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Abstract

Conventional texture mapping is a special case of three-dimensional image
warping. Therefore, all transformations embodied in the texture mapping equations are
also embodied in the three-dimensional image warping equations. In this work, we show
that three-dimensional image warping can be factored into a pre-warp step followed by
conventional texture mapping.

1 Introduction

Three-dimensional image warping [McMillan97] provides an efficient way to
compute new perspective views of scenes from reference images extended with depth on
a per pixel basis.   Such reference images are usually called source images, while the
reconstructed views are usually referred to as destination images. Given the coordinates
(u1,v1) of pixels in a source image, the coordinates of the corresponding pixels in the
destination image are compute as [McMillan97]:
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where subscript 1 identifies source image variables; 2, the destination image. Vectors ar

and b
r

are orthogonal and form a basis for the plane of the image. The lengths of these
vectors are the width and height of a pixel in the Euclidean space, respectively. The
generalized disparity associated with pixel (u1,v1) is ),( 11 vuδ . C& is the center of projection
(COP) of the camera, and cr is a vector from the COP to the origin of the image plane
(Figure 1).
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2 Pre-Warping Equations

Figure 2 shows the representation we use for a parallel projection camera. Vectors
ar  and b

r
have the same definition as in the projective pinhole camera shown in Figure 1.

Vector f
r

 is a unit vector orthogonal to the plane spanned by ar  and b
r

. The tails of all
these vectors are at C& , the origin of the image plane. This representation is compatible
with the projective pinhole camera representation used in [McMillan97]. The coordinates
of a point x& in Euclidean space (Figure 3) can be expressed as:
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Figure 1 Perspective projection camera representation.
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Figure 2. Parallel projection camera representation.
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Figure 3. 3-D image warping. The source is a parallel projection image while the
destination is a perspective projection image.
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where displ(u1, v1) is the orthogonal displacement or height associated with the pixel
whose coordinates are (u1 , v1). Alternatively, using the original formulation for
perspective projection cameras [McMillan97] the coordinates of point x& can be written as:

where t2 is a scalar value defined on a per pixel basis. Solving for 2X
r

, we get:

where =&  is projective equivalence, that is, the same except for a scalar multiple. In matrix
notation, we have:

By making both image planes coincide (including their origins - Figure 4), aaa rrr
== 21 ,

bbb
rrr

== 21 , )( 21 CCc &&r −=  and Equation (4) then becomes:
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The coordinates of the pixels in the destination image are then given by

Figure 4.  Parallel and perspective projection cameras that share the
same image plane (origin, ar  and b

r
 vectors).
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Note that many of the scalar triple products in equations (6a) and (6b) are of the form
)( wvv rrr ×⋅ or )( wvw rrr ×⋅ and therefore reduce to zero.  Thus,
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But 0)( ≠×⋅ cba rrr is the determinant of the 3x3 matrix whose rows are respectively ar , b
r

,
and cr . Also, )( bac

rrr ×⋅ is the determinant of the same matrix after two permutations of
rows, and therefore has the same value. The same observation holds for )( acb rrr

×⋅ . Thus,
dividing both numerators and denominators of equations (7a) and (7b) by )( cba rrr ×⋅ , we
get

where  
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constants across the entire source image and determine the amount of change in the
coordinates of corresponding pixels on both images (optical flow [Faugeras93]). Notice
that if the displacement displ(u1, v1)= 0, then (u2, v2) =  (u1, v1), i.e., the pre-warping
operation is the identity function. Equations (11a) and (11b) are called pre-warping
equations.
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3  3-D Image Warping as a Pre-Warp Followed by Conventional Texture Mapping

Theorem: 3-D image warping can be factored into a pre-warp followed by conventional
texture mapping.

Proof: Let (u1, v1), (u2, v2) and (u3, v3) represent the coordinates of pixels in the source,
destination, and intermediate pre-warped image, respectively. According to Equations (8)
to (11b), the (u3, v3) coordinates of a pre-warped sample are given by:

),(1
),(

113

1111
3 vudisplk

vudisplkuu
+
+

= (12a)

),(1
),(

113

1121
3 vudisplk

vudisplkvv
+
+

= (12b)

Texture mapping is a projective mapping defined as [Heckbert89]:
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where A, B, C, E, F, G, I, J and K are constants for a particular mapping1.

The 3-D image warping equations that use parallel projection source images (equations
(6a) and (6b)) can be rewritten as:
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 If  displ(u1, v1) = 0 for all pixels, equations (14a) and (14b) reduce to equations (13a) and
(13b), respectively, and 3-D image warping reduces to texture mapping. In other words,
texture mapping is a special case of the 3-D image warping for which all samples happen
to be on the image plane [McMillan97]. Therefore, it is not surprising that coefficients A,
B, C, E, F, G, I, J, and K in equations (14a) and (14b) are exactly the same as the ones in
equations (13a) and (13b).
                                                          
1 Notice that Equations (13a) and (13b) used here represent forward texture mapping, since both the pre-
warping equations (Equations (11a) and (11b)) and the full warping equation (Equation (4)) are forward
operations. An actual implementation of the two-step process uses inverse texture mapping [Oliveira99].
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Let pre-warped images be used as input for texture mapping operation. By substituting
equations (12a) and (12b) into equations (13a), we get
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Likewise for v2:
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Note the similarities between the 3-D warping equations (14a) and (14b) and equations
(15a) and (15b) that result from texture mapping the pre-warped version of the source
image onto its own image plane. In order to show that these equations are equal, we have
to verify that ( )321 CkBkAkD ++= , ( )321 GkFkEkH ++= , and ( )321 KkJkIkL ++= .
Comparing equations (6a), (6b), (14a) and (14b) we have:
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The use of a desired image plane that coincides with both the source image plane and the
polygon to be texture-mapped is just a trick that greatly simplifies the verification of the
identity. Arbitrary desired view plane could have been used instead, and the texture-
mapped polygon mapped onto them, producing correct results. Intuitively, since the
source image has been (pre-) warped to its own image plane, the resulting image has the
correct perspective for the desired viewpoint, and thus can be used to texture map a
polygon that matches the dimensions, position and orientation of the original image
plane. The limitations of this technique are discussed in [Oliveira99].

The coefficients C and G in Equations (13a), (13b), (14a) and (14b) are zero. This is due
to the fact that the image planes of the source and pre-warped images share the same
origin, making )( 21 CCc &&r −= . While such equality led to some simplification in the pre-
warping equations, it has no further meaning.

4 Example

This section presents a complete example illustrating the use of the two-step
process. Figures 5 shows a top view of a scene sampled using a parallel projection image
with depth (Figure 5(b)) that is then used as source image in the configuration shown in
Figure 6.  While one can use Equation (4) to perform conventional 3-D image warping
from parallel projection to perspective projection images, the two-step process illustrated
in Figure 7 has several reconstruction and filtering advantages over the traditional
approach [Oliveira99].

In Figure 7, the source image is pre-warped to its own image plane using a perspective
projection camera whose COP is at the desired viewpoint (C2) and that shares the image
plane of the source image. Notice the introduction of the vector c ′r in Figure 7. This
configuration is similar to the one represented in Figure 4. The original vectors 2cr , 2ar

and 2b
r

 are not used. Visibility is solved using an occlusion compatible order algorithm
described in [Oliveira 99]. The resulting pre-warped image has correct perspective for the
desired viewpoint and can, therefore, be used as a texture to be mapped onto a
quadrilateral that matches the source image plane in 3-space. The texture-mapping step
takes care of the final planar perspective projection from the texture-mapped polygon
onto the desired view plane (using an inverse mapping). Because the pre-warping
equations present very simple 1-D structure, reconstruction can be performed using 1-D

Figure 5. (a) Actual scene.  (b) Sampling of the geometry with a parallel projection image
with depth. (c) Re-projection of the sampled surfaces to 3-D.

(a) (b) (c)
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image operations along rows and columns and requiring interpolation between only two
pixels at any time. Examples involving the pre-warp of actual 2-D textures are presented
in [Oliveira99].
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