
§ 3011 Malibu Canyon Road MS RL96; Malibu, CA 90265
(310) 317-5151 azuma@isl.hrl.hac.com

† CB 3175 Sitterson Hall; Chapel Hill, NC 27599-3175
(919) 962-1886 gb@cs.unc.edu

A Frequency-Domain Analysis of Head-Motion Prediction

Ronald Azuma§ Gary Bishop†

Hughes Research Laboratories University of North Carolina at Chapel Hill

Abstract
The use of prediction to eliminate or reduce the effects of sys-

tem delays in Head-Mounted Display systems has been the subject
of several recent papers. A variety of methods have been pro-
posed but almost all the analysis has been empirical, making
comparisons of results difficult and providing little direction to the
designer of new systems. In this paper, we characterize the
performance of two classes of head-motion predictors by
analyzing them in the frequency domain. The first predictor is a
polynomial extrapolation and the other is based on the Kalman
filter. Our analysis shows that even with perfect, noise-free
inputs, the error in predicted position grows rapidly with
increasing prediction intervals and input signal frequencies.
Given the spectra of the original head motion, this analysis
estimates the spectra of the predicted motion, quantifying a
predictor's performance on different systems and applications.
Acceleration sensors are shown to be more useful to a predictor
than velocity sensors. The methods described will enable
designers to determine maximum acceptable system delay based
on maximum tolerable error and the characteristics of user
motions in the application.

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism -- virtual
reality
Additional Key Words and Phrases: Augmented Reality, delay
compensation, spectral analysis, HMD

1 Motivation
A basic problem with systems that use Head-Mounted Displays

(HMDs), for either Virtual Environment or Augmented Reality
applications, is the end-to-end system delay. This delay exists be-
cause the head tracker, scene generator, and communication links
require time to perform their tasks, causing a lag between the
measurement of head location and the display of the correspond-
ing images inside the HMD. Therefore, those images are dis-
played later than they should be, making the virtual objects appear
to "lag behind" the user's head movements. This hurts the desired
illusion of immersing a user inside a stable, compelling, 3-D vir-
tual environment.

One way to compensate for the delay is to predict future head
locations. If the system can somehow determine the future head
position and orientation for the time when the images will be dis-
played, it can use that future location to generate the graphic im-

ages, instead of using the measured head location. Perfect predic-
tions would eliminate the effects of system delay. Several predic-
tors have been tried; examples include [2] [4] [5] [10] [11] [13]
[17] [18] [19] [20].

Since prediction will not be perfect, evaluating how well pre-
dictors perform is important. Virtually all evaluation so far has
been empirical, where the predictors were run in simulation or in
real time to generate the error estimates. Therefore, no simple
formulas exist to generate the values in the error tables or the
curves in the error graphs. Without such formulas, it is difficult to
tell how prediction errors are affected by changes in system pa-
rameters, such as the system delay or the input head motion. That
makes it hard to compare one predictor against another or to eval-
uate how well a predictor will work in a different HMD system or
with a different application.

2 Contribution
This paper begins to address this need by characterizing the

theoretical behavior of two types of head-motion predictors. By
analyzing them in the frequency domain, we derive formulas that
express the characteristics of the predicted signal as a function of
the system delay and the input motion. These can be used to
compare predictors and explore their performance as system pa-
rameters change.

Frequency-domain analysis techniques are not new; Section 3
provides a quick introduction. The contribution here lies in the
application of these techniques to this particular problem, the
derivation of the formulas that characterize the behavior of the
predictors, and the match between these frequency-domain results
and equivalent time-domain results for collected motion data.

To our knowledge, only one previous work characterizes head-
motion prediction in the frequency domain [18]. This paper
builds upon that work by deriving formulas for two other types of
predictors and exploring how their performance changes as system
parameters are modified.

The two types of predictors were selected to cover most of the
head-motion predictors that have been tried. Many predictors are
based upon state variables: the current position x, velocity v, and
sometimes acceleration a. Solving the differential equations un-
der the assumption of constant velocity or acceleration during the
entire prediction interval results in polynomial expressions famil-
iar from introductory mechanics classes. Let the system delay (or
prediction interval) be p. Then:

xpredicted = x + v p + 1
2

a p2 or xpredicted = x + v p

The first type of predictor, covered in Section 4, uses the 2nd-
order polynomial, under the assumption that position, velocity,
and acceleration are perfectly measured.

In practice, real systems directly measure only a subset of posi-
tion, velocity, and acceleration, so many predictors combine the
polynomial expression with a Kalman filter to estimate the non-
measured states. We know of no existing system that directly
measures all three states for orientation, and linear rate sensors to
measure translational velocity do not exist. The Kalman filter is
an algorithm that estimates the non-measured states from the other

Time domain Fourier domain

Time domain Z domain

Linearity
Time shift

Differentiation

Linearity
Time shift

Ag (t) + B h(t) AG(ω) + B H(ω)
g (t +a) e jωa G(ω)
∂g(t)

∂ t
jω G(ω)

A x(k) + B y(k) A X(z) + BY(z)
x(k −a) z−a X(z)

Table 1: Time, Fourier and Z domain equivalents

measurements and smoothes the measured inputs. Section 5 de-
rives formulas for three different combinations of Kalman filters
and polynomial predictors. The combinations depend on which
states are measured and which are estimated. These form the sec-
ond class of predictor explored.

Section 6 uses the formulas from Sections 4 and 5 to provide
three main results:

1) Quantifying error distribution and growth: The error in the
predicted signal grows both with increasing frequency and predic-
tion interval. For the 2nd-order polynomial, the rate of growth is
roughly the square of the prediction interval and the frequency.
This quantifies the "jitter" commonly seen in predicted outputs,
which comes from the magnification of relatively high-frequency
signals or noise. For the Kalman-based predictors, we compare
the three combinations and identify the frequencies where one is
more accurate than the others. Theoretically, the most accurate
combination uses measured positions and accelerations.

2) Estimating spectrum of predicted signal: Multiplying the
spectrum of an input signal by the magnitude ratio determined by
the frequency-domain analysis provides a surprisingly good esti-
mate of the spectrum of the predicted signal. By collecting mo-
tion spectra exhibited in a desired application, one can use this re-
sult to determine how a predictor will perform.

3) Estimating peak time-domain error in predicted signal:
Multiplying the input signal spectrum by the error ratio function
generates an estimate of the error signal spectrum. Adding the ab-
solute value of all the magnitudes in the error spectrum generates
a rough estimate of the peak time-domain error. A comparison of
estimated and actual peak errors is provided. With this, a system
designer can specify the maximum allowable time-domain error
and then determine the system delays that will satisfy that re-
quirement for a particular application.

This paper is a short version of chapter 6 of [1]. That chapter is
included with the CD-ROM version of this paper.

3 Approach
The frequency-domain analysis draws upon linear systems the-

ory, spectral analysis, and the Fourier and Z-transforms. This
section provides a brief overview; for details please see [3] [9]
[12] [14] [15] [16].

Functions and signals are often defined in the time domain. A
function f(t) returns its value based upon the time t. However, it is
possible to represent the same function in the frequency domain
with a different set of basis functions. Converting representations
is performed by a transform. For example, the Fourier transform
changes the representation so the basis functions are sinusoids of
various frequencies. When all the sinusoids are added together,
they result in the original time-domain function. The Z-transform,
which is valid for evenly-spaced discrete functions, uses basis
functions of the form zk, where k is an integer and z is a complex
number. Specific examples of equivalent functions in the time,
Fourier, and Z domains are listed in Table 1. Note that j is the
square root of —1 and ω is the angular frequency. A function in
the Fourier domain is indexed by ω, which means the coefficients
representing the energy in the signal are distributed by frequency
instead of by time, hence the name "frequency domain."

The analysis in this paper makes three specific assumptions.
First, the predictor must be linear. A basic result of linear systems
theory states that any sinusoidal input into a linear system results
in an output of another sinusoid of the same frequency, but with
different magnitude and phase. If the input is the sum of many
different sinusoids (e.g., a Fourier-domain signal), then it is possi-
ble to compute the output by taking each sinusoid, changing its
magnitude and phase, then summing the resulting output sinu-
soids, due to the property of superposition. This makes it possible
to completely characterize linear systems by describing how the

magnitude and phase of input sinusoids transform to the output as
a function of frequency. This characterization is called a transfer
function, and these are what we will derive in Sections 4 and 5.

The second assumption is that the predictor separates 6-D head
motion into six 1-D signals, each using a separate predictor. This
makes the analysis simpler. The assumptions of linearity and sep-
arability are generally reasonable for the translation terms, but not
necessarily for the orientation terms. For example, quaternions
are neither separable nor linear [2]. To use this analysis, we must
locally linearize orientation around the current orientation before
each prediction, assuming the changes across the prediction inter-
val are small. By using the small angle assumption, rotations can
be characterized by linear yaw, pitch, and roll operations where
the order of the operations is unimportant. Another approach for
linearizing orientation is described in [8].

Finally, the third assumption is that the input signal is measured
at evenly-spaced discrete intervals. This is not always true in
practice, but this assumption does not really change the properties
of the predictor as long as the sampling is done significantly faster
than the Nyquist rate, and it makes the analysis easier.

What does the ideal predictor look like as a transfer function?
Ideal prediction is nothing more than shifting the original signal in
time. If the original signal is g(t) and the prediction interval is p,
then the ideal predicted signal h(t) = g(t+p). By the timeshift for-
mula in Table 1, the magnitude is unchanged, so the magnitude
ratio is one for all frequencies, but the phase difference is pω.

What do input head motion signals look like in the frequency
domain? The power spectrum shows the averaged squared magni-
tudes of the coefficients to the basis sinusoids at every frequency.
The square root of those values is the average absolute values of
the magnitudes. Figure 1 shows such a spectrum for one
translation axis. This data came from recording a user who had
never been inside an HMD before, while the user walked through
a virtual museum of objects. Note that the vast majority of energy
is below 2 Hz, which is typical of most other data we have and
corroborates data taken by [19]. This is one way to quantify how
quickly or slowly people move their heads. These spectra are ap-
plication dependent, but note that the equations derived in
Sections 4 and 5 are independent of the specific input spectrum.
Faster head motions have spectra with more energy at higher fre-
quencies.

Estimating the power spectrum of a time-domain signal is an
inherently imperfect operation. Careful estimates require the use
of frequency windows to reduce leakage [6]. Even with such
steps, the errors can be significant. What this means is that the
theoretical results in Section 6 that use estimated power spectra do
not always perfectly match time-domain results from simulated or
actual data. Please see [7] and [16] for details.

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5

M
ag

ni
tu

de
 in

 m
m

Frequency in Hz
Figure 1: Head motion spectrum

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5

M
ag

ni
tu

de
 r

at
io

Frequency in Hz

200 ms

100 ms

50 ms

Ideal

Figure 2: Polynomial predictor
magnitude ratio

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4 5

P
ha

se
 d

iff
er

en
ce

 in
 d

eg
re

es

Frequency in Hz

50 ms

100 ms

200 ms

Ideal Actual

Figure 3: Polynomial predictor
phase shift

4 Polynomial-based predictor
This section derives a transfer function that characterizes the

frequency-domain behavior of a 2nd-order polynomial predictor.
This analysis assumes that the current position, velocity, and ac-
celeration are perfectly known, with no noise or other measure-
ment errors. Even with perfect measurements, we will see that
this predictor does not match the ideal predictor at long prediction
intervals or high frequencies.

Let g(t) be the original 1-D signal and h(t) be the predicted sig-
nal, given prediction interval p. Then the 2nd-order polynomial
predictor defines h(t) as:

h(t) = g(t) + p g' (t) + 1
2 p2g"(t)

Convert this into the Fourier domain. G(ω) is the Fourier equiva-
lent of g(t). At any angular frequency ω, G(ω) is a single complex
number, which we define as G(ω) = x + j y. Then:

H(ω) = 1 + j ω p − 1
2 ω p()2() x + j y()

The transfer function specifies how the magnitude and phase
change from the input signal, G(ω), to the output signal, H(ω).
These changes are in the form of a magnitude ratio and a phase
difference.

4.1 Magnitude ratio
We know the magnitude of the input signal. We need to derive

the magnitude of the output signal. The squared magnitude of
H(ω), after some simplification, is:

H(ω) 2 = x2 + y2() 1 + 1
4 ω p()4()

Therefore, the magnitude ratio is:

H(ω)

G(ω)
= 1 + 1

4 ω p()4() (1)

Figure 2 graphs equation (1) for three prediction intervals: 50
ms, 100 ms, and 200 ms. The ideal ratio is one at all frequencies,
because the ideal predictor is simply a timeshift, but the actual
predictor magnifies high frequency components, even with perfect
measurements of position, velocity, and acceleration.

4.2 Phase difference
The phase α of the predicted signal H(ω) is:

α = tan−1 ω p x + y − 1
2 y p2 ω 2

x − y ω p − 1
2 x p2 ω 2

Let ø be the phase of original signal G(ω) = x + j y. Apply the
following trigonometric identity:

tan(α − ø) = tan(α) − tan(ø)
1 + tan(α) tan(ø)

After simplification, the phase difference is:

α − ø = tan−1 pω
1 − 1

2 pω()2

 (2)

Figure 3 graphs equation (2) for three prediction intervals: 50
ms, 100 ms, and 200 ms, with the phase differences plotted in de-
grees. Note that the ideal difference is a straight line, and that the
ideal difference changes with different prediction intervals. The
actual phase differences follow the ideal only at low frequencies,
with the error getting bigger at large prediction intervals or large
frequencies. The phase differences asymptotically approach 180
degrees.

Note the intimate relationship between p and ω in the formulas
in Sections 4.1 and 4.2; they always occur together as ω p. This
suggests a relationship between input signal bandwidth and the
prediction interval. Halving the prediction interval means that the
signal can double in frequency while maintaining the same pre-
diction performance. That is, bandwidth times the prediction in-
terval yields a constant performance level.

5 Kalman-based predictors
Real systems directly measure only a subset of p, v, and a, and

those measurements are corrupted by noise. Therefore, many pre-
dictors use the Kalman filter to provide estimates of the states p, v,
and a in the presence of noise. These estimated states are then
given to the polynomial-based predictor to extrapolate future loca-
tions.

 This section provides a high-level introduction on how the
Kalman filter works, then it derives the Kalman predictor transfer
matrix. This transfer matrix is the product of three other matrices,
modeling the measurements, the predictor, and the Kalman filter
itself. These matrices depend upon the type of filter and predictor
being used. We derive the transfer matrix for three cases:

• Case 1: Measured position. Predictor based on x and v.
• Case 2: Measured position and velocity. Predictor based

on x, v, and a.
• Case 3: Measured position and acceleration. Predictor

based on x, v, and a.
Case 1 is typical of most predictors that have been tried, being

solely based on the measurements from the head tracker. This

State X, Covariance P

Measurement Update step
(Corrector)

Time Update step
(Predictor)

Extrapolate based on X

Sensor
inputs

Predicted
location

Initialize X and P

Figure 4: Kalman filter high-level dataflow

predictor does not use acceleration because it is difficult to get a
good estimate of acceleration from position in real time.
Numerical differentiation accentuates noise, so performing two
differentiation steps is generally impractical. A few predictors use
inertial sensors to aid prediction, such as [2] [5] [11]. These sen-
sors are used in Case 2 and Case 3. Section 6 will compare these
three cases against each other, using the transfer functions derived
in this section.

Throughout this section, x is position, v is velocity, a is acceler-
ation, p is the prediction interval, T is the period separating the
evenly-spaced inputs, and k is an integer representing the current
discrete iteration index.

5.1 The Discrete Kalman filter
The Kalman filter is an optimal linear estimator that minimizes

the expected mean-square error in the estimated state variables,
provided certain conditions are met. It requires a model of how
the state variables change with time in the absence of inputs, and
the inaccuracies in both the measurements and the model must be
characterizable by white noise processes. In practice, these condi-
tions are seldom met, but the Kalman filter is commonly used
anyway because it tends to perform well even with violated as-
sumptions and because it has an efficient recursive formulation,
suitable for computer implementation. Efficiency is important be-
cause the filter must operate in real time to be of any use to the
head-motion prediction problem. This section outlines the basic
operation of the filter; for details please see [3] [9]. Since the in-
puts are assumed to arrive at discrete, evenly-spaced intervals, the
type of filter used is the Discrete Kalman filter.

Figure 4 shows the high-level operation of the Kalman filter.
The Kalman filter maintains two matrices, X and P. X is an N by
1 matrix that holds the state variables, like x, v, and a, where N is
the number of state variables. P is an N by N covariance matrix
that indicates how accurate the filter believes the state variables
are. After initialization, the filter runs in a loop, updating X and P
for each new set of sensor measurements. This update proceeds in
two steps, similar in flavor to the predictor-corrector methods
commonly used in numerical integrators. First, the time update
step must estimate, or predict, the values of X and P at the time
associated with the incoming sensor measurements. Then the
measurement update step blends (or corrects) X and P based on
the sensor measurements. Whenever a prediction is required, the
polynomial extrapolation bases it on the x, v, and a from the
current state X.

5.2 Kalman-based predictor transfer matrix
The following discussion is terse due to space limitations;

please read [1] for a more thorough explanation.
The goal is to derive a 1 by 1 transfer matrix O(z) relating input

position G(z) to predicted position H(z). Figure 5 shows how this

Measurements Y (F signals)

Estimated states X (N signals)

C(z)

Polynomial predictor D(z)

Predicted position H(z) (Scalar)

N by F

1 by N

Measurement generator M(z)

Input position G(z) (Scalar)

F by 1

Discrete Kalman filter

Figure 5: Kalman filter transfer function dataflow

is done by combining the Discrete Kalman filter with the polyno-
mial predictor. O(z) is the product of three other transfer matri-
ces:

H(z) = O(z)G(z),where O(z) = D(z)C(z)M(z)

O(z) is different for each of the three cases. The matrices
needed to compute O(z) for each case are listed in Sections 5.3 to
5.5. Once computed, a basic result from control theory states that
one can plot O(z)'s frequency response by substituting for z as
follows [14]:

z = e j ω T() = cos(ω T) + j sin(ω T)
Note that z is a complex number, so the matrix routines must be
able to multiply and invert matrices with complex components.
Now we describe how to derive the three component transfer ma-
trices M(z), D(z), and C(z).

1) Measurement generator transfer matrix M(z): The transfer
function developed in Section 4 does not apply here because the
Kalman filter treats the estimated states and measurements as sep-
arate and distinct signals. Therefore, the predictor transfer func-
tion is now a 1 by N matrix that specifies how to combine the state
variables to perform the polynomial-based prediction. If the
predicted position is a function of more than one measurement,
rather than just a measured position, the analysis becomes
complicated. To simplify things, we force the measurements to be
perfectly matched with each other so that everything can be
characterized solely in terms of the input position. This is
enforced by the measurement generator M(z), which generates v
and a from x by applying the appropriate magnitude ratios and
phase shifts to the input position. If an input position x sinusoid is
defined as:

x = M sin ω t + ø()
Then the corresponding velocity and acceleration sinusoids are:

v = ω M cos ω t + ø()
a = −ω 2 M sin ω t + ø()

For example, a is derived from x simply by multiplying by —ω2,
as listed in the M(z) in Section 5.5.

2) Polynomial predictor transfer matrix D(z): This expresses
the behavior of the polynomial-based predictor, as described in
Section 4. For example, if the state is based on x, v, and a, then
the predictor multiplies those by 1, p, and 0.5p2 respectively, as
listed in the D(z) in Section 5.4.

3) Discrete Kalman filter transfer matrix C(z): Deriving a trans-
fer matrix that characterizes the frequency-domain behavior of the
Discrete Kalman filter requires that the filter operate in steady-
state mode. This will occur if the noise and model characteristics
do not change with time. This is usually the case in the Kalman-
based predictors that have been used for head-motion prediction.
In our implementation, the filter converges to the steady-state

0

2

4

6

8

10

12

14

0 1 2 3 4 5

R
M

S
 e

rr
or

Frequency in Hz

50 ms

100 ms

200 ms

Figure 6: RMS error for polynomial predictor at three predic-
tion intervals

condition with just one or two seconds of input data, depending on
the noise and model parameters and the initial P.

In the steady-state condition, P becomes a constant, so it is not
necessary to keep updating it. This makes the equations for the
time and measurement updates much simpler. The time update
becomes:

X− (k +1) = AX(k)
and the measurement update becomes:

X(k +1) = X− (k +1) + K Y(k +1) − HX− (k +1)[]
where

• Y(k) is an F by 1 matrix holding F sensor measure-
ments.

• A is an N by N matrix that specifies the model.
• H is an F by N matrix relating the measurements to the

state variable X.
• K is the N by F Kalman gain matrix that controls the

blending in the measurement update.
• X¯(k + 1) is the partially updated state variable.

Note that only the X(k) and Y(k) matrices change with time. Now
combine the time and measurement update equations into one by
solving for X(k+1):

X(k +1) = AX(k) + K Y(k +1) − HAX(k)[]
X(k +1) = A − KHA[]X(k) + K Y(k +1)

Convert this equation into the Z-domain and solve for X(z).
z X(z) = A − KHA[]X(z) + z K Y(z)

X(z) = z I − A + KHA[]−1 z K Y(z)
where I is the N by N identity matrix.

Define C(z) as the N by F transfer matrix for the Discrete
Kalman filter. This specifies the relationship between the filter's
inputs (measurement Y) and the outputs (state X):

X(z) = C(z)Y(z)whereC(z) = z I − A + KHA[]−1 z K

This equation shows how to compute C(z) from the A, K, and
H matrices listed in Sections 5.3 to 5.5. The steady-state K matri-
ces in those three sections depend on the noise parameters used to
tune the Kalman filter. We adjusted those parameters to provide a
small amount of lowpass filtering on the state variable corre-
sponding to the last sensor input in the Y matrix. Then we ran
each filter in simulation to determine the steady-state K matrices.

5.3 Case 1: Measured position
N = 2, F = 1

X =
x

v

, H = 1 0[], Y = xmeasured[]

A =
1 T

0 1

, K =

0.568

41.967

, M(z) = 1[], D(z) = 1 p[]

5.4 Case 2: Measured position and velocity
N = 3, F = 2

X =
x

v

a

, H =

1 0 0

0 1 0

, Y =

xmeasured

vmeasured

A =
1 T 1

2 T 2

0 1 T

0 0 1

, K =

0.0576 0.0032

0.0034 0.568

−0.0528 41.967

M(z) =
1

j ω

, D(z) = 1 p 1

2 p2[]

5.5 Case 3: Measured position and acceleration
N = 3, F = 2

X =
x

v

a

, H =

1 0 0

0 0 1

, Y =

xmeasured

ameasured

A =
1 T 1

2 T 2

0 1 T

0 0 1

, K =

0.0807 0.000016

0.342 0.00345

0.0467 0.618

M(z) =
1

−ω 2

, D(z) = 1 p 1

2 p2[]
6 Results

This section takes the transfer functions derived in Sections 4
and 5 and uses them to determine three characteristics of the pre-
dictor: 1) the distribution of error in the predicted signal, 2) the
spectrum of the predicted signal, and 3) the peak time-domain er-
ror. The frequency-domain results are checked against time-do-
main results, where appropriate.

6.1 Error distribution and growth
We can now plot the prediction error for both the polynomial

predictor and the Kalman-based predictors.
1) Polynomial predictor: Figure 6 graphs the overall error be-

havior of the polynomial-based predictor, using the transfer func-
tions derived in Section 4. The plot shows the errors at three dif-
ferent prediction intervals. The errors grow rapidly with increas-
ing frequency or increasing prediction interval.

The overall error is a Root-Mean-Square (RMS) metric. A
problem with showing the error of the predicted signal in the fre-
quency domain is the fact that the transfer functions return two
values, magnitude ratio and phase shift, rather than just one value.
Both contribute to the error in the predicted signal. If the magni-
tude ratio is large, then that term dominates the error, but it is not
wise to ignore phase at low magnitude ratios. An RMS error
metric captures the contribution from both terms. Pick an angular
frequency ω. Let Mr be the magnitude ratio at that frequency, ø
be the difference between the transfer function's phase shift and
the ideal predictor's phase shift, and T be the period of the
frequency. Then define the RMS error at that frequency to be:

RMSerror ω ,ø, Mr() = 1
T Mr sin ω t + ø() − sin ω t()[]2

dt
0

T

∫

 # Magnitude Frequency (in Hz) Phase (in radians)

1
2

3

4

5.0
3.0

1.0

0.01

1.0
2.0

5.0

60.0

0.5
-1.7

-0.3

0.2

Sinusoid = M sin(2π f t + ø): Mag. M, Freq. f, Phase ø

Table 2: Four sinusoids

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4

F
un

ct
io

n
va

lu
e

Timestamp in seconds

Original

Prediction
on 3 sines

Prediction
on 4 sines

Figure 7: Polynomial prediction on 3 and 4 sinusoids, 30 ms
prediction interval

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20

R
M

S
 e

rr
or

Frequency in Hz

Case 1

Case 2

Case 3

Figure 8: RMS error for Kalman predictors, 50 ms interval

0.01

0.1

1

10

100

0.1 1 10

R
M

S
 e

rr
or

Frequency in Hz

Case 1

Case 2

Case 3

Figure 9: RMS error for Kalman predictors, 200 ms interval

 The magnification of high-frequency components shown in
Figure 6 appears as "jitter" to the user. Jitter makes the user's
head location appear to "tremble" at a rapid rate. Because the
magnification factor becomes large at high frequencies, even tiny
amounts of noise at high frequencies can be a major problem.

We show this with a specific example of polynomial prediction
on four sinusoids at a 30 ms prediction interval. Table 2 lists the
four sinusoids. Figure 7 graphs these sinusoids and the predicted
signals. The predicted signals are computed both by simulating
the predictor in the time domain and by using the frequency-do-
main transfer functions to change the four sinusoids' magnitudes
and phases: both approaches yield the same result. The "Original"
curve is the sum of the sinusoids. The "Prediction on 3 sines"

shows what the predictor generates when the input signal is the
sum of the first three sines in the table. That predicted signal
follows the original fairly closely. However, if we also include
the 4th sinusoid, then the predicted signal becomes jittery, as
shown by the "Prediction on 4 sines" curve. The last sine has a
tiny magnitude, but it is a 60 Hz signal. One can think of it as a
60 Hz noise source. This example should make clear the need to
avoid high-frequency input signals.

2) Kalman-based predictors: We use the RMS error metric to
compare the three Kalman cases and determine the frequency
ranges where one is better than the others. These errors are com-
puted using the transfer matrices described in Section 5.

Figure 8 graphs the RMS errors for the three cases at a 50 ms
prediction interval. For frequencies under ~7 Hz, the inertial-
based predictors Case 2 and Case 3 have lower errors than the
non-inertial Case 1, and Case 3 is more accurate than Case 2 for
frequencies under ~17 Hz. Figure 9 shows the errors for a 200 ms
prediction interval. Both axes are plotted on a logarithmic scale.
Now Case 2 and Case 3 have less error only at frequencies under
~2 Hz, instead of 7 Hz as in Figure 8.

These graphs provide a quantitative measurement of how much
the inertial sensors help head-motion prediction. At high frequen-
cies, Case 1 has less error than the other two because Case 1 does
not make use of acceleration. Case 2 and Case 3 use acceleration
to achieve smaller errors at low frequencies at the cost of larger
errors at high frequencies. This tradeoff results in lower overall
error for the inertial-based predictors because the vast majority of
head-motion energy is under 2 Hz with today's HMD systems, as
shown in Figure 1. The graphs also show that as the prediction
interval increases, the range of frequencies where the prediction
benefits from the use of inertial sensors decreases.

Case 3 is more accurate than Case 2 at low frequencies, because
Case 3 has better estimates of acceleration. Case 2 directly mea-
sures velocity but must estimate acceleration through a numerical
differentiation step. This results in estimated accelerations that
are delayed in time or noisy. In contrast, Case 3 directly measures
acceleration and estimates velocity given both measured position
and acceleration, which is a much easier task. Case 3 is able to
get nearly perfect estimates of velocity and acceleration. Since
Case 2 represents using velocity sensors and Case 3 represents us-
ing accelerometers, this suggests that in theory, acceleration sen-
sors are more valuable than velocity sensors for the prediction
problem.

When the individual predictors are combined into a full 6-D
predictor, the errors still increase dramatically with increasing

•
•

• ••

•

•

•

•

•

•
•
••

•

•
•

•

•

•

•

•

•
• •

•

••
•

•

• •

•
•

•

•

••
•

•

•

•
•

•

•

•

••

• •
•

•
•
••

•

•

•
•

•

••

•

•

•

••

•

•

•
•

•

•

• •

•

•

•

•
•

•

•

••

•
•
•

•

•

•

•

•

•

•

•

•

•

• •
•

•
•

•

•

•

•

•
•

•

••

•

•

•

•

••

•

•
•
•
•

• •

•

•

•

•

•

•

•

•
••

• •
•

•

•

•

•

•

•

•

•

•

••

•
•
•••

•

•
•

• •
•

•

•

•

•
•

••

••
•
• •

•

•
•
•

•• •
•

•
••

•
•

•
•

•

•
•

•
•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

• ••

•

•

•

•••
•

•

••
• ••
•

•

•

•

••
•

•

•

•

•

•

•

•

•

•
•

•

•

•
••

••
•

•

•

•

•

•

•
•
•

•
•

•

•
•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

••• •
• •

••

•

•
••

•
•

•

••
•

• •
• •

•
•

•
• •

•

••

•••

•

• •
• •

•

•

•

•

••
•
•

• ••

• •

•
• •
•

•

•••• •

•

•

•

••

••

•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•
••

•

•
•

••

•

•

•
•

•

••
•

•
•

•

•
•

•
••

• •
•
•
•

•
•
•

•
••

•
•

•••
•

•

••

• •
•• •

•

•
• • ••

•
•

•
•

•

•

•

••

•
•

•

•
•

• •
•

•
•

•

•
•
•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

••

•

•

•

•

•
•

•
•

•• •
• ••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•
•

•

•

•
••

•

•• ••
•

•
•

••
• •

•
•

•

•

•

•

•
• ••
•

•

•

•

•

• •

•

•

•
•••
•

•

•

•

•

•

•

••

•
•

••

•

•

•

•
•

•
•

••

•

•

•

•

•

•

•
•

•

•

• •

•

•

•
•

•

•

•
•

•

•
•

• •
•

•

• •

•
•

•

•

•

•

• •

•

••

• •••

••

•
••

• •

•• ••

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

•

•

•
••

•

•

•
••

•
•

••

•

•
•

•

• •
•

• ••

•
•

•

•

•

•

•
•

•

•

••
•••••
•
•

• •••••
•• •

•

•

•

•
•• •

••••• ••••
••

•••• •
••

•

•
•• ••••••••

•
•

• •
•
•

•
•••• •
•

•••••
•

••
•
•

•
•

•

•
•
•

• •••
•• •

•
•

•

•

•
•

••
•••
•

•
•

•

••• •• ••
•

•

••• ••
•••
•
•••

•
••
•

•••••••
•
•

•
•
•

• • •
••
••••• •••••• •
•
•
•• •••••••• ••

•
•••••••

••

•
•

•
•••

•
•• ••

•

•

•
• •

•
•

•
•

•

•

•
•

•

•
• •

•
•
•• ••
•
•
••••••••••• •
•
•
••••

•

•
•

•

••
•

•
•• •

•
••• ••••

•
•

• ••••
••

•
•

••
• ••

•

••
•••• • •

•
•• •

••

•

••
•
••

•
••
• •••• •• ••• •
• ••••

••
•••••••••••• ••
•••••••••
••••• ••• ••••••••••••••
•

•

•

••
•• •
• ••
•

•
••

•

•
•

•

•
•

•

•
••• •

••
••••
••
• ••••••••
••••••••••

•• •• •••••••
•••

•
••••••••• •••••

•

•

••

•
•

•
••• ••• ••
•
•••

•

•

•
•••

•

•

•
•

•

•

••

•
••

•
•

•

•••••

••
•

•• •
•
•
•

••
•••• •••• •••
••

•
•
•

•
••

• •

•• ••
•

•

•
•••

•

•
••

••••••••• ••• •• •• •
•
••••••• ••

•

•
•

•

•
•••

••
•

•
•
•

•
•
••
•••

• ••
•

•• ••••
•
•

•
•••

• •• •
• ••
•
• •

•

•

••
•

•
• ••••• •

•••
•

•
••

•
•

••
••••
••
•

••• •
• • •
•

•
••

•
••

••

•

••

•
• ••

•
•
•

•
• •••• •••• •••••
••
•
••• •••••

•
•

•
•

•
••

•

°°°°°°°°°°°°°°°°°°°°°
°°°
°

° °°° °°°°°°°°°°°°°°
°°°° °°°°°°°°

°°°°°°
°°°°° °°°°°°°° °°°°°°

°

°
°°°°°°°° °°°°
°°°°°°°°°°°
°°°° °°°°

°
°

°°°°°°°°°°°°°°°°°°°°°°°°°
° °°°
°°°°°°°°° °° °°
°°°

°
°

°
°°

°

°
°
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°
°°
°°°°

°°°°° °°°°°°°°° °°°°°°° °°°°° °°°°° °°°°°°°°° °°°
° °°

°°°
°

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°°°° °°°°°°°°
°°°
°°
°°°
°°°°

° °°°° °°° °°°°°°°
°°° °°°

°
°°°

°
°° °°°°° °°°° °°°° °°°° °° °°°°°°°°°°°°°°°°°°°°°°°°
°° °°°
°°
°°°°°°°°
°°°°°°°°°°°°°°° °°°°°°°°°°°°° °°
°
°°°°°° °°°°°

°°
°°°°°°°°°°°°°
°°°°

°
°°°°°° °°°° °
°
°°°°

°°°°°°° °° °°°°
°°°°°°°°°°°°°°°°°°

°
°
°°
°°

°°

°
°°

°
°°

°
° °°°°

°
°° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°

°

-100

-80

-60

-40

-20

0

20

40

60

80

100

-100 -80 -60 -40 -20 0 20 40 60 80 100

S
cr

ee
n

Y
 c

oo
rd

in
at

e
in

 p
ix

el
s

Screen X coordinate in pixels

• 200 ms • 100 ms ° 50 ms

Figure 10: Scatterplots of screen-based error for simulated
6-D Kalman prediction, 30o FOV HMD, 512x512 screen

0.1

1

10

100

0 1 2 3 4 5

M
ag

ni
tu

de
 in

 m
m

Frequency in Hz

Original signal spectrum

Predicted signal

predicted signal
Frequency-estimated

spectrum

spectrum

Figure 11: Kalman-predicted signal spectra

prediction intervals. This is shown by the scatterplot diagram in
Figure 10. A scatterplot is a way of representing screen-based
error as seen inside an HMD. Imagine a point one meter in front
of the user's right eye. This point is rigidly attached to the user's
head, so that no matter how the user turns and moves his head,
that point is always one meter in front of his right eye. Ideally, the
projection of this imaginary point should always lie in the center
of the field-of-view. However, system delays and prediction er-
rors will cause the projection to stray from the center, resulting in
the dots seen in Figure 10. The wider the spread of dots, the
larger the error. The motion sequence used to generate these
scatterplots came from recording the head motion of a first-time
user in our HMD system. The predictor used Case 2 for the orien-
tation terms and Case 3 for the translation. The average errors at
the 100 ms prediction interval are 2.3 times as large as the errors
at the 50 ms prediction interval, but the factor jumps to 9 when
comparing 200 ms against 50 ms.

6.2 Spectrum of predicted signal
The prediction transfer functions can generate an estimate of

the spectrum of the predicted signal, given the spectrum of the
original signal. Multiply the input spectrum by the magnitude
ratio of the polynomial predictor in Section 4, or by the magnitude
ratio of O(z) for the Kalman-based predictors in Section 5. An
example would be multiplying Figure 1 by one of the curves in
Figure 2. Since different applications generate different input
motion spectra, and a particular spectrum can represent an entire
class of inputs, this technique can specify how a particular
predictor will perform with a different application.

Figure 11 shows a specific example for the Case 1 Kalman
predictor, with a 100 ms prediction interval. The spectrum of the
original signal was derived from actual motion data of a first-time
user in our HMD system. The spectrum of the predicted signal
was estimated in two ways. First, we ran the Case 1 predictor in
simulation, reading the time-domain signal, generating the pre-

dicted time-domain signal, then performing spectral analysis on
the predicted signal. This is the "Predicted signal spectrum" graph
in Figure 11. Second, we used the frequency-domain technique
described in the previous paragraph. This is the "Frequency-esti-
mated predicted signal spectrum" graph. The two estimates are
virtually identical.

The spectrum of the predicted signal demonstrates what jitter
looks like in the frequency domain. At low frequencies, the pre-
dicted and original spectra coincide, but as the frequency in-
creases, the predicted spectrum becomes larger than the original.
These "humps" in the predicted spectrum represent jitter.

6.3 Maximum time-domain error
Deriving a theoretical expression for the maximum error in the

time domain would be useful. Determining this requires estimat-
ing the spectrum of the error signal, which is briefly sketched here
for the Kalman predictors; see [1] for details. Let e(t) be the error
signal, which is the difference between the predicted position h(t)
and the original position g(t):

e(t) = h(t) − g(t + p)
where p is the prediction interval. The goal is to derive the 1 by 1
error transfer matrix U(z), where E(z) = U(z) G(z). Define:

gp (t) = g(t + p)

It turns out that for sinusoidal inputs:

Gp (z) = e j ω p G(z)

Now convert things into the Z-domain:
E(z) = H(z) − Gp (z)

Substitute for H(z) using the expression from Section 5.2:

E(z) = O(z)G(z) − e j ω pG(z)

U(z) = O(z) − e j ω p[], where E(z) = U(z)G(z)

Multiplying the spectrum of the original signal by the magni-
tude ratio of the error transfer matrix U(z) yields an estimate of the
spectrum of the error signal. We can compute an upper bound for
the largest time-domain value of this signal. The spectrum
estimates the average magnitude of the coefficient for each com-
ponent sinusoid. The absolute value of the magnitude is the max-
imum value that each component sinusoid will ever reach.
Therefore, summing the absolute values of all the magnitudes
provides a maximum upper bound. That also turns out to be an

Name

Tx
Ty
Tz

Yaw
Pitch
Roll

137.2 mm 100.1 mm 3.6 mm
153.7 mm 155.6 mm 3.4 mm
69.2 mm 54.2 mm 1.8 mm
6.9 deg 2.6 deg 0.3 deg
8.9 deg 5.2 deg 0.4 deg

13.1 deg 11.7 deg 0.4 deg

Estimated
maximum

Actual
highest

Actual
average

Table 3: Estimated vs. actual time-domain errors in a
recorded head-motion sequence, 100 ms prediction interval

achievable upper bound because we cannot put enough restrictions
on the phase to prevent that from being a possibility.

By using this procedure, a system designer could specify the
maximum tolerable time-domain error, then determine the maxi-
mum acceptable system delay that keeps errors below the specifi-
cation. Unfortunately, the estimate is not a guaranteed upper
bound because of uncertainties in the power spectrum (as men-
tioned at the end of Section 3) and because the measured spectrum
is an average of the entire signal, which may not represent what
happens at a particular subsection of the signal. Therefore, how
closely do the estimated maximum bounds match the actual peak
errors, in practice?

Table 3 lists the estimated maximums against the actual for all
six degrees of freedom in one recorded HMD motion sequence.
The maximums are usually within a factor of two of each other,
although for the Ty sequence the estimated peak is lower than the
actual peak. Overall, the estimated maxima are reasonable ball-
park approximations that may be useful to a system designer.

7 Conclusions and limitations
This paper provides methods for comparing a class of head-

motion predictors against each other, through analysis rather than
a purely empirical basis. The results presented here quantify the
need for short prediction intervals, demonstrate that accelerome-
ters may be the most valuable inertial sensors to use, and provide
a system designer with analysis tools.

The approach presented here is limited to linear predictors.
While many existing head-motion predictors are linear or lin-
earized versions of nonlinear formulations, in the future more so-
phisticated predictors will be nonlinear. They will be adaptive
and will account for correlations in the motion signals. Analyzing
nonlinear predictors is more difficult and is an area for future
work.

Future HMDs will be lighter, allowing faster head motion. That
will not invalidate this analysis, which is independent of the input
motion spectra. However, motion spectra of rapidly changing
head motion will have more energy at higher frequencies, making
the prediction problem much harder. Future systems must have
better predictors or shorter system delays.

Section 6.3 estimates the peak time-domain error, but a more
useful measurement may be the average time-domain error. Note
that the peaks in Table 3 are much larger than the average errors.
An expression to estimate the average error could be useful.

Acknowledgements
We thank Vern Chi, Fred Brooks and Henry Fuchs for encour-

aging us to explore this topic. Funding was provided by ARPA
contract DABT63-93-C-C048, the NSF/ARPA Science and
Technology Center for Computer Graphics and Visualization
(NSF prime contract 8920219), and Hughes Electro-Optical
Systems. We thank the anonymous reviewers for their construc-
tive comments and criticisms. Approved by ARPA for public
release -- distribution unlimited.

References
[1] Azuma, Ronald. Predictive Tracking for Augmented Reality.

Ph.D. dissertation. UNC Chapel Hill Department of
Computer Science technical report TR95-007 (February
1995).

[2] Azuma, Ronald, and Gary Bishop. Improving Static and
Dynamic Registration in an Optical See-Through HMD.
Proceedings of SIGGRAPH '94 (Orlando, FL, 24-29 August
1994), 197-204.

[3] Brown, Robert Grover, and Patrick Y.C. Hwang.
Introduction to Random Signal and Applied Kalman
Filtering, 2nd edition. John Wiley & Sons. (1992).

[4] Deering, Michael. High Resolution Virtual Reality.
Proceedings of SIGGRAPH '92 (Chicago, IL, 26-31 July
1992), 195-202.

[5] Emura, Satoru and Susumu Tachi. Compensation of Time
Lag Between Actual and Virtual Spaces by Multi-Sensor
Integration. Proceedings of the 1994 IEEE International
Conference on Multisensor Fusion and Integration for
Intelligent Systems (Las Vegas, NV, 2-5 October 1994), 463-
469.

[6] Harris, Frederic J. On the Use of Windows for Harmonic
Analysis with the Discrete Fourier Transform. Proceedings
of the IEEE 66, 1 (January 1978), 51-83.

[7] Jenkins, Gwilym M. and Donald G. Watts. Spectral Analysis
and its Applications. Holden-Day. (1968).

[8] Lawton, W., T. Poston and L. Serra. Calibration and
Coordination in a Medical Virtual Workbench. Proceedings
of Virtual Reality Applications (Leeds, UK, 7-9 June 1994).

[9] Lewis, Frank L. Optimal Estimation. John Wiley & Sons,
1986.

[10] Liang, Jiandong, Chris Shaw, and Mark Green. On
Temporal-Spatial Realism in the Virtual Reality
Environment. Proceedings of the 4th Annual ACM
Symposium on User Interface Software & Technology
(Hilton Head, SC, 11-13 November 1991), 19-25.

[11] List, Uwe H. Nonlinear Prediction of Head Movements for
Helmet-Mounted Displays. Technical report AFHRL-TP-83-
45 [AD-A136590], Williams AFB, AZ: Operations Training
Division (1984).

[12] Oppenheim, Alan V. and Alan S. Willsky. Signals and
Systems. Prentice-Hall Inc. (1983).

[13] Paley, W. Bradford. Head-Tracking Stereo Display:
Experiments and Applications. SPIE Vol. 1669 Stereoscopic
Displays and Applications III (San Jose, CA, 12-13 February
1992), 84-89.

[14] Phillips, Charles L., and H. Troy Nagle. Digital Control
System Analysis and Design, 2nd edition. Prentice-Hall, Inc.
(1990).

[15] Press, William H., Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C. Cambridge
University Press (1988).

[16] Priestley, M.B. Spectral Analysis and Time Series, Vol. 1.
Academic Press (1981).

[17] Rebo, Robert. A Helmet-Mounted Virtual Environment
Display System. MS Thesis, Air Force Institute of
Technology (December 1988).

[18] Riner, Bruce and Blair Browder. Design Guidelines for a
Carrier-Based Training System. Proceedings of IMAGE VI
(Scottsdale, AZ, 14-17 July 1992), 65-73.

[19] So, Richard H. Y. and Michael J. Griffin. Compensating
Lags in Head-Coupled Displays Using Head Position
Prediction and Image Deflection. Journal of Aircraft 29, 6
(November-December 1992), 1064-1068.

[20] Zikan, Karel, W. Dan Curtis, Henry A. Sowizral, and Adam
L. Janin. A Note on Dynamics of Human Head Motions and
on Predictive Filtering of Head-Set Orientations. SPIE
Proceedings volume 2351: Telemanipulator and
Telepresence Technologies (Boston, MA, 31 October - 4
November 1994).

