
1

Factoring 3-D Image Warping Equations into a Pre-Warp Followed by
Conventional Texture Mapping

Manuel M. Oliveira and Gary Bishop
{oliveira|gb}@cs.unc.edu

Department of Computer Science
University of North Carolina at Chapel Hill

Sitterson Hall, CB# 3175
Chapel Hill, NC, 27599-3175

Technical Report TR99-002
January 15, 1999

Abstract

Conventional texture mapping is a special case of three-dimensional image
warping. Therefore, all transformations embodied in the texture mapping equations are
also embodied in the three-dimensional image warping equations. In this work, we show
that three-dimensional image warping can be factored into a pre-warp step followed by
conventional texture mapping.

1 Introduction

Three-dimensional image warping [McMillan97] provides an efficient way to
compute new perspective views of scenes from reference images extended with depth on
a per pixel basis. Such reference images are usually called source images, while the
reconstructed views are usually referred to as destination images. Given the coordinates
(u1,v1) of pixels in a source image, the coordinates of the corresponding pixels in the
destination image are compute as [McMillan97]:

),()()()()()(
),()()()()()(

11222122112211221

11222122112211221
2 vubaCCbacvbabubaa

vucbCCcbcvcbbucba
u

δ
δ

rr&&
rrrrrrrrr

rr
&&rrrrrrr

×⋅−+×⋅+×⋅+×⋅
×⋅−+×⋅+×⋅+×⋅

=

),()()()()()(
),()()()()()(

11222122112211221

11222122112211221
2 vubaCCbacvbabubaa

vuacCCaccvacbuaca
v

δ
δ

rr&&
rrrrrrrrr

rr&&rrrrrrrrr

×⋅−+×⋅+×⋅+×⋅
×⋅−+×⋅+×⋅+×⋅

=

where subscript 1 identifies source image variables; 2, the destination image. Vectors ar

and b
r

are orthogonal and form a basis for the plane of the image. The lengths of these
vectors are the width and height of a pixel in the Euclidean space, respectively. The
generalized disparity associated with pixel (u1,v1) is),(11 vuδ . C& is the center of projection
(COP) of the camera, and cr is a vector from the COP to the origin of the image plane
(Figure 1).

2

2 Pre-Warping Equations

Figure 2 shows the representation we use for a parallel projection camera. Vectors
ar and b

r
have the same definition as in the projective pinhole camera shown in Figure 1.

Vector f
r

 is a unit vector orthogonal to the plane spanned by ar and b
r

. The tails of all
these vectors are at C& , the origin of the image plane. This representation is compatible
with the projective pinhole camera representation used in [McMillan97]. The coordinates
of a point x& in Euclidean space (Figure 3) can be expressed as:

)1(
),(

111

11

1

1

11

11

11

1 XPC
vudispl

v
u

fba
fba
fba

Cx

kkk

jjj

iii r
&&& +=
































+=

Figure 1 Perspective projection camera representation.

cr

b
r ar

C&

f
r

C&

b
r ar

Figure 2. Parallel projection camera representation.

f
r

2b
r 2ar

1arC1

C2

x&1b
r

cr

Figure 3. 3-D image warping. The source is a parallel projection image while the
destination is a perspective projection image.

3

where displ(u1, v1) is the orthogonal displacement or height associated with the pixel
whose coordinates are (u1 , v1). Alternatively, using the original formulation for
perspective projection cameras [McMillan97] the coordinates of point x& can be written as:

where t2 is a scalar value defined on a per pixel basis. Solving for 2X
r

, we get:

where =& is projective equivalence, that is, the same except for a scalar multiple. In matrix
notation, we have:

By making both image planes coincide (including their origins - Figure 4), aaa rrr
== 21 ,

bbb
rrr

== 21 ,)(21 CCc &&r −= and Equation (4) then becomes:

[] [] [])5(
),(1 11

1

1
1

2

2
















+
















=
















−

c
vudispl

v
u

fbacbav
u

rrrrrrr
&

The coordinates of the pixels in the destination image are then given by

Figure 4. Parallel and perspective projection cameras that share the
same image plane (origin, ar and b

r
 vectors).

2C&

f
r

cr

b
r ar1C&

)3())((

)(

2111
1

22

2111222

1112222

CCXPPX

CCXPXPt

XPCXPtC

&&
r

&
r

&&
rr

r
&

r
&

−+=

−+=

+=+

−

[] [] [])4()(
),(1

21

11

1

1

11

1

222

2
















−+
















=
















−

CC
vudispl

v
u

fbacbav
u

&&
rrrrrr

&

)2(
1

22222

2

22

22

22

22 XPtCv
u

cba
cba
cba

tCx

kkk

jjj

iii r
&&& +=
































+=

4

)6(
),()()()()(
),()()()()(

1111

1111
2 a

vudisplbafbacvbabubaa
vudisplcbfcbcvcbbucbau rrrrrrrrrrrr

rrrrrrrrrrrr

×⋅+×⋅+×⋅+×⋅
×⋅+×⋅+×⋅+×⋅

=

)6(
),()()()()(
),()()()()(

1111

1111
2 b

vudisplbafbacvbabubaa
vudisplacfaccvacbuacav rrrrrrrrrrrr

rrrrrrrrrrrr

×⋅+×⋅+×⋅+×⋅
×⋅+×⋅+×⋅+×⋅

=

Note that many of the scalar triple products in equations (6a) and (6b) are of the form
)(wvv rrr ×⋅ or)(wvw rrr ×⋅ and therefore reduce to zero. Thus,

)7(
),()()(
),()()(

11

111
2 b

vudisplbafbac
vudisplacfvacbv rrrrrr

rrrrrr

×⋅+×⋅
×⋅+×⋅

=

But 0)(≠×⋅ cba rrr is the determinant of the 3x3 matrix whose rows are respectively ar , b
r

,
and cr . Also,)(bac

rrr ×⋅ is the determinant of the same matrix after two permutations of
rows, and therefore has the same value. The same observation holds for)(acb rrr

×⋅ . Thus,
dividing both numerators and denominators of equations (7a) and (7b) by)(cba rrr ×⋅ , we
get

where
)(
)(

1 cba
cbfk rrr

rrr

×⋅
×⋅= ,

)(
)(

)(
)(

2 acb
acf

cba
acfk rrr

rr

rrr

rr

×⋅
×⋅=

×⋅
×⋅= and

)(
)(

)(
)(

3 bac
baf

cba
bafk rrr

rrr

rrr

rrr

×⋅
×⋅=

×⋅
×⋅= are

constants across the entire source image and determine the amount of change in the
coordinates of corresponding pixels on both images (optical flow [Faugeras93]). Notice
that if the displacement displ(u1, v1)= 0, then (u2, v2) = (u1, v1), i.e., the pre-warping
operation is the identity function. Equations (11a) and (11b) are called pre-warping
equations.

)7(
),()()(
),()()(

11

111
2 a

vudisplbafbac
vudisplcbfucbau rrrrrr

rrrrrr

×⋅+×⋅
×⋅+×⋅

=

)10(),(1
)9(),(
)8(),(

113

1121

1111

vudisplkt
vudisplkvs
vudisplkur

+=
+=
+=

)11(

)11(

2

2

b
t
sv

a
t
ru

=

=

5

3 3-D Image Warping as a Pre-Warp Followed by Conventional Texture Mapping

Theorem: 3-D image warping can be factored into a pre-warp followed by conventional
texture mapping.

Proof: Let (u1, v1), (u2, v2) and (u3, v3) represent the coordinates of pixels in the source,
destination, and intermediate pre-warped image, respectively. According to Equations (8)
to (11b), the (u3, v3) coordinates of a pre-warped sample are given by:

),(1
),(

113

1111
3 vudisplk

vudisplkuu
+
+

= (12a)

),(1
),(

113

1121
3 vudisplk

vudisplkvv
+
+

= (12b)

Texture mapping is a projective mapping defined as [Heckbert89]:

KJvIu
CBvAuu

++
++

=
11

11
2 (13a)

KJvIu
GFvEuv

++
++

=
11

11
2 (13b)

where A, B, C, E, F, G, I, J and K are constants for a particular mapping1.

The 3-D image warping equations that use parallel projection source images (equations
(6a) and (6b)) can be rewritten as:

),(
),(

1111

1111
2 vuLdisplKJvIu

vuDdisplCBvAu
u

+++
+++

= (14a)

),(
),(

1111

1111
2 vuLdisplKJvIu

vuHdisplGFvEuv
+++
+++

= (14b)

 If displ(u1, v1) = 0 for all pixels, equations (14a) and (14b) reduce to equations (13a) and
(13b), respectively, and 3-D image warping reduces to texture mapping. In other words,
texture mapping is a special case of the 3-D image warping for which all samples happen
to be on the image plane [McMillan97]. Therefore, it is not surprising that coefficients A,
B, C, E, F, G, I, J, and K in equations (14a) and (14b) are exactly the same as the ones in
equations (13a) and (13b).

1 Notice that Equations (13a) and (13b) used here represent forward texture mapping, since both the pre-
warping equations (Equations (11a) and (11b)) and the full warping equation (Equation (4)) are forward
operations. An actual implementation of the two-step process uses inverse texture mapping [Oliveira99].

6

Let pre-warped images be used as input for texture mapping operation. By substituting
equations (12a) and (12b) into equations (13a), we get

K
vudisplk
vudisplkv

J
vudisplk
vudisplku

I

C
vudisplk
vudisplkv

B
vudisplk
vudisplku

A
u

+





+
+

+





+
+

+





+
+

+





+
+

=

),(1
),(

),(1
),(

),(1
),(

),(1
),(

113

1121

113

1111

113

1121

113

1111

2

() () ()
() () ()),(1),(),(

),(1),(),(

11311211111

11311211111
2 vudisplkKvudisplkvJvudisplkuI

vudisplkCvudisplkvBvudisplkuA
u

+++++
+++++

=

()
()),(

),(

1132111

1132111
2 vudisplKkJkIkKJvIu

vudisplCkBkAkCBvAu
u

+++++
+++++

= (15a)

Likewise for v2:

()
()),(

),(

1132111

1132111
2 vudisplKkJkIkKJvIu

vudisplGkFkEkGFvEu
v

+++++
+++++

= (15b)

Note the similarities between the 3-D warping equations (14a) and (14b) and equations
(15a) and (15b) that result from texture mapping the pre-warped version of the source
image onto its own image plane. In order to show that these equations are equal, we have
to verify that ()321 CkBkAkD ++= , ()321 GkFkEkH ++= , and ()321 KkJkIkL ++= .
Comparing equations (6a), (6b), (14a) and (14b) we have:

)(cbaA rrr ×⋅= , 0)(=×⋅= cbbB rrr
, 0)()()(21 =×⋅=×⋅−= cbccbCCC rrrrr

&& ,)(cbfD rrr
×⋅=

0)(=×⋅= acaE rrr ,)(acbF ×⋅= rr
, 0)()()(21 =×⋅=×⋅−= accacCCG rrrrr&& ,)(acfH rrr

×⋅=

0)(=×⋅= baaI
rrr , 0)(=×⋅= babJ

rrr
,)()()(21 bacbaCCK

rrrrr&& ×⋅=×⋅−= ,)(bafL
rrr

×⋅=

Recalling the expressions for k1, k2 and k3 computed at the end of section 2

Dcbf
cba
cbfcbaAkCkBkAk =×⋅=






×⋅
×⋅×⋅==++)(

)(
)()(1321

rrr
rr
rrr

rrr

Hacf
acb
acfacbFkGkFkEk =×⋅=






×⋅
×⋅×⋅==++)(

)(
)()(2321

rr
rrr

rr
rrr

(q.e.d.)

Lbaf
bac
bafbacKkKkJkIk =×⋅=






×⋅
×⋅×⋅==++)(

)(
)()(3321

rrr
rrr

rrr
rrr

7

The use of a desired image plane that coincides with both the source image plane and the
polygon to be texture-mapped is just a trick that greatly simplifies the verification of the
identity. Arbitrary desired view plane could have been used instead, and the texture-
mapped polygon mapped onto them, producing correct results. Intuitively, since the
source image has been (pre-) warped to its own image plane, the resulting image has the
correct perspective for the desired viewpoint, and thus can be used to texture map a
polygon that matches the dimensions, position and orientation of the original image
plane. The limitations of this technique are discussed in [Oliveira99].

The coefficients C and G in Equations (13a), (13b), (14a) and (14b) are zero. This is due
to the fact that the image planes of the source and pre-warped images share the same
origin, making)(21 CCc &&r −= . While such equality led to some simplification in the pre-
warping equations, it has no further meaning.

4 Example

This section presents a complete example illustrating the use of the two-step
process. Figures 5 shows a top view of a scene sampled using a parallel projection image
with depth (Figure 5(b)) that is then used as source image in the configuration shown in
Figure 6. While one can use Equation (4) to perform conventional 3-D image warping
from parallel projection to perspective projection images, the two-step process illustrated
in Figure 7 has several reconstruction and filtering advantages over the traditional
approach [Oliveira99].

In Figure 7, the source image is pre-warped to its own image plane using a perspective
projection camera whose COP is at the desired viewpoint (C2) and that shares the image
plane of the source image. Notice the introduction of the vector c ′r in Figure 7. This
configuration is similar to the one represented in Figure 4. The original vectors 2cr , 2ar

and 2b
r

 are not used. Visibility is solved using an occlusion compatible order algorithm
described in [Oliveira 99]. The resulting pre-warped image has correct perspective for the
desired viewpoint and can, therefore, be used as a texture to be mapped onto a
quadrilateral that matches the source image plane in 3-space. The texture-mapping step
takes care of the final planar perspective projection from the texture-mapped polygon
onto the desired view plane (using an inverse mapping). Because the pre-warping
equations present very simple 1-D structure, reconstruction can be performed using 1-D

Figure 5. (a) Actual scene. (b) Sampling of the geometry with a parallel projection image
with depth. (c) Re-projection of the sampled surfaces to 3-D.

(a) (b) (c)

8

image operations along rows and columns and requiring interpolation between only two
pixels at any time. Examples involving the pre-warp of actual 2-D textures are presented
in [Oliveira99].

Acknowledgements

This work was sponsored by CNPq/Brazil – Process # 200054/95. Additional support
provided by DARPA under order # E278 and NFS under grant # MIP-961.

References

[Faugeras93] Faugeras, Olivier. Three-Dimensional Computer Vision: A Geometric
Viewpoint. The MIT Press, 1993.

[Heckbert89] Heckbert, Paul. Fundamentals of Texture Mapping and Image Warping.
Master’s Thesis. Computer Science Division, University of California, Berkeley.
Report No. UCB/CSD 89/516, June 1989.

2cr
C2

C1

destination image plane

source image

Figure 6. Configuration showing a source parallel projection image and a destination
perspective projection image.

destination

pre-warped

C2C2

C1

c ′r
destination

source

Pre-warp

destination

C2

Texture mapping

Figure 7. Two-step process for the configuration shown in Figure 6. The source image is pre-
warped to its own image plane by defining a perspective projection camera with COP at the desired
viewpoint (C2) and whose image plane is shared with the source image. The resulting pre-warped
image is then texture-mapped onto a quadrilateral that matches the source image plane in 3-D,
producing a correct view of the represented surface. The orange regions were interpolated between
red and yellow regions during the 1-D reconstruction process.

9

[McMillan97] McMillan, Leonard. An Image-Based Approach to Three-Dimensional
Computer Graphics. Ph.D. Dissertation. UNC Computer Science Technical Report
TR97-013, University of North Carolina, April 1997.

[Oliveira99] Oliveira, Manuel and Gary Bishop. Relief Textures. UNC Computer Science
Technical Report TR99-015, University of North Carolina, March 1999.

