore, frequency
domain studies of user head motion [Azuma95] argue that no
such algorithm will ever exist.

Although predictive tracking is not sufficiently accurate to
eliminate the need for a user-side scene representation, it is
useful for estimating future head positions. So and Griffin
[So92] successfully combined predictive head tracking with
simple image shifting. We hope to combine it with the more
general image warping we use to increase the quality of the
warped images. This increase in quality will result from
reducing the errors in the warped image which grow as a
function of translation distance. Interestingly, the use of
image warping with predictive tracking provides us with the
opportunity to circumvent one of the “paradoxes” of predictive
tracking: As the gains on the predictor are turned up, the mean-
squared error goes down, but much of the remaining error is at
high-frequencies. These high frequency errors cause “jitter” in
the displayed image which is extremely bothersome to users
[Azuma95]. The final image-warping step which we propose
can eliminate this jitter, while talking advantage of the greater
mean-squared accuracy of the high gain.

In our earlier discussion of scene-change latency, we argued
that if changes in the scene could not be predicted, then there
was nothing that could be done about scene-change latency. Let
us now consider the case where some predictive information
about scene changes is available. We believe that most
predictive techniques which have in the past been used at the
object level can be extended to the pixel level for use with
image-based representations. For example, each pixel in the
image-based representation can be assigned a velocity (and
possibly acceleration), based on the motion of the underlying
object in the scene. The warp algorithm then calculates final
pixel positions as a function not just of translation and pixel-
disparity, but also as a function of time, pixel-velocity, and
pixel-acceleration. Costella has proposed this technique
outside the context of perturbed-projective image warps
[Costella93], but we believe that it can be effectively integrated
with this type of image warp. There also the potential to

assign more complex time-dependent behaviors to pixels. In
addition to reducing apparent scene-latency, these techniques
could also greatly reduce the required rate at which local-scene
representations are transmitted from the rendering engine to the
user-side computer. Finally, these techniques could be
integrated with the the use of image warping for compression.

Non-Remote Systems

While we have concentrated on the use of image warping to
compensate for remote display latency, we also believe that
these techniques also have significant promise for delay
compensation in entirely local systems. Local systems have
less latency, and so the argument that an image-based technique
needs to properly handle translations as well as rotations is not
as strong. But, if our techniques are used to reduce the rate at
which the rendering engine needs to generate frames, then the
latency again becomes large. For local display, our technique
thus presents an alternative to the hybrid address recalculation
+ priority rendering scheme proposed by Regan and Pose
[Regan94]. The approaches differ in the types of artifacts they
would produce -- priority rendering has the potential for
artifacts at “priority boundaries”, while our approach produces
occlusion artifacts. It might make sense to combine an image
warp with priority rendering in an effort to get the best of both
approaches.

Acknowledgements
This research was supported primarily by DARPA contract

#DABT 63-93-C-0048. This report has been approved for
public release—distribution unlimited. Leonard McMillan was
partially supported by a Division, Inc. fellowship. Additional
support for this work was provided by the NSF/ARPA Science
and Technology Center for Computer Graphics and Scientific
Visualization (Contract #ASC-8920219).

We thank David Ellsworth for his advice during our first
effort to implement this system. We also thank Fred Brooks,
Henry Fuchs, Steve Molnar, Turner Whitted, Nick England,
Andrei State, David Harrison, Peggy Wetzel, Marc Olano, Carl
Mueller, Bill Dally, and Dan Aliaga, who all provided useful
advice and/or assistance.

References
[Agrawala95] M. Agrawala, A. C. Beers, and N. Chaddha,

“ Model-Based Motion Estimation for Synthetic Animations,”
ACM Multimedia 1995, (San Francisco, CA) November 5-
9, 1995.

[Azuma95] R. Azuma and G. Bishop, “A Frequency-Domain
Analysis of Head-Motion Prediction,” Proceedings of
SIGGRAPH ‘95, In Computer Graphics, Annual Conference
Series 1995, pp.401--408.

[Burbidge89] D. Burbidge and P. M. Murray, “Hardware
Improvements to the Helmet Mounted Projector on the Visual
Display Research Tool (VDRT) at the Naval Training Systems
Center,” Helmet-Mounted Displays, Jerome T. Carollo,
Editor, Proc. SPIE 1116, pp. 52-60 (1989).

[Costella93] J. P. Costella, “Motion Extrapolation at the
Pixel Level”, unpublished paper available from
http://www.ph.unimelb.edu.au/~jpc., Jan 14, 1993.

[Gossweiler93] R. Gossweiler, C. Long, S. Koga, and R.
Pausch, “DIVER: a Distributed Virtual Environment Research

Platform,” 1993 IEEE Symposium on Research
Frontiers in Virtual Reality.

[Guenter93] B. K. Guenter, H. C. Yun and R. M. Mersereau,
“Motion Compensated Compression of Computer Animation
Frames,” Proceedings of SIGGRAPH ‘93. In Computer
Graphics, Annual Conference Series 1993, pp. 297-304.

[Katz94] W. Katz, “Military Networking Technology
Applied to Location-Based, Theme Park and Home
Entertainment Systems,” Computer Graphics, Vol. 28,
No. 2, May 1994.

[Max95] N.Max and K. Ohsaki, “Rendering Trees from
Precomputed Z-Buffer Views,” 6th Eurographics
Workshop on Rendering, (Dublin, Ireland) June 1995, pp.
45-54.

[McMillan95a] L. McMillan and G. Bishop, “Head-Tracked
Stereo Display Using Image Warping,” 1995 IS&T/SPIE
Symposium on Electronic Imaging Science and
Technology, SPIE Proceedings #2409A, (San Jose, CA)
February 5-10, 1995, pp.21-30.

[McMillan95b] L. McMillan, “A List-Priority Rendering
Algorithm for Redisplaying Projected Surfaces,” UNC-CH
Computer Science Technical Report TR95-005, University of
North Carolina, 1995.

[Regan94] M. Regan and R. Pose, “Priority Rendering with
a Virtual Reality Address Recalculation Pipeline,”
Proceedings of SIGGRAPH ‘94. In Computer Graphics,
Annual Conference Series 1994, pp.155-162.

[So92] R. H. Y. So and M. J. Griffin, “Compensating Lags
in Head-Coupled Displays Using Head Position Prediction and
Image Deflection,” Journal of Aircraft , Vol. 29, No. 6,
Nov.-Dec. 1992.

[Tharp92] G. Tharp, A. Liu, L. French, S. Lai, and L. Stark,
“Timing Considerations of Helmet Mounted Display
Performance,” Human Vision, Visual Processing, and
Digital Display III , B. Rogowitz, Editor, Proc. SPIE 1666,
pp. 570-576 (1992).

[Wolberg90] G. Wolberg, Digital Image Warping,
IEEE Computer Society Press, Los Alamitos, California, 1990.

[Zyda93] M. Zyda, D. Pratt, J. Falby, P. Barham, and K.
Kelleher, “NPSNET and the Naval Postgraduate School Graphics
and Video Laboratory,” PRESENCE, Vol. 2, No. 3, Summer
1993, pp. 244-258.

