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ABSTRACT

We have developed a new method for transforming images with per-pixel displacements into
textures that have correct parallax when texture-mapped, in the usual way, onto polygons. Our new
method results from factoring the 3-D image-warping equations of McMillan and Bishop into a pre-
warp followed by standard texture mapping. The pre-warp handles only the parallax effects resulting
from the direction of view and the displacement of texture elements; the subsequent texture-mapping
operation handles scaling, rotation, and the remaining perspective transformation.

The pre-warp equations have a very simple 1-D structure that enables the pre-warp to be
implemented using only 1-D image operations along scan lines and columns and requires interpolation
between only two adjacent pixels at a time. This allows efficient implementation in software and should
allow a simple and efficient hardware implementation. The texture-mapping hardware already very
common in graphics systems efficiently implements the final texture mapping stage of the warp.

We demonstrate a software implementation of the method and show how our relief textures can
be used both to add realistic surface detail and to render complex scenes and objects.

Figure 1. Scene represented with three polygons
using conventional texture mapping. The red lines
show the borders of the polygons.

Figure 2. Same scene rendered with three height-
field textures and five polygons, from the same
viewpoint as in Figure 1. The three original
polygons were preserved. Note the dormers.
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1 INTRODUCTION

Texture mapping has long been used to enhance the realism of computer-generated images [9] by

adding 2-D details to object surfaces. For instance, it can be used to correctly simulate a picture on a

wall, or the label on a can. Unfortunately, texture mapping is not as effective for adding 3-D details to a

surface. When seen by a moving observer, or by a still observer at an oblique angle, the absence of

parallax reveals the flatness of the surface.  Consider, for example, the scene shown in Figure 1; it is

easy to see that the pictures of the houses have been mapped onto flat polygons.

A much more convincing illusion of 3-D surface detail can be achieved by using a height field in

conjunction with a texture map (Figure 2). A height field is a scalar field of distances between surface

points and their orthogonal projections onto a plane that forms its algebraic basis.

Unfortunately, rendering height fields is much more difficult than texture mapping. The planar-

projective transform of texture mapping has a very convenient inverse formulation. This allows direct

computation of texture pixel coordinates from screen coordinates, thus allowing efficient

implementation as well as accurate re-sampling and filtering. Height-field rendering allows no such

inverse formulation directly. Multiple samples from the height field may be mapped to the same pixel in

the final image, depending on the surface shape and the viewpoint. Assuring correct visibility requires

either a ray-tracing strategy [12] or a direct forward mapping (i.e., 3-D image warping [12]).

This paper describes a new approach for texture mapping that uses relief textures (textures

extended with an orthogonal displacement per texel) to produce correct parallax effects. The results are

correct for viewpoints that are static or moving, far away or nearby. Our approach is very simple: the

relief texture to be mapped onto a polygon is first converted into an ordinary texture using a surprisingly

simple forward transform. The resulting texture is then mapped onto the polygon using standard texture

mapping.

First, we re-parameterize the height field such that its basis polygon coincides with the polygon

on which it is to be mapped. Then we convert from the relief texture to an ordinary texture map by

projecting the height field onto its own basis rectangle from the current viewpoint. The resulting texture

has correct parallax for that polygon.
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We implement the conversion from relief texture to ordinary texture using the 3-D warping

equations of McMillan and Bishop [12]. Their equations reduce to a pair of simple 1-D warping

functions for this special case. These 1-D warping functions work in texture coordinates to handle the

parallax and visibility changes that result from the 3-D shape of the height-field surface. The subsequent

texture-mapping operation handles the transformation from texture coordinates to screen coordinates.

In our relief textures, displacements are the distances from samples to the polygon onto which

they are mapped to. Texels with zero displacement are on the surface of the polygon exactly like

ordinary textures. We assume that a relief texture represents a continuous surface. In case the surface is

not continuous, additional continuity information can be provided, or multiple relief textures can be used

to model the surface.

Using a software implementation of our approach, we demonstrate that this technique enhances

image quality by adding viewpoint motion parallax to textures, while keeping a low polygon count for

the scene description. We also show that our method can be used to produce correct views of complex

objects modeled as sets of relief textures.

2 RELATED WORK

Shade et al. [19] enhance the descriptive power of traditional sprites with out-of-plane

displacements per pixel. They use a two-step-rendering algorithm to compute the color of pixels in the

destination image from pixels in a source image. In the first step, the displacement map associated with

the source image is forward mapped using a 2-D transformation to compute an intermediate

displacement map d3(x3, y3) [19], which is then stored for later use. In the second pass, each pixel (x2,

y2) of the desired image is transformed by a homography (planar perspective projection) to compute

intermediate coordinates (x3, y3). Such coordinates are used to index the displacement map d3(x3, y3)

computed in the first pass. The retrieved displacement value is then multiplied by the epipole e21 and

added to the result of the homography, producing the coordinates (x1, y1) in the source image. Such

coordinates are used to compute the color of the destination pixel (x2, y2) by filtering the color of pixels

in the neighborhood of (x1, y1) in the source image. It is unclear from the paper how the intermediate

displacement map d3 is computed.
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A variant of the same algorithm consists of, in the first step, forward mapping the displacement

map associated with the source image I1 to an intermediate image I3 and for each pixel the differences

u3(x3, y3) = x3 – x1 and v3(x3, y3) = y3 – y1 are computed and stored for later use. During the second pass

of the algorithm, each pixel (x2, y2) of the desired image is transformed by a homography to compute

intermediate coordinates (x3, y3). Such coordinates are added to (u3(x3, y3), v3(x3, y3)) to produce the

coordinates (x1, y1) in the source image, whose neighborhood is then filtered to produce the color for (x2,

y2).

Although the approach presented by Shade et al. is expected to produce smoother rendering than

traditional forward mapping splat-based techniques, the reconstruction is done using splats and holes

may still happen.

In our method, each coordinate of the destination pixel depends only on its counterpart in the

original pixel (i.e., u2 does not depend on v1, and v2 does not depend on u1). This enables our approach

to be implemented efficiently as 1-D operations for both reconstruction and filtering. In addition, we use

standard texture mapping hardware to perform the final planar perspective warp. Whereas Shade, et al.

state that sprites with depth should be used as rendering primitives only when viewed from a distance,

the textures produced with our approach can be used even when the viewpoint is very near to the

polygon, because all holes are completely filled during the reconstruction process.

 A nailboard [17] is a texture-mapped polygon augmented with a displacement value per

texel specifying how much its depth deviates from the depth of the represented view of an object. The

idea behind nailboards is to take advantage of frame-to-frame coherence in smoth sequences. Thus,

instead of rendering all frames from scratch, more complex objects are rendered to separate buffers and

re-used as sprites as long as the geometric and photometric errors remain below a certain threshold [17].

An error metric is therefore required. The displacement values associated with each texel are used to

modulate the depth buffer of the final composite frame. In conjunction with partially transparent

polygons, the associated displacements are used to solve visibility among other nailboards and

conventional polygons.

Meyer and Neyret [13], and Schaufler [18] use stacks of 2-D textures with transparency to obtain

parallax effects using conventional texture-map hardware.
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Debevec, Taylor, and Malik [3] used view-dependent texture mapping to render new views of a

scene, by warping and compositing multiple original images of the same scene. Debevec, Yu, and

Borshukov [4] use visibility preprocessing, polygon-view maps, and projective texture mapping to

produce a three-step view-dependent texture mapping that further reduces the computational cost and

produces smoother blending.

3 TWO-PASS 1-D TRANSFORMS

Image operations such as texture mapping and image warping involve transformations among

pairs of coordinates. Catmull and Smith [1] showed how affine and perspective transformations applied

to planar surfaces and to bilinear and biquadratic patches can be decomposed into a series of 1-D

transformations (shears) over rows and columns. Later, Smith [20] showed that texture mapping onto

planar quadric and superquadric surfaces, and planar bicubic and biquadratic image warps are two-pass

transformable. He also coined the expressions parallel warp and serial warp to refer to the original 2-D

map and to the composition of 1-D transforms that accomplishes a similar result, respectively.

Assuming the row pass takes place first, a two-pass serial warp1 is accomplished by a horizontal

shear followed by a vertical shear operation applied to the image.  The horizontal pass shifts the

elements of a row by variable amounts. Likewise, the vertical pass moves the elements along the

columns of the resulting image by possibly different amounts.

Let us and vs be the coordinates of a source image, and ut and vt be the target coordinates in the

desired image. Given two functions H and  V, a parallel warp  can  be  defined  such  that (ut, vt) =

(H(us,vs), V(us,vs)). A serial equivalent of the parallel transformation can be obtained by defining a

composite mapping hv o . Let the horizontal shear h preserve the vs coordinates of the original pixels:

),()),(),,((),( 21 stssssss vuvuhvuhvuh == . Since )),(( ss vuhv  should produce the desired result, the

vertical warp must preserve ut computed in the first pass. Similarly, v can be defined as

),()),(),,((),( 21 tsssssss vuvuvvuvvuv == . In this case, one needs to compute 1

1

−h , such that

=)),(( ss vuhv  ==− )),(),,(())),,((),,(( 21

1

121 ssstsstst vuvvuvvvuhvvuv ),( tt vu .

                                                          
1 Some transformations may involve more than two passes [16]. In this work, we are interested in two-pass
decompositions.
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One difficulty associated with serial warps is to find closed-form solutions for 1

1

−h . Sometimes,

they do not exist at all [1]. In these cases and also when there are multiple such solutions, numerical

techniques are preferred [20]. The computation of 1

1

−h  can be avoided if the original coordinates of

pixels in the source image are stored in a lookup table. This idea first appeared in [1] and was later

explored by Wolberg [22]. Later, we will show that in our approach, the coordinates of pixels in the

desired image are computed independently from each other (section 4.1) and there is no need to recover

us. Such a property makes our approach even more attractive for hardware implementation since no

extra storage is required.

The decomposition of a mapping into a series of independent 1-D operations presents several

advantages over the original 2-D transform [6][23]: First, the resampling problem becomes simpler.

Reconstruction, area sampling and filtering can be efficiently done using only two pixels at a time.

Secondly, it lends itself naturally to digital hardware implementation. Thirdly, the mapping is done in

scanline order both in scanning the input and output images. This leads to efficient data access and

considerable savings in I/O time. Also, the approach is amenable to stream-processing techniques such

as pipelining and facilitates the design of hardware that works at real-time video rates [23].

3.1 Difficulties Associated with Serial Warps

Serial warps suffer from a problem commonly referred to as a bottleneck, the collapse of

the intermediate image into an area much smaller than the final image [1]. Bottleneck can happen if the

first pass is not a one-to-one mapping (i.e., not injective). In such cases, entire rows in intermediate

image can collapse into points, or the whole image can collapse into a line. When one of these problems

happen, the final image is usually disrupted, because even though its final shape could still be recovered

in the second pass, some color information has been lost. Two solutions proposed by [1] are to switch

the orders between the horizontal and vertical passes, and to transpose the image before applying a

complementary transformation. These simple solutions seem work for mappings involving planar

surfaces. Given the nature of 3-D image warping, this phenomenon of area contraction followed by area

expansion do not happen, although the problem of multiple samples mapping to the same pixel in the

intermediate image are not infrequent. For such cases, we have proposed a general solution that consists

of interspersing the horizontal and vertical passes, and is explained in section 4.3.2.
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Another difficulty associated with serial warps is known as foldover [1] and is caused by non-

injective 2-D mapping. For example, perspective projections of non-planar patches can cause multiple

samples to map to the same pixel on the screen, depending on the viewpoint. Traditionally, this problem

has been handled storing color and depth information in multiple layers [1] [22]. In the second pass, the

depth information is used to perform the 1-D transformations in back to front order. The algorithm

described in section 4.3.2 also handles an arbitrary number of foldovers without requiring extra storage

or z comparisons.

4 WARPING RELIEF TEXTURES

Height-field rendering may result in a many-to-one mapping. Thus, no inverse operation can be

directly applied. Our approach recasts the 3-D image warping operation as a two-phase process: a first

step that handles parallax only by projecting the height field onto its own basis, followed by an inverse

mapping operation applied to the resulting flat image.

Our first-stage is based on the methods of McMillan and Bishop [12]. The source image for their

3-D warp is the relief texture augmented with an orthographic camera model. Our destination image is

the 2-D texture we are producing with a perspective camera model. These two cameras share a common

image plane (the basis for the relief texture). Thus, the 3-D image warp converts the orthographic relief

texture into a 2-D texture with correct perspective.

Note that since the second phase (texture mapping) cannot handle visibility changes, it is

required that the position and orientation of the image plane used to produce the texture in the first step

are the same as the corresponding position and orientation of the polygon that will be texture-mapped. In

such a configuration, the texture is trivially correct, and the final texture mapping stage handles the

planar perspective warp and the scaling.

Our method takes advantage of the observation that McMillan and Bishop’s warping equations

can be greatly simplified if the desired image plane is parallel to the original one, with no relative

rotation between them. Pixel coordinates in the destination image are given by [12]:

),()()()()()(

),()()()()()(

11222122112211221

11222122112211221
2

vubaCCbacvbabubaa

vucbCCcbcvcbbucba
u

δ
δ

rr&&
rrrrrrrrr

rr
&&rrrrrrr

×⋅−+×⋅+×⋅+×⋅
×⋅−+×⋅+×⋅+×⋅=
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),()()()()()(

),()()()()()(
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v
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where subscript 1 identifies source image variables; 2, the destination image. Vectors a
r

 and b
r

are

orthogonal and form a basis for the plane of the image. The lengths of these vectors are the width and

height of a pixel in the Euclidean space, respectively. The generalized disparity associated with pixel

(u1,v1) is ),( 11 vuδ . C& is the center of projection (COP) of the associated projective pinhole camera. c
r

is a

vector from the COP to the origin of the image plane (Figure 3  (left)).

4.1 Pre-Warping Equations

A detailed derivation of the pre-warping equations is presented in [15], where the authors show

that the 3-D image warping equations of McMillan and Bishop [12] can be factored into a pre-warp

followed by conventional texture mapping. Part of the material presented in [15] is reproduced here for

completeness.

Figure 3 (right) shows the representation we use for a height field. Vectors a
r

 and b
r

have the

same definition as in the projective pinhole camera shown in Figure 3 (left). Vector f
r

 is a unit vector

orthogonal to the plane spanned by a
r

 and b
r

. The tails of all these vectors are at 1C& , the origin of the

height field. This representation is compatible with the projective pinhole camera representation used in

[12]. A point x& in Euclidean space can be described as:
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Figure 3 Perspective (left) and parallel (right) projection camera representations.
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where displ(u1, v1) is the displacement or height associated with the pixel whose coordinates are (u1 , v1).

The original formulation for perspective projection images, as defined in [12] (Figure 3 (left)) is:

(2)

where t2 is a scalar value defined on a per pixel basis. Solving for 2X
r

, we get:

where =&  is projective equivalence, that is, the same except for a scalar multiple. In matrix notation, we

have:
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Note that many of the scalar triple products in the u2 and v2 expressions are of the form

)( wvv
rrr ×⋅ or )( wvw

rrr ×⋅ and therefore reduce to zero.  Thus,

(6a)

),()()(
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r

.
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the same value. The same observation holds for )( acb
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denominators of equations (6a) and (6b) by )( cba
rrr ×⋅ , we get

where k1, k2, and k3 are constants across the entire height field and determine the amount of change in

the coordinates of corresponding pixels in both images (optical flow [5]). Equations (10a) and (10b) are

called pre-warping equations.
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Notice that if the displacement displ(u1, v1)= 0, (u2, v2) =  (u1, v1), and no pre-warping is

necessary. For cases in which height fields can be constructed with many zero displacements (e.g., the

brick relief texture used to render Figures 13 and 14), the computational savings can be considerable.

4.2 Occlusion-Compatible Order for Height Fields

The COP of a parallel projection image is at infinity, and its epipole is the projection of the

destination COP onto the plane of the parallel projection image (Figure 5). By similarity of triangles,

whenever two samples fall along the same viewing ray, the one whose projection is closer to the epipole

is closer to the viewer (Figure 5). Thus, an occlusion-compatible order (essentially a painter’s algorithm)

for height fields is obtained by warping pixels from the borders towards the epipole.

4.3 Reconstruction

The previous sections have shown how to determine the coordinates of infinitesimal points in the

destination image from points in the source image. Determining these is only the beginning of the

image-warping process. The more expensive step is reconstruction and resampling onto the pixel grid of

the destination image. The simplest and most common approaches to reconstruction and resampling are

splatting and meshing. Splatting requires spreading each input pixel over several output pixels to assure

full coverage and proper interpolation. Meshing requires rasterizing a quadrilateral for each pixel in the

NxN input texture. The multiple writes of splatting and the setup overhead of rasterizing tiny

Figure 5. For a parallel projection image, the epipole is the projection of the desired COP onto the plane of
the parallel projection image. An occlusion compatible order is obtained by always warping from the borders
towards the epipole. Triangles ABC and A’B’C are similar.

desired image plane desired COP

epipole
warping direction

A

B

B’

A’ C

Viewing ray



Relief Textures  Oliveira and Bishop

12

quadrilaterals makes either approach very expensive. Splats usually involve additional costs associated

with splat-shape calculation and antialiasing.

The special structure of our pre-warp equations allows us to implement reconstruction and

resampling as a two-pass process using 1-D transforms in scan-line order [1] [20] [23] [6]. The reader

should make a clear distinction between the two steps of our method: pre-warping followed by texture

mapping, and the two phases used to implement the pre-warping step itself. Such phases consist of a

horizontal pass and a vertical pass. Figure 6 shows this hierarchy. For clarity, we first describe a true

two-pass approach that may produce occlusion errors, then a pipelined approach that avoids these errors.

4.3.1 Two-Pass Pre-Warp Implementation

Assume we do the horizontal pass completely before beginning the vertical pass; either order is

acceptable and either may be advantageous [1]. Each scan line is processed independently with all

output pixels going to the same scan line in the output texture. Our warping equation (Eqs. 7, 9, and

10a), shows that the output u2 (column coordinate) is a function of only the input u1 and the input

displacement, not the input row number.

The elements of each row are processed in occlusion-compatible order by starting with the

element furthest from the epipole and working towards the epipole. We show the case when the epipole

is to the right and the warp is proceeding left to right. Figure 7 shows the pseudocode for warping one

pixel. For the true two-pass warp, the “get” and “put” operations in the pseudocode are reads and writes

of the pixel at the indicated index position. For each successive pixel in the input we compute the output

Relief texture
mapping algorithm

Pre-warping Texture mapping

horizontal pass vertical pass

Figure 6. Structure of the two two-pass height-field texture-mapping algorithm.
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element index based on the input element index and the displacement of the pixel. If the resulting

element index is to the right of the previous coordinate, we linearly interpolate the color and

displacement between the previous and current pixel values, sampling at each output pixel center. We

store both the color and the displacement for the output pixel because the next pass needs both. If the

resulting element index is to the left of the previous element index this is an occluded region in the

output (a back facing part of the map) and no writes are required. Antialiasing can be implemented using

the method described in [6].

After the horizontal warp has processed all the rows, the same algorithm is applied to the

columns of the output. This pass handles the vertical shifts of pixels.

We have compared this true two-pass implementation to a pre-warp using mesh-based

reconstruction, since the latter is the most common reconstruction method used in computer graphics.

The results are almost indistinguishable as can be seen on the accompanying videotape. The differences

are limited to areas in the destination image that are not represented in the source image.  For example,

interpolation across a depth discontinuity can produce different results for mesh reconstruction than for a

two-pass 1-D reconstruction. This difference is only noticeable when there is significant change in the

texture pattern across the interpolated region. Such artifacts appear to be inherent in serial warps when

working across such discontinuities. We have not found these differences to be a significant problem in

the models we have used.

4.3.2 Pipelined Pre-Warp Implementation for Correct Visibility

The straightforward two-pass implementation may cause information to be lost under certain

conditions. For example, in Figure 8, most of the plane has zero displacement, thus those pixels have the

Figure 7. Pseudocode for left-to-right warp and construction of one pixel with u (or v) index=I, color = C and
displacement D.

get Iin, Cin, Din

Inext = Equation_10a(Iin,Din)
for (Iout = integer(Iprev+1); Iout ≤ Inext; Iout++)

linearly interpolate Cout between Cprev and Cin

linearly interpolate Dout between Dprev and Din

put Iout, Cout, Dout

Iprev=Inext; Cprev=Cin; Dprev=Din
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same coordinate in both the input and output textures. The pixels in the diagonal slot are below the plane

and should move down and to the right because the epipole is in the lower right corner. Unfortunately,

when pixels move to the right during the horizontal pass, they are occluded by pixels on that same row.

The vertical pass has no information about the occluded pixel and thus cannot move it down to the final

location2. Notice, however, that these situations are restricted to isolated pixels and cannot be considered

as true bottlenecks in the sense of [1], which are characterized by a contraction followed by an

expansion of the image area. Foldovers, on the other hand, are due to the three-dimensional nature of the

represented surfaces and, therefore, may happen.

Interspersing the horizontal and vertical warps eliminates these visibility problems. Process the

rows in occlusion-compatible order by starting with the row furthest from the epipole and working

towards the epipole. As before, process the pixels on each row in occlusion-compatible order. As the

horizontal warp produces each output pixel and displacement, it hands the pixel to the vertical warp

process for that column. The vertical warp immediately interpolates the pixel into the appropriate

column of the output texture. Each vertical warp process receives its pixels in occlusion-compatible

order so correct visibility is preserved in the output. The pseudocode in Figure 7 also applies to the

pipelined warp if the “get” operation in the vertical process for each column waits for the output of the

corresponding “put” operation in the horizontal process. The code for the vertical process is identical to

the code for the horizontal process except for the last line in Figure 7. In the vertical process, the

registers Iprev, Cprev, and Dprev hold the values from the previous row until the current row is complete.

This is because the horizontal process may map multiple pixels to the same vertical process.

                                                          
2 Notice that the situation depicted in Figure 8 produces no visual artifact in the final image. It was used only to

Figure 8.  Two-pass 1-D problem. The green region represents zero displacements. The yellow area
corresponds to a deep region. Because the epipole is at the lower right corner, texel t should move right (in the
horizontal pass) and then down (in vertical pass).  But during the horizontal pass, it will be occluded by a texel
with zero displacement and no information will be available for the vertical pass.

epipole

texel  t
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There are some advantages in computing the two coordinates of the pre-warped pixel in the first

step of the algorithm both in the two-pass and in the pipelined pre-warping implementation. In this case,

Equation (9) is evaluated only once per pixel instead of twice. Also, minor artifacts due to the non-linear

nature of Equations (10a) and (10b) are avoided. For instance, when Equation (10b) is evaluated with

linearly interpolated displacement values (computed in the first step) for filling holes caused by

expansions of the relief texture in some regions, straight lines may become curved. Notices that in this

situation the algorithm is synthesizing (interpolating) some texture to fill holes in regions not visible in

the original relief texture.  The artifacts may be noticed if the expanded regions are relatively large with

respect to the size of the texture itself. Such artifacts are completely eliminated by passing linearly

interpolated values obtained from the actual row coordinates of the pixels to the second step. It worth

mentioning that even when linearly interpolated values are used, it is still very difficulty to notice

artifacts, unless the texture contains stripes and the associate height field presents large variations in

displacements in these regions. Examples shown in Figures 13, 14 and 21 were computed using

interpolated displacement values.

4.4 Multiple Instantiation of Height Fields

Often a single texture is used to add detail to multiple surfaces. For example, a brick texture

might be used for all the exterior walls of a building. This section explains how relief textures can be

used in the same way.

Let P be a polygonal representation of a scene S. For simplicity, assume the existence of a set of

planar rectangular quadrilaterals (quads, for short) Pq ⊆ P that will be texture-mapped with instances of

pre-warped relief texture. Transparency (alpha channel equal to zero) is used if the resulting texture is

not rectangular.

Each quad in Pq has an associated relief texture, and each relief texture can be associated with an

arbitrary number of quads simultaneously. Also, each vertex of a quad has an associated pair of texture

coordinates (s,t). As the scene model is loaded, for each quad qi∈Pq, we compute ii vC 11 =& ,

 ))(*/()( 12 icrsvva iiii −=r
, ))(*/()( 10 irrtvvb iiii −=

r
,  and )( iii banormalizedf

rrr
×= , where jiv is the jth

                                                                                                                                                                                                        
illustrate the nature of a problem that may happen in some configurations.
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vertex of quad qi , 10 ≤< irs  is the range of the texture parameter s ( )()( 12 iii vsvsrs −= ), 10 ≤< irt  is

the range of the texture parameter t ( )()( 10 iii vtvtrt −= ), and c(i) and r(i) are, respectively, the number

of columns and rows of the associated relief texture. rsi and rti are used as scaling factors for the cases in

which the whole parameter space for s and t are not used. Figure 13 (right) illustrates a situation for

which the same relief texture is applied to two quads of different dimensions (one of the quads is half as

wide as the other one). The scaling by rs = 0.5 produces bricks of the same size in the smaller wall, for

which the values of parameter s only varies from 0 to 0.5.

At rendering time, the values of 1C& , a
r

, b
r

, and f
r

of the associated relief texture are replaced

with those from quad qi. This has the effect of positioning the relief texture at the same place and

orientation as qi with respect to the desired viewpoint. The result of the pre-warping operation is an

image that when texture-mapped on qi produces the desired result. The texture coordinates associated

with the vertices of qi are used to select the portion of the image to be applied.

Our current implementation uses OpenGL ModelView matrix [24] to transform iC1
& , ia

r
, ib

r
, and

if
r

, which are then used to replace the corresponding values of the associated height field parameter

vectors. We copy the transformation matrix. The translational component of the transformation is saved

and then zeroed. The resulting rotation matrix is used to multiply the 4x4 matrix ][ 1 iiii fbaC
rrr&

(with the fourth coordinate of all vectors set to 1). The translational component is then added to the

transformed value of iC1
& .

The technique described is applied to all quads associated with relief textures. Notice that by

performing the pre-warping operation with vectors associated to the quads, the relief texture is not

bound to any particular position or orientation in the scene and can be used with an arbitrary number of

quads, producing the desired parallax effect in all cases.

4.5 Representing More Complex Shapes

Several researchers have used image-based approaches to represent complex object shapes [10]

[7] [8] [18] [14]. Relief textures may also be used to render complex shapes.
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Consider an object represented by six relief textures (the faces of a bounding box) as shown in

Figure 9. These relief textures can be used to produce new views of the object when pre-warped to their

own base polygons. Notice that, although we pre-warp to multiple polygons, since a single viewpoint is

used, all images are consistent with each other. However, warping each relief texture to its own basis

polygon is not enough to produce the desired result. Figure 10 illustrates the problem using a top view

representation of Figure 9. Areas sampled only by one face can project onto others, depending on the

viewpoint. If such areas are not appropriately mapped to the correct faces, holes will appear.

Our solution to this problem is to fill the holes by pre-warping neighbor faces to the destination

face. The perpendicular relationship between faces allows the use of the same pre-warping functions

described in section 4.1. Figure 10 shows a division of the object space into numbered regions. The

concept will be explained in 2-D. Its generalization to 3-D is straightforward. If the viewer is in an odd

region, we classify the three closest faces as front, left, and right with respect to the viewpoint. Thus, for

instance, if the viewer is in region (1), face a is front, face d is left, and face b is right.  Then, faces left

and right are pre-warped to the image plane of front. Then front is pre-warped to its own image plane. If,

however, the viewer is an even region, the two closest faces are classified as left and right. For instance,

Figure 9. Object represented as six relief textures.

Figure 10. Top view of the object shown in Figure 9. Samples from one face can project onto another. Letters
identify the faces, and numbers identify regions used to define the faces that should be pre-warped from each
region.

(1) (2)

(3)

(4)(5)(6)

(7)

(8)

a

b

c

d
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if the viewer is in region (8), face d is left and face a is right. left is pre-warped to the image plane of

right, then right is pre-warped to its own image plane. Similarly, right is pre-warped to the image plane

of left, and then left is pre-warped to its own image plane. Figure 11 presents the pseudocode for the

hole-filling algorithm. Notice that this algorithm automatically implements a back-face-culling strategy,

since it explicitly defines a set of at most three (in the full 3-D version of the algorithm) polygons that

need to be displayed.

The right-angle relationship between neighbor faces can be exploited to pre-warp a face to its

neighbor image plane as if it were the neighbor face itself. When the viewer is in an odd region, the

displacement values associated with left and right (Figure 12) are converted to column indices for front,

while their column indices can be used as displacement for front. Thus, left and right can be pre-warped

to front as if they were front itself. The even region is similar.

If viewer is in an odd region then
     pre-warp left to front’s image plane;
     pre-warp right to front’s image plane;
     pre-warp front to its own image plane;
else
     pre-warp left to right’s image plane;
     pre-warp right to its own image plane;
     pre-warp right to left’s image plane;
     pre-warp left to its own image plane;
endif

Figure 11. Pseudocode for filling holes of object.

Figure 12. Height values from left and right are mapped to columns for front. Columns from left and right
are mapped to height for front.

a
r

a
r

front

left right

a
r

a
r

viewpoint
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5 RESULTS

Using the algorithms described in this paper, we implemented in C++ a software test bed for

warping relief textures. We tested on a 400MHz Pentium II processor with 128 MB of memory, and an

Intergraph Intense 3-D Pro 3410-T graphics card. For this application, it is not clear whether the way the

texture memory is managed by the graphics card is of any help. Software implementation of our two-

step warping process will work best with the new generation of graphics accelerators that store texture in

main memory. For example, the SGI O2 and the new SGI Visual Workstations for Windows NT

integrate the memory and graphics system to allow very high bandwidth access to memory from both

CPU and graphics accelerator. Pre-warping the textures on one processor of a multi-processor system,

then mapping the texture directly from memory onto polygons should allow very efficient

implementation.

Figure 13 (left) shows a 256x256-pixel original texture used to produce a relief texture for a

brick wall. The displacement values of the brick pixels are zero while the mortar pixels have unit

displacement. Figure 13 (right) shows the result of applying the same relief texture to two polygons of

different sizes.

Figures 14 (left) shows an oblique view of a wall modeled as a single polygon and texture-

mapped with the corresponding pre-warped relief texture shown to the right. Notice the illusion of three-

dimensionality especially at the edges of the wall. The correct parallax effect allows the mortar to be

visible only at some points of the image. This single wall is rendered at about 10.67 frames per second

using a software implementation with a two-pass 1-D reconstruction. Conventional texture mapping

with the use of the graphics accelerator achieves an average of 44.5 frames per second. Our current

implementation emphasizes code clarity as opposed to speed. Thus, we expect to significantly increase

the frame rates as a result of code optimization.

 Figure 15 shows the images associated with four height-field textures of a statue

originally modeled with 35,280 polygons. Despite of its complex shape, our technique produces very

realistic renderings of the object at interactive rates. Figure 16 (left) shows a reconstructed view of the

statue obtained by texture mapping two quads (left and right – section 4.5) whose boundaries are shown

in red in Figure 16 (right). The corresponding pre-warped textures are shown in Figure 17. Such textures

were obtained by pre-warping the relief textures associated with the two top images shown in Figure 15
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to both quads whose boundaries are shown in Figure 16 (right). Figure 17 provides a clear illustration of

the factorization of the planar perspective warp from the final images. Figure 18 shows a close up of the

same statue from a different viewpoint.

Figures 1, 2, 19, and 20 compare the use of conventional texture mapping and our technique.

Figure 1 shows the results of conventionally texture mapping three quads whose borders are shown in

red. The result looks unrealistic. Figure 2 shows the same scene rendered using three relief textures and

five rectangles. The extra quadrilaterals were used to accommodate the samples that are mapped to

beyond the borders of the three original ones. We do this by pre-warping the relief textures to the extras

planes taking advantage of their perpendicularity. Figure 19 shows the same scene without the borders

of the quadrilaterals. Notice the perception of three-dimensionality. Figure 20 shows the same scene

from a different viewpoint. Figure 21 shows the image of a building rendered using one relief texture

and a single polygon, and reconstructed with the two-pass 1-D reconstruction algorithm.

6 LIMITATIONS

Several of the tradeoffs and limitations involving the use of texture-mapped flat polygons to

represent complex geometric shapes also apply to our technique. The viewer must not pass through the

textured polygon. Putting the planes as close to the represented objects as possible minimizes this

problem. Alternatively, one can switch to geometry when such a situation is reached.

A limitation inherent to pre-warping a height field to its own basis polygon is the fact that some

samples can be mapped to beyond the limits of the image plane. Our solution to this problem is to use an

extra plane perpendicular to the original one to accommodate the “overflows”. Figures 2 illustrates its

result.

Ideally, all samples at the borders of the relief texture should have zero displacement. This way,

height fields can be safely tiled as regular textures with image continuity assured.

7 FUTURE WORK

One important area for investigation is the design of efficient hardware implementations for

relief textures using our pre-warping functions. Adding this pre-warping capability to the texture
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memory of a graphics accelerator may allow relief textures to become as commonly used as

conventional textures. Other avenues that we are currently exploring involve the use of a mip-map

representation [21] for pre-filtering, use of relief textures for geometry simplification, use of normal

maps [1] [2] for view-dependent lighting of relief textures, depth modulation of pre-warped pixels to

match the perceived depth value, and scene segmentation into multiple polygons and relief textures. We

have also derived similar pre-warping equations for conventional perspective images with depth. One

can simplify very complex models by enclosing the viewpoint in a box and projecting pre-warped

images representing all of the outside geometry onto the faces of the box.
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Figure 15. Images associated with four of the six height fields used to reconstruct views of the
original statue.

Figure 13. The original texture used to produce a height-field-brick wall (left). The result of
mapping it on two polygons of different sizes (right) using our two-pass 1-D reconstruction.

Figure 14. Oblique view of the same wall (left) with the corresponding pre-warped texture (right).
Reconstructed with a two-pass 1-D reconstruction algorithm. Note visibility of mortar changes from
bottom to top.
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Figure 17. Pre-warped textures used to produce the image shown in figure 14.

Figure 18. A close-up reconstruction of the object represented in figure 13.

Figure 16. Reconstructed view of the statue obtained by texture mapping two quads (left). The
red lines show the boundaries of the polygons (right).
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Figure 19. Same as figure 2, with the polygon
boundaries hidden.

Figure 20. A different view of the same scene
shown in Figure 19.

Figure 21. Example of pre-warped height-field texture mapped to a
single polygon. Reconstruction performed using the two-pass 1-D
algorithm. Notice that the roof becomes occluded from this viewpoint.


