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Abstract

Conventional texture mapping is a special case of three-dimensional image
warping. Therefore, all transformations embodied in the texture mapping equations are
also embodied in the three-dimensional image warping equations. In this work, we show
that three-dimensional image warping can be factored into a pre-warp step followed by
conventional texture mapping.

1 Introduction

Three-dimensional image warping [McMillan97] provides an efficient way to
compute new perspective views of scenes from reference images extended with depth on
a per pixel basis. Such reference images are usually called source images, while the
reconstructed views are usually referred to as destination images. Given the coordinates
(uy,vy) of pixels in a source image, the coordinates of the corresponding pixels in the
destination image are compute as [McMillan97]:
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where subscript 1 identifies source image variables; 2, the destination image. Vectors a
and b are orthogonal and form a basis for the plane of the image. The lengths of these
vectors are the width and height of a pixel in the Euclidean space, respectively. The
generalized disparity associated with pixel (u;,v;) is 6@,,v). Cis the center of projection
(COP) of the camera, and ¢ is a vector from the COP to the origin of the image plane

(Figure 1).



Figure 3. 3-D image warping. The source is a parallel projection image while the
destination is a perspective projection image.

2 Pre-Warping Equations

Figure 2 shows the representation we use for a parallel projection camera. Vectors
@ and b have the same definition as in the projective pinhole camera shown in Figure 1.
Vector f is a unit vector orthogonal to the plane spanned by @ and b . The tails of all
these vectors are at C, the origin of the image plane. This representation is compatible
with the projective pinhole camera representation used in [McMillan97]. The coordinates
of a point x in Euclidean space (Figure 3) can be expressed as:

a, b, T u,
x=C + a; blj f; ¢ =C +hX, @
ay by [ ) displ(u,,v)



where displ(u;, v;) is the orthogonal displacement or height associated with the pixel
whose coordinates are (u; , v;). Alternatively, using the original formulation for
perspective projection cameras [McMillan97] the coordinates of point X can be written as:

a2i b2i Ci u2
x=C, +1, a,, b, ¢ ||v,|= C,+1,PX, (2)
a, b, c |1

2k 2k k

where t, is a scalar value defined on a per pixel basis. Solving for X,, we get:
C,+t,PX, =C +PX,
tzpz)_(;z :RXI +(C1 _Cz)
X, =P (PX +(C -C) 3)

where = is projective equivalence, that is, the same except for a scalar multiple. In matrix
notation, we have:

"2 - 1 - - “ . .
vl=la, 5 el 5 7l v e -¢)] ()
1 displ(u,,v,)
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Figure 4. Parallel and perspective projection cameras that share the
same image plane (origin, a and b vectors).

By making both image planes coincide (including their origins - Figure 4), 4, =4, =a,
b =b,=b, ¢=(C, - C,) and Equation (4) then becomes:

u2 ul
vzl 5 el s/l v |+l )
1 displ(u,,v,)

The coordinates of the pixels in the destination image are then given by



u_c?(l;xE)ul+l;'(l;><5)vl+E~(5><E)+j7'(Z;XE)displ(ul,vl) (6a)

Y G-(@xbyu, +b-(@xby, +¢-(axb)+ f-(axb)displ(u,,v,)

b G- (Exayu, +b-(Exa)w, +¢-(Exa)+ f-(¢xa)displ(u,,v,) (6b)
i

(@xb)u, +b - (GXb)W, +¢-(axb)+ f -(@xb)displ(u,,v,

Note that many of the scalar triple products in equations (6a) and (6b) are of the form
v-(vxw)or w-(vxw)and therefore reduce to zero. Thus,

y = a- (l;><52u1 +j~(l; xﬁE)displ(ul,vl) (7a)
¢-(axb)+ f-(@xb)displ(u,,v,)

. b-(Exa)w, + f-(@xa)displ(u,,v,) 78)
Y C-(axb)+ f-(axb)displ(u,,v,)

But a-(bx¢)#0is the determinant of the 3x3 matrix whose rows are respectively a, b,
and ¢. Also, ¢-(axb)is the determinant of the same matrix after two permutations of
rows, and therefore has the same value. The same observation holds for 4 -(¢xa). Thus,
dividing both numerators and denominators of equations (7a) and (7b) by a-(bx¢&), we

get

r=u, +kdispl(u,,v,) (3
s=v, +k,displ(u,,v,) )
t =1+ k,displ(u,,v,) (10)
u, == (11a)
t
y, =2 (11b)
t

[oxe)  _[@xa)_[@xa) o _[axb)_[f-(axb)
i-(bx3) a-(bxé) b-(@xa) P G-(bx3) E-(axb)
constants across the entire source image and determine the amount of change in the
coordinates of corresponding pixels on both images (optical flow [Faugeras93]). Notice
that if the displacement displ(u;, vi)= 0, then (uz, v2) = (uy, vy), i.e., the pre-warping
operation is the identity function. Equations (11a) and (11b) are called pre-warping
equations.
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where k=



3 3-D Image Warping as a Pre-Warp Followed by Conventional Texture Mapping

Theorem: 3-D image warping can be factored into a pre-warp followed by conventional
texture mapping.

Proof: Let (u;, v;), (uy, v2) and (u3 v3) represent the coordinates of pixels in the source,

destination, and intermediate pre-warped image, respectively. According to Equations (8)
to (11b), the (u3, v3) coordinates of a pre-warped sample are given by:

_u, +kdispl(u,,v,)

u, = . (12a)
1+ k. displ(u,,v,)

b = v, +k2d.ispl(u1,v1) (12b)
1+ k. displ(u,,v,)

Texture mapping is a projective mapping defined as [Heckbert891]:
Au, +Bv, +C

u, = AT O T (13a)
Iu +Jv, + K
Eu + Fv, +

_Eu+Fv +G (13b)

v, =
Iu, +Jv, + K
where A, B, C, E, F, G, I, J and K are constants for a particular mappingl.

The 3-D image warping equations that use parallel projection source images (equations
(6a) and (6b)) can be rewritten as:

_ Au, + Bv, +C+ Ddispl(u,,v,)

u, = (14a)
Iu, +Jv, + K+ Ldispl(u,,v,)

_ Eu +Fv, + G+ Hdispl(u,,v,)

v, = : (140)
Iu, +Jv, + K + Ldispl(u,,v,)

If displ(u;, v;) = 0 for all pixels, equations (14a) and (14b) reduce to equations (13a) and
(13b), respectively, and 3-D image warping reduces to texture mapping. In other words,
texture mapping is a special case of the 3-D image warping for which all samples happen
to be on the image plane [McMillan97]. Therefore, it is not surprising that coefficients A,
B,C,E, F, G, L, J, and K in equations (14a) and (14b) are exactly the same as the ones in
equations (13a) and (13b).

! Notice that Equations (13a) and (13b) used here represent forward texture mapping, since both the pre-
warping equations (Equations (11a) and (115)) and the full warping equation (Equation (4)) are forward
operations. An actual implementation of the two-step process uses inverse texture mapping [Oliveira99].



Let pre-warped images be used as input for texture mapping operation. By substituting
equations (12a) and (12b) into equations (13a), we get

4 u, +kdispl(u,,v,) +B v, + k,displ(u,,v,) L C
1+ k,displ(u,,v,) 1+ k,displ(u,,v,)

u, = : :
% + k displ(u,,v,) e + k,displ(u,,v,) LK
1+ k,displ(u,,v,) 1+ k. displ(u,,v,)
L Alu, + kdispl(u,,v,))+ B(v, + k,displ(u,,v,))+ C(1 + k,displ(u,,v,))
, =

Hu, + kdispl(u,,v, ))+ J(v1 + k,displ(u,,v, ))+ K(l + k., displ(u,, vl))

= Au, + Bv, + C + (4k, + Bk, + Ck, )displ(u,,v,) (15a)
Y Iu, + v, + K+ (T, + Jk, + Kk, )displ(u,,v,)

Likewise for v;:

_Eu +Fv +G+ (Ek, + Fk, + Gk, )displ(u,,v,)
Tu, + v, + K + (Ik, + Jk, + Kk, )displ(u,,v,)

(15b)
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Note the similarities between the 3-D warping equations (14a) and (14b) and equations
(15a) and (15b) that result from texture mapping the pre-warped version of the source
image onto its own image plane. In order to show that these equations are equal, we have
to verify that D=(dk,+Bk,+Ck;), H =(Ek, +Fk,+Gk;), and L=(lk, +Jk, + Kk,).
Comparing equations (6a), (6b), (14a) and (14b) we have:

A=a-(bx7), B=b-(bx&)=0, C=(C,=C,)-(bx&)=¢-(bx&)=0, D=f-(bx?)
E=ad-(¢xa)=0, F=b-(¢xa), G=(C,-C,)-(¢xa)=¢-(Exa)=0, H=f-(¢xa)
I=ad-(@xb)=0, J=b-(Gxb)=0, K=(C,—C,)-(@xb)=¢-(axb), L=f-(axbh)

Recalling the expressions for k;, k> and k; computed at the end of section 2

Ak, + Bk, +Ck, = Ak =a-(Bxo)| LCX) |- 7. 5xe)=D

a-(bx7)

Ek, + Fk, + Gk, = Fk, =b - (¢ X d) J-(cxa) =f-(¢xa)=H
b-(¢xa)

Ik, + Jk, + Kk, = Kk, = ¢ - (axb) J-(axb) =f-(axb)=L
¢-(axb)

(q.e.d)



The use of a desired image plane that coincides with both the source image plane and the
polygon to be texture-mapped is just a trick that greatly simplifies the verification of the
identity. Arbitrary desired view plane could have been used instead, and the texture-
mapped polygon mapped onto them, producing correct results. Intuitively, since the
source image has been (pre-) warped to its own image plane, the resulting image has the
correct perspective for the desired viewpoint, and thus can be used to texture map a
polygon that matches the dimensions, position and orientation of the original image
plane. The limitations of this technique are discussed in [Oliveira99].

The coefficients C and G in Equations (13a), (13b), (14a) and (14b) are zero. This is due
to the fact that the image planes of the source and pre-warped images share the same

origin, making ¢=(C, —C,). While such equality led to some simplification in the pre-
warping equations, it has no further meaning.

4 Example

This section presents a complete example illustrating the use of the two-step
process. Figures 5 shows a top view of a scene sampled using a parallel projection image
with depth (Figure 5(b)) that is then used as source image in the configuration shown in
Figure 6. While one can use Equation (4) to perform conventional 3-D image warping
from parallel projection to perspective projection images, the two-step process illustrated
in Figure 7 has several reconstruction and filtering advantages over the traditional
approach [Oliveira99].
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(a)
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Figure 5. (a) Actual scene. (b) Sampling of the geometry with a parallel projection image
with depth. (¢) Re-projection of the sampled surfaces to 3-D.

In Figure 7, the source image is pre-warped to its own image plane using a perspective
projection camera whose COP is at the desired viewpoint (C,) and that shares the image
plane of the source image. Notice the introduction of the vector ¢’in Figure 7. This
configuration is similar to the one represented in Figure 4. The original vectors ¢,, d,

and b, are not used. Visibility is solved using an occlusion compatible order algorithm

described in [Oliveira 99]. The resulting pre-warped image has correct perspective for the
desired viewpoint and can, therefore, be used as a texture to be mapped onto a
quadrilateral that matches the source image plane in 3-space. The texture-mapping step
takes care of the final planar perspective projection from the texture-mapped polygon
onto the desired view plane (using an inverse mapping). Because the pre-warping
equations present very simple 1-D structure, reconstruction can be performed using 1-D
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image operations along rows and columns and requiring interpolation between only two

pixels at any time. Examples involving the pre-warp of actual 2-D textures are presented
in [Oliveira99].

G /IVIVI\ /MVI\ source image

destination image plane

Figure 6. Configuration showing a source parallel projection image and a destination
perspective projection image.

source pre-warped

 destination  destination

Texture mapping

Figure 7. Two-step process for the configuration shown in Figure 6. The source image is pre-
warped to its own image plane by defining a perspective projection camera with COP at the desired
viewpoint (C,) and whose image plane is shared with the source image. The resulting pre-warped
image is then texture-mapped onto a quadrilateral that matches the source image plane in 3-D,
producing a correct view of the represented surface. The orange regions were interpolated between
red and yellow regions during the 1-D reconstruction process.
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