Improving Static and Dynamic Registration in an Optical
See-through HMD
RonaldAzuméa Gary Bishdp

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract electrical system [6][33]. Currentl{echnicians use lge physical
InAugmented Realitysee-through HMDs superimpose virtual guide boards to construct such harnesses, and Boeing needs several

3D objects on the real worldThis technology has the potential to ~ Varehouses to store all of these boards. Such space might be emp-

enhance a user perception and interaction with the real world. tied for better use if this application proves successful. Other con-

However manyAugmented Reality applications will not be accepted struction and repair jobs might be made easier if instructions were

until we can accurately register virtual objects with their real coun- avaélgbclie, not in the form of mgnuals W'thl tet;gt atnd ZE plpturets, b‘ét
terparts. In previous systems, such registration was achieved onl{*> rawings Superimposead upon real objects, showing step-by-

from a limited range of viewpoints, when the user kept his head St€P. the tasks to be performed. Feiner and his group demonstrated
still. This paper ders improved registration in two areas. First, (IS in @ laser printer maintenance applicatid].[Ieinefs group

our system demonstrates accurate static registration across a wid't(?1 also explo.rcling dlsplayrl]nlg V|rtualkdocumt%nts ina (sjphere arolimd
variety of viewing angles and position&n optoelectronic tracker € userproviding a much igier workspace than an orainary Work-
provides the required range and accurabiyree calibration steps ~ Station monitar Medical applications might also benefit frémg-
determine the viewing parameters. Second, dynamic errors that occum.‘t?r?ted Iﬁeallty_A groughat LichlscaSnetc:] a feéus inside "’} womb
when the user moves his head are reduced by predicting future heaff!'"! 81 Ultrasonic sensahen displayed a three-dimensional repre-
locations. Inertial sensors mounted on the HMD aid head-motion Sentation of that data in the same physical location as the fetus [4].
prediction. Accurate determination of prediction distances requires | 1€ 9oalis to provide a doctor with “X-ray vision,” enabling him to
low-overhead operating systems and eliminating unpredictable 322€ directly into the bodyConceptuallyanything not detectable
sources of latencyOn average, prediction with inertial sensors pro- Py human senses but detectable by machines might be transducted
duces errors 2-3 times lower than prediction without inertial sen- INt0 something that we can sense and displayed inside a see-through
sors and 5-10 times lower than using no prediction at all. FutureIMDP. Robinett speculates that ultimatéiygmented Reality is

g ; ; ; about augmentation of human perception, about making the invis-
steps that may further improve registration are outlined. ible visible (or hearable, feelable, etc.) [29].

CR Categories and Subject Descriptors: 1.3.1 [Computer While promisingAugmented Reality is barely at the demonstra-
Graphics]: HardwareArchitecture —three-dimensional displays; tion phase todayand its full potential will not be realized until sev-
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and eral technical challenges are overcome. One of the most basic is the
Realism —virtual reality registration problemThe real and virtual objects must be properly

Additional Key Words and Phrases: Augmented Realityreg-
istration, calibration

1 Motivation

Head-Mounted Displays (HMDs) aiirtual Environments have
been a subject of great interest in the past few years. Less attention
has been paid to the related fielddafgmented Realitydespite its
similar potential.The diference betweeviirtual Environments and
Augmented Reality is in their treatment of the real woNéttual
Environments immerse a user inside a virtual world that completely
replaces the real world outside. In contrasgmented Reality uses
see-through HMDs that let the user see the real world around him.
See-through HMDs augment the useriew of the real world by
overlaying or compositing three-dimensional virtual objects with
their real world counterparts. ldealiywould seem to the user that
the virtual and real objects coexisted. SiAtgmented Reality .
supplements, rather than supplants, the real world, it opens up a Figure 1: Wooden frame for calibration and registration
different class of applications from those explore¥irtual Envi-
ronments.

Augmented Reality applications attempt to enhance thésuser
perception and interaction with the real world. Several researchers
have begun building prototype applications to explore this poten-
tial. A group at Boeing uses a see-through HMD to guide a techni-
cian in building a wiring harness that forms part of an airptane’

81 CB 3175 Sitterson Hall; UNC; Chapel Hill, NC 27599
§ (919) 962-1848 azuma@cs.unc.edu
T (919) 962-1886 gb@cs.unc.edu

Figure 2: View seen in HMD, virtual axes on real frame

Sun4 points and view directions. We use a custom optoel ectronic head
un tracker that provides sufficient range and accuracy. We also devel-
Tracker boards oped calibration techniquesfor determining the viewing parameters.
44— Therobust static registration is demonstrated by several still photo-
graphs taken from a single video sequence where the user walked
270 degrees around the registration object.

Prediction GP

Images Ceiling panels Improved dynamic registration: To reduce dynamic errors caused
by the end-to-end latency in the system, we use predictive tracking
techniques that guess where the sshead will be in the future.

We equipped the see-through HMD with inertial sensors to aid head-

\/ Inertial motion prediction.A method for autocalibrating the orientation of
LCDs 486 PC the sensors on the usehead, along with other parameters, was
f b 12-bit A/D developed.The reduction in dynamic error for threefeient mo-
. tion runs is listed in a table.
4x optical The rest of the paper isganized as follows: first we give a brief
sensors overview of our system. Next, we describe and evaluate the static

registration procedureThen we do the same for dynamic registra-

tion. Each section describes problems encountered and points out
Figure 3: System diagram limitations. The interested reader will find supplementary materials

aligned with respect to each other the illusion that the two coex- ~ available in the CD-ROM version of this paper and many more de-

ist will be compromisedThis is dificult to do because of the preci- tails about our work in a technical report (the first author's disserta-

sion required. The human visual system is very good at detecting tion) to be released later in 1994 by UNC Chapel Hill.

even small misregistrations, due to the resolution of the fovea and The main implications of our work are:

the sensitivity of the visual system tofdiences. A more tractable * Robust static registration within a few mm is possible, but it
bound is provided by the relatively low resolution of the displays in requires trackers with higher accuracy théual Environ-
modern HMDs. Errors of just a few pixels are noticeable. ment applications demand. _ _
Some applications have strict requirements for accurate registra- * Inertial-aided predictors can greatly reduce dynamic registra-
tion. For example, imagine a geon wearing a see-through HMD tion errors. On average, inertial-based prediction is 5-10
displaying virtual objects that identify where and where not to make times more accurate than doing no prediction and 2-3 times
incisions. Unless the registration errors are kept below a few milli- more accurate than a representative non-inertial predictor
meters, the sgeon is not likely to trust the equipmentithout * Augmented Reality systems that use predictive tracking re-
good registrationAugmented Reality may never be accepted in se- quire low-overhead operating systems and the elimination
rious applications. of unpredictable sources of latency
What causes registration error$ie main sources are:
« Distortion in the HMD optics 3 System . N
» Mechanical misalignments in the HMD Our system uses an optical see-through HMD. Its position and
« Errors in the head-tracking system orientation are measured by an optoelectronic tracking system, and
« Incorrect viewing parameters (field of viewackerto-eye the images are generated by the Pixel-Planes 5 graphics engine.
position and orientation, interpupillary distance) Readings taken from inertial sensors mounted on the HMD are digi-
* End-to-end system latency tized by arA/D board in a 486 PC. Figure 10 shows the overall
The first four categories may be classifiedsitic errors, be- setup, and Figure 3 provides a system diagram.
cause they cause registration errors even when the user keeps hisThe optical see-through HMD [16] is shown in Figure 8. Optical
head completely stillThe 5th categoryend-to-end latengyve call combiners placed in front of both eyes overlay images on top of the
a dynamic error, because it has nofe€t until the user moves his users view of the real worldThe displays are color LCD monitors
head. containing 340x240 pixels eacfThe field-of-view in each eye is

No one has achieved perfect registration with a see-through HMD approximately 30 degreesVe chose an optical see-through ap-
The current demonstrated state-of-the-art, as reported in the text angroach because it does not delay the’aséew of the real world
pictures of [4][1][18] achieves static errors on the order of 0.5 inches (See Section 7).
for an object at arrs’length away from the HMD, from a small Tracking is provided by four optical sensors mounted on the back
number of viewpoints. Dynamic errors can be mucgeiarWith of the HMD, as seen in Figure 8hese are aimed upwards at an
an end-to-end system latency of 100 ms, and a moderate head rotauray of infrared LEDs mounted in ceiling panels above theésiser
tion rate of 100 degrees/sec, the angular dynamic error will be 10head. By sighting several LEDs, and given the known geometry of
degreesAt arm’s length, this results in registration errors of 5 inches. the sensors on the head and the known locations of the beacons in

. . the ceiling, the system is able to compute the position and orienta-
2 Contribution tion of the uses head.The data collection and processing are per

This paper describes a system we built that tackles three of thdormed by three single-board 68030 and i860-based computers in-
main sources of registration errors: the head trathedetermina- Stalled in the&/ME chassis of a Sun4 host [36].
tion of viewing parameters, and dynamic errors caused by system The inertial sensors consist of three Systron Donner QR8rL

latency We demonstrate improved static and dynamic registration gular rate gyroscopes and three Lucas NovaSensor NAS-CO26 lin-
as follows: ear accelerometerghe gyros measure angular rates within the range

Improved static registration: Pictures and videos of existiAgg- of £300 degrees/second, and the accelerometers detect acceleration

mented Reality systems show registration from only a small num-Within +2.g. A 12-bitA/D board (National InstrumensST-MIO-
ber of viewpoints.The user is not allowed to translate or rotate the 16D) in a 486 PC digitizes the signakd minimize noise, we built
HMD very far from the initial viewpointThere are two reasons for ~ SPecial power regulation circuits, used shielded twisted-pair wire,
this limitation. First, most commercially available head-tracking differential-modeA/Ds, and analog prefiltersA Bit3 bus extender
systems do not provide $igfent accuracy and range to permit such sends the digitized readings to the optoelectronic tracker boards in
movement without greatly increasing the static registration errors. the Sun4. . .
Second, determining viewing parameters that work from just one . The virtual images are generated by Pixel-Planes 5 (Pxpl5), a
viewpoint is much easier than determining parameters that workhighly parallel graphics engine consisting of i860-based Graphics
from many diferent viewpoints.We show that parameters yielding Processors (GPs) to do geometry transformations and Renderer
good registration from one viewpoint may result in static errors of a oards that rasterize primitives [14]. One of the GPs is used to run
few inches at another viewpoint. our prediction routine.The computed head positions and orienta-
Our system is capable of robust static registration: keeping a vir tions from the optoelectronic tracker and the measured inertial sig-
tual and real object closely aligned across many widely spaced viewNals are fed to this GRhich uses them to estimate future head

locations. The prediction GRlso converts the predicted head loca-

tions into view matrices that the rest of Pxpl5 uses to generate the Y
graphic images the HMD-wearer sees. Since the normal Pxpl5 soft-

ware is optimized for maximum throughput and not minimal la-

tency we use dierent rendering software written by Mark Olano

Virtual 2D
Eye coor system Frame coor

and Jon Cohen that minimizes Pxpl5 latency [8].

overhead operating systems. Interprocessor communication is
through shared memarsgicross Bit3 bus extenders, or through the
640 MByte/sec ring network within Pixel-Planes 5. UNIX is avoided
except for initial setup and non-time-critical tasks, like reading but- X~ World space

v crosshair
y Asysem
Ci- Sttt oL N Z Nal
X SN\
Special care was taken to use fast communication paths and low-y Tracker X /’X)
X

tons. This is discussed more in Section 5.3.

The end-to-end system latency varies from 50-70 ms, with 15-30
ms coming from the tracker12 ms from the predictoand 16.67

coor system
Y

Xradius Y radius

Figure 4: Virtual crosshair and coordinate systems

ms from Pxpl5. The rest comes from communication paths and 4.3 Procedure

delays caused by the asynchronous nature of our system.

Since camera calibration techniques seemed tiicudtito apply

Recording the images that the user sees inside the HMD to creat# this domain, we thought of ways to directly measure the viewing
the pictures in this paper was done by mounting a video camera irfbarameters, using simple tasks that rely on geometric constraints. If

the right eye of a busThe HMD was tied to this bust, then carried

around.
4 Staticregistration

4.1 Previous work

Registration of real and virtual objectsisnot limited to see-through
HMDs. Specid effects artists seamlessly blend computer-gener-
ated images with live footage for films and advertisements. The
differenceisintimeand control. With film, one can spend hourson
each frame, adjusting by hand if necessary, and each shot is care-
fully preplanned. In Augmented Reality we have no such control:
the user looks where he wants to look, and the computer must re-
spond within tens of milliseconds (ms).

Deering [10] demonstrated an impressive registration of a real
and virtua ruler in a head-tracked stereo system. Registrationisa
somewhat easier task in head-tracked stereo vs. an HMD-based sys-
tem because the images do not change nearly as much for the same
amount of head trandlation or rotation [9].

An extensive literature of camera calibration techniques existsin
the robotics and photogrammetry communities (see the references
in[21] asastart). Thesetechniquesdigitize one or more pictures of
an object of fixed and sometimes unknown geometry, locate fea-
tures on the object, then use mathematical optimizers to solve for
the viewing parameters. However, it is not clear how to directly

apply these techniques to an optical see-through HMD, where no
camera existsAsking a user to identify the locations of many dif-
ferent points simultaneously while keeping his head still was judged

too difficult to be reliable.

We have already mentioned several papesugmented Real-
ity, but most focus on applications rather than on the details of cali-
bration and registratioriThe sole exceptions are [6][18Ve com-
pare our results with theirs in Section 4.4. Methods used to cali-

the tasks are sensitive enough and our tracker is accurate enough,
then this simple approach might woNe now describe these pro-
cedures that systematically determine the viewing paramdties.
steps in order are:

* Measure the framg’location

« Determine the apparent center of the virtual image

* Measure the transformation between tracker space and eye

space

» Measure the field-of-view (FOV)

We use only the right eye of our HMD, due to mechanical
misalignments, color mismatches between the two display systems,
and because a monocular display ifisight to demonstrate regis-
tration.

1) Frame measurement: A digitization probe attached to a “hat”
with four optical sensors returns the 3D position of the probe tip
(Figure 13).We measure eight points on the frame edges where the
red and green bars will lie, fit a pair of orthogonal lines through
those points, and those determine the axis going down the third edge.

2) Apparent center of virtual image: The center of our 640x512
NTSC frame buer need not be the center of the virtual image seen
by the right eye, requiring BEenter projections to properly render
the images [12] Assuming that the frame Hef covers the entire
area visible through the optics, we can measure this center by draw-
ing a 2D, non-head-tracked crosshair in the framteb(Figure 4).

Four numbers specify this crosshair: (Y) center coordinate,

and theX andY radii. The user determines the center by adjusting
theX center and radius until the left and rightmost lines are equally
spaced from the extreme visible edges of the disflhis is tested

by increasing the radius; both lines should disappear simultaneously
or the center is incorrectA similar procedure determines the
center Our measured center is (330, 255), whicFediffrom the
frame bufer center by about 10 pixels.

brate helmet-mounted sights on helicopter gunships provided the 3) Eye->Tracker transformation: This is measured by the boresight

initial inspiration for our approach.
4.2 Problem statement

We reduce the problem to one real object, one set of virtual ob-
jects, and a desired registration linking the tWbe real object is a
wooden frame (Figure 1)The virtual objects are three mutually

orthogonal extruded squares that form a coordinate syst&ime

goal is to register the intersection of the three virtual bars with the
front left corner of the frame, where the three bars run along the
edges that touch the corner (Figures 2 & 1Phis task is a good
registration test becausesigasy to detect small position and orien-

tation errors along the edges of the frame.

Determining parameters that accomplish this task robustly i
harder than one might first thinRhe naive approach, tried by sev-
eral people in our laboratqrig the following: put a real object at a
known or unknown position, wear the see-through HMD, then manu-
ally adjust the viewing parameters and the location of the virtual
object until the registration “looks right.This rarely yields robust

operation, where a user wearing the HMD looks straight down the
left top edge of the frame with his right eye (Figure A)0.25"
diameter pipe sticking out along the edge (Figure 1) helps the user
line up accurately Simultaneouslyhe centers the virtual crosshair
with the corner of the frame and aligns the horizontal and vertical
crosshair lines with the edges of the frame (Figdre Then the
Eye coordinate system has the same orientation as the Frame coor
dinate system, and tlZeaxes coincide.

The boresight establishes the following relationship:

= Que

where we defin®f to be the quaternion that rotates points and

gvectors from Frame space World space, an@ye rotates from

Eye space t@Vorld space [30].Then the desired Eye-¥dcker ori-
entationQte is computed by:

Qte = Qpw ™ Que
= (Qw)t*

e
whereQyt is what the head tracker returns, &y is known from

registration, because parameters and locations that work at one viewstep 1.

point may generate Ige registration errors at anothefFigure 9
illustrates this. The picture on the left shows good registration at
the initial viewpoint. But the same parameters yield a few inches of
registration error when used at afeliént viewpoint, as seen in the

picture on the right.

The Eye->Tacker position déets are measured by the boresight
and one additional tasklhe position of the corner of the frame in
World space is known, due to step The position of the tracker
origin inWorld space is returned by the head track&erefore, we
can draw a vector World space from the corner of the frame to the

tracker origin. Rotating this vector k@) *Qty transforms it to

Eye space. Since Eye space and Frame space share the same orien-

tation and theiZ axes coincide, th¥ andY values of the vector in
Eye space are the¢andY Eye->Tracker ofsets, in Eye spacelo
determine th& offset, we need one more operatidiwo nails are

on top of the frame, one in front and one in the rear (Figures 1, 4, &

14). While performing the boresight, the user must also position
himself so the front nail covers the rear n#ilred LED mounted

on the rear nail helps the user detect when this oc@imes known
locations of these two nails identify a specific distance along the
frames Z axis where the usereye must be. Subtracting that from
the corner>tracker vector in Eye space yields theomponent of

the Eye->Tacker ofset.

Eye space orientation Virtual

lines

k1

(Eye space
origin
at eyeball) i
z
Figure 5: Side view of FOV calibration

-«

results. To measure the remaining variation, we had three users
repeat the boresight and FOV steps five times, moving their heads

The user performs two boresights: one from a few feet away foraway in between each measuremertie average standard devia-

greater orientation sensitivjtgnd one less than a foot away (match-
ing the two nails) for greater position sensitivity
4) FOVmeasuement:lt suffices to measure FO®long the ver

tions in computed orientation, position, and FOV were 0.32 degrees,
4.8 mm (mostly along thg offset), and 0.1 degrees respectively
While not fatal, this variation does mean users may have to try the

tical Y direction in screen space, since scaling that by the frameprocedures more than once to achieve desired results.

buffer's aspect ratio yields the horizontal FOVhe crosshais Y

radius is set to 125 pixels so the top and bottom lines are easily'5 Dynam'C registration
visible. The user stands in front of the frame and lines up the top The static registration demonstrated in Figures 15-22 holds only
and bottom virtual crosshair lines with corresponding real lines drawnwhen the user stands stillWhen the user moves and rotates his

on the frames front surface (Figures 12, 14Jhis forces the Eye
spaceX axis to be parallel to the Frame& axis. From the informa-

head, the virtual objects appear to “swim around” the real objects,
because of the system laten@e system requires time to measure

tion in steps 1, 2 and 3, we can compute the locations of the reathe heads location, compute the corresponding images for that lo-

lines in Eye space. By intersecting the lines withXk8 plane in
Eye space, we reduce the geometry to 2D, as shown in Figdfe 5.
can always get right angles fpt andy2 by using the linér=0 as
the basis.Then:

R1 = (-1.0) tan(y1/z1)

R2 = tan'l(y2/z2)
z1andz2 are positivey?2 is positive and/1 is negative as drawn.
This still works if the uses eye is above or below both of the real
lines: the signs of1, y2, R1andR2change appropriatelySince the
crosshair does not cover the entire framddufeight (512 pixels),
we must scale the result to compute the total FOV 3:

= (B1+R2)(512/(2*125))

The parameters measured in steps 1-4 afieisut to implement
registration of the virtual axes. Step 1 tells us where to put the vir
tual axes.The other parameters tell us how to generate view matri-
ces for the right eye, given reports from the head tradkes only
unusual aspect is the need for afaaeiter projection.

4.4 Evaluation
These procedures, used with our optoelectronic tragkeerate
parameters that work well from manyfdient viewing angles and

cation, and display those in the HMDhis delay between measur

ing the head location and displaying the corresponding images means
the images will be incorrect if the user moves his head during this
delay The virtual objects appear to lag behind their real counter
parts, causing lge dynamic registration errors.

To reduce these dynamic errors, we predict head motion. Instead
of using the reported head location to generate the graphic images,
we predict where the head will be when the displays get updated. If
the prediction is correct, the computed virtual images will match
reality at the time they are viewed.

5.1 Previous work

This paper is not the first to do head motion predictidwo
predict head position with head-tracked stereo displays [10][26].
Several HMD systems predict position and/or orientation by extrapo-
lating readings from the head tracker [1][13][23][25][28][34][35]-
Two papers [24][37] add angular accelerometers to a head tracker
to aid orientation prediction.

How does our system fif from previous work? One d&frence
is the applicationWe use prediction to aid registration of real and
virtual objects in a see-through HMD and evaluate it in that context,

positions. To demonstrate this, we recorded a video sequence, ussomething the other systems did not atteriy.also use gyros and
ing only one set of parameters, of a user walking around and look-accelerometers to ambthorientation and position prediction, which

ing at the corner of the frame from manyfeliént places. If space
allows, excerpts from this will be on the CD-ROMt.several places
during the run, the HMD was kept stillhese viewpoints are iden-
tified by the numbered circles in Figure 14, which correspond with
the stillimages in Figures 2 and 15-Z2e red and green bars have
a 5x5 mm? cross-section, while the blue bar is 7x7 #rsince its

no previous system does. Our work also contributes the following:
« Evaluation of how much inertial sensors help
* Measurement and control of prediction distance
« Autocalibration of inertial sensor parameters

5.2 Procedure

harder to see at long distances. Note that the corner and edges usu- We run separate predictors for orientation and position. Each
ally stay within the width of the extruded rectangles at the static consists of two parts: 1) an estimator that computes our best guess

viewpoints, which puts the registration withitd mm for the red
and green bars arib mm for the blue bar

of the current position, velocitand acceleration, and 2) a predic-
tor that takes those guesses and extrapolates the desired distance

How do these results compare to the two previous works? Janinnto the future. Every time a tracker position and orientation mea-

[18] takes a very diérent approach. He directly measures param-

surement arrives, along with the corresponding inertial measure-

eters with instruments and runs a camera calibration optimizer thaiments, the estimator updates its gues¥éisenever Pxpl5 is ready

requires the user to identify the location of ~20 object points from
several diferent viewpoints. The best accuracy he achieves is
+12mm. In contrast, step 3 of our procedure is similar to Casidell’
[6] registration platform, which computes the Eyeradker posi-
tion and orientation ddet by having the user line up two circles and

to compute a new scene, the predictor sends it an output correspond-
ing to the time when that scene will appear

The estimator used is the Kalman filter [19], which many previ-
ous works also use. Space does not permit a detailed description of
the filter; please read [22] for thaThe Kalman filter is a linear

two lines. He does not provide any information on how accurate hisestimator that minimizes the expected mean-square efosrori-
static registration is, and his registration procedure lacks equiva-entation, we use a nonlinear variant called the Extended Kalman

lents to our steps 2 and 4.

Filter (EKF). The filter requires some variables to be estimated,

Registration accuracy depends on how successfully the user canccasional noisy measurements of those variables, and a model of

complete the registration procedures. Users reportédudty in
keeping their heads still during the boresight and FOV operations

how those variables change with time in the absence of new mea-

,surements. It is optimal only if the model is an accurate reflection

because of the weight of the HMDo compensate, we use the most of reality and if the uncertainty in both the model and the measure-
recent 60 tracker reports to compute each operation, averaging thenents is accurately represented by additive white noise. Even though

these assumptions are usually not met, the Kalman filter is still popu-are set to 351.0. FdR, the first four diagonal terms are 0.0001,
lar because it tends to perform well even with violated assumptionsrepresentin@m noise, and the remaining three diagonal terms are
and its recursive formulation makes ifiegent to compute. 0.005921, representing m noise.

Building a Kalman filter is easyhe dificult parts are determin- Predictor: When the scene generator is ready to draw a new im-
ing an appropriate model and finding good noise parameters. Folage, the predictor bases its extrapolation on the estimated values in
the latter task, we collected several runs of tracker and inertial dataX. The predictor is the closed-form solution of integrating the quater
while the HMD-wearer performed “typical’ head motionshen nion and omega under the assumption that the derivative of omega
we ran PowelB method [27] to search for parameters that mini- is constant over the integration intert@lto t. We define a 4x4
mized prediction error at a fixed prediction distance. In practice, matrix M (t) as satisfying:
tmhge?%gség:alﬁ able to find a fairly wide range of parameters that O = (05)(Q)W) = (M(D)(Q)

We now outline the orientation estimator and predjcdater de- where M (t) essentially rewrites the quaternion multiplication as a

scribing the translation case by how itfeli§ from orientation. matrix multiplication. The solution of thisis:
5.2.1 Orientation Q =[(I)cos(d) + (M)(sin(d) / d)] (Qi0)

Q = [qw gx z]T W=[wo wl V\/Z]T where Qtg isthe original quaternion at time tO and:

SR T d=VaZ + b + &2
.. TT)

X = [qw ax gy gz w0 wl w2 wO wl w2 a =(0.5) (tt0)w0 + (0.5)(t - t0)3(W0)
where Q is a quaternion rotating points and vectors from Tracker [2,]
space to World space, W is omega, the angular rate of rotation in b =(0.5) (t-tO)wl + (0.5)(t - t0)“(wl)

head space, and X is the Nx1 state vector, where N=10. P isan _ 2, -
NXN covariance matrix representing the uncertainty in X. Theini- ¢= (0'5)[040)""2 + (0.5)(t-10) (WZ)}
tial valueof X holdsthe starting quaternion and has zeroesfor omega 5.2.2 Position

and itsderivative. Pisinitially adiagona matrix with zeroesin all i A . .
" i : : g The position estimation uses three separate linear Kalman filters,
off-diagonal positions, 1 for the first four diagonal terms (quater: oneeachfor X, Y and Z. Sincethey areidentical inform, welook a

nion), and 50 for the remaining six diagonal terms (omega and its) I . :
derivative). The initial covariances are large so the filter will re- :anlgge only. This section lists the differences from the orienta-

place the initial X with new measurements as they arrive. T
X and P are maintained at the current time t. When each new - Yy -

measurement arrives, say at timetl, the filter performs two opera- x =1 yyy [% whereN = 3

tions: 1) atime update that advances the state variables to time t1 2 0 0

based on the model, and 2) ameasurement update that blendsin the Initial X =[y(0) O O]T, P=(0 500 O

values measured at time t1.) 0 0 500
1) Time update: A 4th-order Runge-K utta ODE solver [27] inte- Time update: Replace (1) with:

gratesthe derivatives of X and P from timettotl. The derivatives

. . 010
ae X = AX, where A=/0 0 1
P=AP + PAT+E 000
X = a(x, 1)) Measurement update: Replace (2) with:
where E is an NxN matrix representing the noise in the model, and X =X + K[Z - HX] whereH = {(1) 8 ﬂ
A isthe NxN Jaqoblan matrix of the .nonlllnear function a() that re- and Z is a2x1 matrix (F=2) containing the reported Y position and
turns the derivatives of X by computing: the linear Y acceleration, in World space. Recovering linear accel-
o . S & eration from the accel erometers is complicated because they detect
Q= (0-5)(Q)(W), W :[WO wl WZ} , W=0 both linear and angular accelerations, plus gravity. Space does not
where for the derivative of Q, the multiplications are quaternion permit an explanation here; please see Appendix A in the CD-ROM
multiplications and W is written as a quaternion with zero w term version of this paper for details.
7 .007
2) Measurement update: Measuremer® is anFx1 matrix, where R = {-01 0} E= 80 .0007 8
F=7, that holds the measured quatern@m and omegaVm re- 0 .05F 0 0 2000000

ported by our sensors: - - Predictor:
Qm = [0Wm BXm dym dZml ', Wm = [WOm Wlmw2m]

t) = 0.5* Y(t0) * [t - t0]2 + y(t0) * [t - tO] + y(tO
2 i e s e WO g 2] T Y(0) = 0.5 * §(10) * [t- 102 + §(10) * [t- 10] + y(10)

The nonlinear functioh() generate& = h(X(t)) as follows: 5.2.3Autocalibration

Qm = NormalizeQ), Wm =W The inertial outputs must be rotated into Tmacker coordinate
and the measurement update itself generates XrewdP given system, because the inertial sensor packs are tilted with respect to
Z as follows: Tracker spaceTo perform these rotations, we must know the orien-

K = PHT[H PHT + R]'l tation of each pack on the HMDWhile it is possible to mechani-

_ cally build a mount that holds each pack at a specified orientation,

P=[I-KH]P it's easier to mount the packs at some rigid, but unknown, orienta-

X =X +K[Z - h(X)]) tions, then measure thermilso, we would like to measure other
whereK is anNxF matrix called the Kalman gail is the FxN sensor parameters, like the biases and scalgscalibration refers
Jacobian matrix of the nonlinear functibf), andR is theFxF co- to mathematical methods that determine such constant parameters
variance matrix representing the noise in the measurenfsritse by applying geometrical constraints to collected data. One demon-

end of the measurement update, we explicitly renormalize thequaterStfation of this measured the locations of the beacons in the panels
nion part ofX. This isnt standard, but without it the quaternion ©Of our optoelectronic tracker [15]lwo such methods that we use

terms quickly become unnormalized. with our inertial sensors are describeddppendix C on the CD-
Noise matriceE andR are determined during theflafe optimi- ROM. They are good at determining the orientation and biases, but
zation. Both are diagonal matrices with zeroes in &tlisigonal not the scales.

terms. The first six diagonal terms & are set to 0.004452: atiny 53 Evaluation
amount of noise added to the measured quaternion and omega to

help the stability of the EKFThe remaining three diagonal terms From the usés perspective, prediction changes dynamic regis-

tration from “swimming around the real object” to “staying close.”

Walkaround Rotation Swing «» 160 %
Ang | Pos | Screen | Ang |Pos [Screen |Ang |Pos |Screen £ 1403 v
No 13|143| 93 |22 |66 | 336 |25 |178] 372 o 1203 b
prediction 43 380 | 620 | 53 [176 | @21 |65 |460]| 1186 5 128; P X
- @ E LO V
P;ﬁ?ﬁ?&?“ 25| 45 |o6 33| 136 |06 |52 162 c 603 > A —
© 403 A
Inertial 9.0 26.7 16 [11.7 | 510 18 |171| 628 5 o0 I 7| >
3 e
Prediction 01 [11 | 27 |ois|16| 52 |o2|27| 72 & oF=——
with 04 [61 | 151 Jos57 [98 | 361 | 07 |178| 301 o 0 O WO W QLo
. N O ~NO N WO N~ O
Inertial < a4 d 4 <«
Average error Peak error Prediction distance in ms
Angular error in degrees, Position error in mm, Screen error in pixels —o-No pred -@-Pred w/out inertial

Prediction distance set at 60 ms for all runs

Figure 6: Performance table of predictors on three motion datasets

—Pred with inertial
Figure 7: Average error vs. prediction distance

Without prediction, registration errors are large enough to strain the
illusion that the real and virtual coexist. With prediction, the rea
and virtual objects stay close enough that the user perceivesthemto
be together. Although the prediction is not perfect, it demonstrably
improves the dynamic registration.

The predictor was run on three recorded motion datasets that are
considered representative of this registration task. During each
motion sequence, the user keeps the corner of the frame visible in
hisfield-of-view. Inthe Walkaround dataset, the user walks slowly
around the corner of the frame. The Rotation dataset has the user
yawing, pitching, and circling hishead while standing in place. The
Swing dataset combines fast translation and rotation motion.

We compared our inertial-based predictor on these three datasets
against doing no prediction and against a predictor that does not use
inertial sensors. Directly comparing our predictor against previous
work is difficult because our systemisunique. Instead, we wrote a
Kaman-filter-based predictor that is representative of many previ-
ousworksthat do not useinertial sensors. \Weran that on the datasets,
keeping al other variables constant. Three error metrics evaluate
the accuracy of the predicted outputsvs. the actual tracker measure-
ments. Angular error is computed in degrees as follows:

Quiff = (Qactual) (Qpredicted) ™
. angle_err = (2) acos(Qair[qW])

Position error isthe distance between the predicted and actual trans-
lations. Screen error combines orientation and transl ation errors by
measuring the difference, in pixels, between the 2D projection of
the real frame and the 2D point where the three virtual axes inter-
sect on ahypothetical 512x512 screen. That is, it measures error in
terms of what the user seesinside an HMD. The peak and average
errors are summarized in Figure 6. On average, our inertial-based
predictor is 5-10 times more accurate than doing no prediction and
2-3 times more accurate than prediction without inertial sensors.

Appendix B on the CD-ROM provides additional materials that
demonstrate the results of prediction. Depending upon the space
allocation on the CD-ROM, these may include error graphs, the mo-
tion datasets, and a short QuickTime video.

Figure 7 shows how the average screen-based errorsfor the Rota-
tion run change asthe prediction distanceisvaried from 25-200 ms.
Again, inertial sensors clearly help. But what this graph does not
show isthat at prediction distances of ~100 ms or more, thejitter in
the predicted outputs often reaches objectionable levels. In prac-
tice, the only solution is to keep system latency at tolerable levels,
below ~80 ms. Thus, prediction cannot compensate for arbitrary
amounts of latency; to be effective, it must be combined with efforts
that minimize system lag. See Appendix D on the CD-ROM.

Because one cannot accurately predict without knowing how far
to predict, our system requires accurate clocks and control over la-
tency. Our tracker and graphics engine run asynchronously, requir-
ing an estimation of the prediction distance at each iteration. Mis-
calculating the prediction distance by aslittle as 10 msleadsto vis-
ibleregistration errors. The clocks in the tracker boards and Pxpl5
are good to under a millisecond. Synchronization occurs through a
message that takes less than 1 ms to make a round trip of al the
processors. Since clocks that differ by one second every six hours

change by 8.3 ms every three minutes, skew rate compensation and
occasional resynchronizations are performed. Controlling latency
means removing all unpredictable delays, so we have direct com-
munication paths not shared with other users, and we run a low-
overhead operating system called VxWorks. Processes running on
UNIX can suffer unbounded amounts of delay. Pauses of 60-200
ms are common occurrences on our Sun4 host. Therefore, we avoid
UNIX for al time-critical tasks, directly injecting data from the
tracker into Pxpl5 without going through the Sun4 host. Whilethese
steps reduceflexibility and makeit harder to debug the system, they
are needed to insure accurate prediction. Appendix E on the CD-
ROM demonstrates the accuracy of our prediction distance estima-
tion.

6 Additional lessons

Augmented Reality demands higher accuracy from head trackers
thanVirtual Environment applications do [3]'The main dificulty
in duplicating our demonstration of static registration is in aequir
ing a head tracker that one can trust at long ranglesden crates
are easy to build, and the calibration techniques are straightforward
and applicable to any tracking system or see-through HMD. But
many commercially available trackers commonly usedv/fdual
Environments do not provide $igfent performance. For example,
in our laboratory the widely used Polhemus magnetic trackers give
distorted outputs at long distances because of the metal in the envi-
ronment.A coworker experimenting with our optoelectronic tracker
discovered a distortion that, when the tracker “hat” yaws 360 de-
grees about its origin, causes the reported positions to trace an el-
lipse about an inch wide. Since this distortion seems to be system-
atic, we were able to compensate fofTihe fact that this distortion
was undetectable in thértual Environment applications we run
but was quite noticeable Bugmented Reality only serves to un-
derscore the lattes need for accurate, long-range trackers.

The need to accurately measure time and avoid unpredictable
sources of latency has serious ramifications on the desigfeof ef
tive Augmented Reality systemdracker measurements must be
timestamped, a feature not provided by most commercial trackers.
Almost all interactive graphics applications in our laboratory use
UNIX because of its convenient programming environmeffe
build applications to the desired complexitben we extract as much
speed as possible. Flight simulators and some other researchers [20]
take the opposite approach: set a minimal standard for performance,
then see how much complexity can be supported. Since accurate
prediction requires guaranteed performance, flkiugmented Re-
ality applications may need to take this latter approach.

7 Futurework

Much work remains to further improve static registratidve
only match one virtual object with one real object, where the real
object is the calibration rig itself. Because our optoelectronic tracker
loses accuracy when the sensors are not aimed at the ceiling bea-
cons, we cannot move the HMD far away from the wooden frame,
nor can we tilt the HMD far from horizontal. Our system is mo-
nocular; while our static registration procedure could be applied to

both eyes, stereo displays involve additional issues like cpenes

that we have not addressalfe have not compensated for the opti-
cal distortion in the see-through HMD. Because our HMD has nar
row field-of-view displays, this distortion is small and detectable
only near the edges of the display®e can eliminate this error by
mapping the distortion, then predistorting the graphic images be-
fore displaying them [31].

More sophisticated prediction methods might further reduce dy-[13]
namic registration errorsAdaptive methods that adjust to varying
head motion deserve more exploration. Using a nonadaptive pre-
dictor is like trying to race a car at constant speed; slowing down on
the curves and speeding up on the straight-aways will improve your[14]
time. Analyzing head motion for recognizable patterns or high-level
characteristics may aid prediction. Other researchers have begun
doing this [32], and Fitts’ Law has been shown to apply to head [15]
motion [2][17].

Our work has not dealt with video see-through HMDs, where a
video camera provides a view of the real world and the graphics ard16]
composited with the digitized images of the real wokdth this
class of see-through HMD, standard camera calibration techniques[17]
could determine the viewing parametefmd since the computer
has digitized images of what the user sees, it may be possible to use
image processing or computer vision techniques to detect features g
in these images and use them to aid registrafitre. disadvantage
of this technology is that the video camera and digitization hard-
ware impose inherent delays on the is&rew of the real world.
Therefore, even if the graphics are perfectly registered with the digi-[19]
tized images, a problem remains: the latency in the video stream
will cause the user to perceilieththe real and virtual objects to be [20]
delayed in time.While this may not be bothersome for small de-
lays, it is a major problem in the related area of telepresence sys-
tems and may not be easy to overcome. [21]

Acknowledgements

This system would not exist without the contributions of many
people.We thank Mike Bajura, Suresh Balu, Brad Bennett, Devesh [22]
BhatnagarFrank Biocca, Fred Brooks, Steve Brumbadn Chi, 23
David Ellsworth, Mark Finch, Henry Fuchs, Jack GoldfeatBgfan
Gottschalk, David Harrison, Rich Hollowayohn Hughes, Kurtis

(10]
(11]
(12]

Keller, Jack Kite, Jonathan Marshall, Carl Mugellgirich Neumann, [24]
Mark Olano, Jannick Rollandyndrei State, Brennan Stephens,
RussellTaylor, JohnThomas, and Markard for their advice and/
or help with this project. [25]
We thank the anonymous reviewers for their helpful comments
and constructive criticisms. [26]
Funding was provided by ONR contract N00014-86-K-0680,
ARPA contract DABT63-93-C-C048, the NSF/ARBcience and
Technology Center for Computer Graphics ®iglalization (NSF [27]
prime contract 8920219), and a Pogue Fellowship.
28
References 28]
[1] Albrecht, R. E.An adaptive digital filter to predict pilot head look [29]
direction for helmet-mounted displays. M®esis, University of
Dayton, Ohio (July 1989). [30]
[2] Andres, Robert O., and Kenny J. Hartung. Prediction of Head Move-
mentTime Using FittsLaw. Human Factors 316 (1989), 703-713.
[3] Azuma, Ronald. Tracking Requirements fokugmented Reality
CACM36, 7 (July 1993), 50-51. [31]
[4] Bajura, Michael, Henry Fuchs, angiiRarou Ohbuchi. MeingVir-
tual Objects with the Re#lVorld: Seeing Ultrasound Imagery within
the Patient.Proceedings of SIGGRAPH ‘qZhicago, IL, July 26- [32]
31, 1992), 203-210.
[5] Beer Ferdinand Pand E. Russell Johnston, \lctor Mechanics for
Engineers: Statics and Dynamics (5th eMjcGraw-Hill, 1988.
[6] Caudell, Thomas Pand DavidW. Mizell. Augmented RealityAn [33]
Application of Heads-Up Displayechnology to Manual Manufac-
turing ProcesseProceedings of Hawaii International Conégrce on [34]
System Sciencégdan. 1992), 659-669.
[71 Chou, Jack C.K. Quaternion Kinematic and Dynamiddbéntial
Equations. IEEE Trans Robotics andutomations, 1 (Feb. 1992), [35]

53-64.

[8] Cohen, Jonathan, and Mark Olano. Low Latency Rendering on Pixel-
Planes 5. UNC Chapel Hill Dept. of Computer Science technical [36]
reportTR94-028 (1994).

[9] Cruz-Neira, Carolina, Daniel Sandin, afttbmas DeFanti. Surround-

Screen Projection-Basafirtual Reality:The Design and Implemen-
tation of the CAE. Proceedings of SIGGRAPH ‘qB8naheim, CA,

Aug. 1-6, 1993), 135-142.

Deering, Michael. High Resolutiovirtual Reality Proceedings of
SIGGRAPH ‘92 Chicago, IL, July 26-31, 1992), 195-202.

Feiner Steven, Blair MaclIntyre, and Dorée Seligmann. Knowledge-
BasedAugmented RealityCACM 36,7 (July 1993), 53-62.

Foley, James D.Andries van Dam, Steven K. Feipand John F
Hughes. Computer Graphics: Principles and Practice, 2nd edition.
Addison-Wesley (1990), 238-239.

Friedmann, MartinThad StarnerandAlex Pentland. Device Syn-
chronization Using an Optimal FilteProceedings of 1992 Sympo-
sium on Interactive 3D Graphi¢€ambridge, MA, 29 March -April
1992), 57-62.

Fuchs, HenryJohn Poulton, John Eyles, et al. Pixel-Planéstet-
erogeneous Multiprocessor Graphics System Using ProeEssor
hanced Memories.Proceedings of SIGGRAPH ‘@Boston, MA,
July 31-Aug 4, 1989), 79-88.

Gottschalk, Stefan and JohnHrughes.Autocalibration forVirtual
EnvironmentsTracking HardwareProceedings of SIGGRAPH ‘93
(Anaheim, CAAug 1-6, 1993), 65-72.

Holmgren, Douglas E. Design and Construction of a 30-Degree See-
Through Head-Mounted DisplayUNC Chapel Hill Dept. of Com-
puter Science technical repdiR92-030 (July 1992).

Jagacinski, Richard J., and Donald L. Monk. Fitesiv in Two Di-
mensions with Hand and Head Movemenisurnal of Motor Be-
havior 17 1 (1985), 77-95.

Janin,Adam L., DavidW. Mizell, andThomas PCaudell. Calibra-
tion of Head-Mounted Displays f&wugmented Realithpplications.
Proceedings of IEEE VRAIS ‘qQ%eattle WA, Sept. 18-22, 1993),
246-255.

Kalman, R. E., and R. S. BucjNew Results in Linear Filtering and
PredictionTheory Trans ASME, J. Basic Eng., Series 83Mar.
1961), 95-108.

Krueger MyronW. Simulation versus artificial realityProceedings
of IMAGE VI Confegnce(ScottsdaleAZ, 14-17 July 1992), 147-
155.

Lenz, Reimar K. and Rog¥t Tsai. Techniques for Calibration of the
Scale Factor and Image Center for Higituracy 3-D Machin/i-
sion Metrology IEEE Transactions on PatterAnalysis and Ma-
chine Intelligence 106 (Sept. 1988), 713-720.

Lewis, Frank L.Optimal Estimation.JohnWiley & Sons, 1986.
Liang, Jiandong, Chris Shaand Mark Green. Ofemporal-Spatial
Realism in theVirtual Reality EnvironmentProceedings of the 4th
annualACM Symposium on User Interface Sofevér Technology
(Hilton Head, SC, Nov1-13, 1991), 19-25.

List, Uwe H. Nonlinear Prediction of Head Movements for Helmet-
Mounted Displays. Technical reporAFHRL-TP-83-45 [AD-
A136590],Willlams AFB, AZ: Operationslraining Division (1984).
Murray, PM. and B. BarberVisual Display Researcfool. AGARD
Confeence Poceedings No. 408 Flight Simulati@ambridge, UK,
30 Sept. - 3 Oct. 1985).

PaleyW. Bradford. Head-fcking Stereo Display: Experiments and
Applications. SPIE VI. 1669 Stezoscopic Displays andpplica-
tions 1l (San Jose, CA, Feb. 12-13, 1992), 84-89.

PressWilliam H., et al. Numerical Recipes in CCambridge Uni-
versity Press, 1988.

Rebo, RobertA Helmet-Mounted/irtual Environment Display Sys-
tem. MSThesisAir Force Institute offechnology (Dec 1988).
Robinett,Warren. Synthetic ExperiencA: Proposedlraxonomy
Presencd, 2 (Spring 1992), 229-247.

RobinettWarren, and Richard Hollowaymplementation of Flying,
Scaling and Grabbing iirtual Worlds. Proceedings of 1992 Sym-
posium on Interactive 3D Graphi¢€ambridge, MA, 29 March - 1
April 1992), 189-192.

Robinett,Warren, and Jannick Rolland. A Computational Model
for the Stereoscopic Optics of a Head-Mounted DispRagsence,

1 (Winter 1992), 45-62.

Shaw Chris and Jiandong Liangn Experiment to Characterize Head
Motion inVR and RR Using MRProceedings of 1992&%tern Com-
puter Graphics SymposiufBanf, Alberta, Canadapril 6-8, 1992),
99-101.

Sims, Dave. New Realities Aircraft Design and ManufacturéEEE
CG&A 14, 2 (March 1994), 91.

Smith Jr, B. R. Digital head tracking and position prediction for hel-
met mounted visual display systemBroceedings oAIAA 22nd
Aerospace Sciences Meetiflgeno, NV Jan. 9-12, 1984).

So, Richard HY. and Michael J. Giiin. Compensating Lags in Head-
Coupled Displays Using Head Position Prediction and Image Deflec-
tion. Journal ofAircraft 29, 6 (Nov-Dec 1992), 1064-1068.

Ward, Mark, Ronald\zuma, Robert Bennett, Stefan Gottschalk, and
Henry Fuchs.A Demonstrated OpticdlrackerWith ScalabléNork
Area for Head-Mounted Display Systent&oceedings of 1992 Sym-
posium on Interactive 3D Graphi¢€ambridge, MA, 29 March - 1
April 1992), 43-52.

[37] Welch, Brian L., Ron Kruk, et a. Flight Simulator Wide Field-of-
View Helmet-Mounted Infinity Display System. Technical report
AFHRL-TR-85-59, WilliamsAFB, AZ, Operations Training Division
(May 1986).

Figure 9: Naive approach yields non-robust registration !

Figure 10: Picture of overall system

Virtual
blue bar ' Na|Is for Z measurement

R .

V|rtuaI magenta bar

Figure 11: Boresight view

v Lines
‘\@D for
FOV
Virtual calib
green bar
Wooden crate (hollow on inside)
Figure 12: FOV calib Figure 13: Measuring frame Figure 14: Wooden frame and static registration viewpoints
“ “
Figure 15 Figure 16 Figure 17 Figure 18

Figure 19 Figure 20 Figure 21 Figure 22
Figures 15-22: Static registration of virtual axes with real frame as seen inside the HMD from viewpoints specified in Figure 14

I ntroduction to Appendices Sensitive

These appendices, which are included only in the CD-ROM ver + axis +
sion of the paperontain supplementary materials that could not be
included with the proceedings version, due to the eight page limit. §
These appendices are: - -
*AppendixA: ExtractingWorld space acceleration No Gravity Gravityl
*Appendix B: Evaluating dynamic errors)))
«Appendix C:Autocalibration Figure 23: Accelerometers are tiny cantilever beams
-Append?x D: Lim_its qf prediction o _ Accel2
*Appendix E: Estimating total prediction distance
*Appendix F: Miscellaneous comments Vectors
Please also see the README files on the CD-ROM for a guide Tracker F2.° FO. F1 F2
to the other available supplementary materials. .o Fl- T
e Accell are defined
A Extracting World space acceler ation =01 @ in Tracker
Section 5.2.2 describes a filter and estimator that performs posi- Accelo space

tion prediction. It requires measurements of the linear acceleration

of the trackerin World space. This information comes from the

accelerometers, but calculating it is not as trivial as recovering an-

gu|ar Ve|0city from the rate gyroscop@ﬂhy? The rate gyroscopes Figure 24: Locations of accelerometers in Tracker Space

only detect angular velocity and are basically fewéd by other

types of motion. Therefore, recovering the angular velocity from

the gyroscopes is simply a matter of biasing, scaling, and rotating

the gyro outputs intdracker space. In contrast, our linear aceeler z

ometers respond to linear acceleration, angular acceleration, and

gravity. Their output is a combination of all these inputs.extract

only the linear acceleration from the accelerometers, we must cal- X

culate and remove the other two components. y World space
It may help to first describe how the accelerometers work. One

can think of an accelerometer as a cantilever beam that extends out

over empty space, much like a tiny diving boavdithout gravity would output if the accelerometers were kept still at that orienta-

this beam extends out straight horizontalBut with gravity the tion. These bias values are subtracted from the actual accelerom-

beam sags down (Figure 23s the user moves the accelerometer eter outputs, removing the contribution due to gravityis leaves

up and down, the beam moves up and down with respect to the regts with linear and angular acceleration, reporteficicelerometer

of the device, due to inertialThe accelerometer electrically mea- space.

sures the height of the beam with respect to the rest of the device, In Step 2, we change this acceleration iMarld space. The

and that voltage is the what the sensor outputs. three accelerometers are mutually orthogonal, so combining their
We note two important properties from this explanation. First, outputs forms a 3-vector Accelerometer spacéVe scale the val-

each accelerometer detects acceleration only along one direction inies so they report acceleration asmmégher thad/D counts. Then

space.To a first approximation, each accelerometer does not detectwe rotate that int¥\Vorld space.

any acceleration perpendicular to its sensitive akimt is why we All that's left for Step 3 is to remove the angular acceleration

have three accelerometers, mounted in a mutually orthogonal concomponent, leaving the desired linear acceleratiando that, we

figuration. The fact that we have three, physically separated, 1-D use the following formula from the kinematics of rigid bodies [5]

sensors instead of a single 3-D sensor makes the math slightly morérigure 25):

complicated. Second, gravity sets the “bias point” of each acceler Aa=AB - WXr - Wx (W xr)

ometer That is, the value that the accelerometer reports when it is

standing still depends upon its orientation with respect to the grav-

ity vector the accelerometers, W isthe angular velocity of the tracker, the de-

With this background, we now describe how to recover linear rivative of W is the angular acceleration, and r is a vector from

acceleration from the three accelerometers. Since thls recovery der')oi nt A to point B. Note, however, that this formula assumes that
pends on knowledge of angular motion, we must first run all the

i) hich id) ; | . Tracker space shares the same orientation as World space, which is
steps in Sc_ecnon 52.1,w ich provides estimates of angular orlenta’usually not the case. Thus, to usethis formulawe must have every-
tion, velocity and acceleratioriVe also need the orientation of the

g) X thing in World space. A second problem comes from using three
tra_cker provided by the head trackdfigure 24 shows the configu- separate 1-D accelerometers. We need three different r vectors, one
ration of the accelerometersinacker space.

. - L . ._for each accelerometer. Each vector results in a different angular
hStep_l is tq corrflpsnsate flor gravity by thermlnlng tEe bias po'msacceleration, and each accel erometer detects only the component of
_T e orientation of the accelerometers wit respe’l_ftao er space angular acceleration that lies along its sensitive axis.
is known. We can rotate that inMvorld space by using the orienta- Therefore, we must modify the formula somewhat to deal with
tlon repor_ted by the_head trackdhe grawty vector is aSSL_Jmed _to these problems. The final procedure that Step 3 uses to remove the
point straight down iWorld space. Since we know the orientation angular acceleration component is:
of the accelerometers World space, we can calculate what they

Figure 25: Definitions for rigid body kinematics formula

where A, isthe total acceleration at point A, the origin of Tracker
space, Ag isthetotal acceleration at point B, the location of one of

1) Set Ag tothelinear and angular acceleration 3-vector reported
by the accelerometers, in World space, which was computed
in Step 2.

2) Take W and its derivative from the results in Section 5.2.1
and rotate them into World space.

3) For each accelerometer, compute the following: Take vector
FO, F1, or F2 and rotateit into World space. Call thisvector
r. Compute
V=Wxr + Wx(Wxr)
Then take a unit vector along the sensitive axis of the accel-
erometer, in Accelerometer space, and rotate that into World
space. Call thisvector S. The angular acceleration detected
by this accelerometer is the dot product of V and S. Call
vectors VO and SO, V1 and S1, and V2 and S2 asthose from
accelerometers 0, 1, and 2, respectively.

4) The desired World space linear acceleration at the origin of
Tracker space, Ap, isthen computed by:

Aa=Ag- VOBE0- V1[E1l- V2052
We can do this because the three accelerometers are mutu-
ally orthogonal.

We tested this math on simulated motion datasets before trying it
on real data. The simulated datasets were generated by writing ex-
plicit equationsfor the position and orientation of thetracker and its
three accelerometers. Differentiating those equations yielded the
velocity and acceleration values. By not using the equations of
motion in Step 3 to generate the simulated data, we avoid incestual
problems that might result in invalid test data.

The need for the derivative of W is a potential weakness of our
procedure. We do not have a sensor that directly detects angular
acceleration, so we must estimate that from the gyro data. Simula-
tion runsindicate that the estimated derivative of W lags behind the
true derivative by about 20 ms. The errors resulting from this are
small, except when the user rotates hishead very quickly. One could
avoid this problem by adding angular accelerometers.

B Evaluating dynamic errors

This appendix provides a more detailed look at the data summa-
rizedin Section 5.3. Nine graphs compare using no prediction, pre-
diction without inertial sensors, and prediction with inertial sensors
on the Swing motion dataset.

We should point out that the original positions and quaternionsin
all three motion datasetswerefiltered with anoncausal 10 Hz lowpass
filter. Thislowpass filter does not introduce any phase delay. The
filtering is intended to reduce noise in the origina positions and
guaternions, since we use those asthetrue valuesin the angle, posi-
tion, and screen-based error metrics. Without thisfiltering, noisein
the original signalswould show up asadditional error. Notethat we
do not lowpass filter the inertial measurements.

Thefirst set of three graphs (Figures 26-28) compares the angle,
position, and screen-based errors produced by running no predic-
tion, prediction without inertial sensors, and prediction with inertial
sensors on the Swing motion dataset. One-third of the numbers
from Figure 6 came from these graphs; they provide some sense of
how the numbersin Figure 6 correspond to the actual error graphs.

.}

Angular error in degrees
w
L L L L
—
=

—
—

-

-

Time in seconds

mmmmm NO prediction

m = m Prediction without inertial

mmmm Prediction with inertial

Swing motion dataset, 60 ms prediction distance
Figure 26: Angular errors generated by no prediction, prediction without inertial, and prediction with inertial

Position error in meters

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

| |
| A '
| th L
| A A
| LI |
-V | /
' \| T
v. “’; i ""\J’

= NO prediction

Time in seconds
= m m Prediction without inertial
Swing motion dataset, 60 ms prediction distance

mmmm Prediction with inertial

Figure 27: Position errors generated by no prediction, prediction without inertial, and prediction with inertial

120

100

80

Screen-based error in pixels

Z
=

mmmmm No prediction

Time in seconds
m m m Prediction without inertial

Swing motion dataset, 60 ms prediction distance
Figure 28: Screen-based errors generated by no prediction, prediction without inertial, and prediction with inertial

mmmm— Prediction with inertial

14

The second set of three graphs (Figures 29-31) gives a detailed
view of orientation errors. We select a small section of the qw ori-
entation curve from the Swing dataset and overlay the predicted gw
curvesthat result from no prediction, prediction without inertial sen-
sors, and prediction with inertial.

The third set of three graphs (Figures 32-34) does the same for
one of the translation curves: the Z position. We select asmall sec-
tion and overlay three predicted curves on that interval.

It isdifficult to graph the actual and predicted motion curves be-
cause of the difference in scale between the errors and the original
motions. Overall views cannot show the errors, while detailed views
fail to give asense of the overall motion. Therefore, we are making
the datasets themsel ves avail able on the CD-ROM (assuming space
is available), so that readers may use their favorite graphing pro-
grams to examine any part of the curves they wish. Please see the
README files on the CD-ROM for instructions.

0.3

NI A

o
'_\
L L L
—
\

o

Qw quaternion value
L L
"

o
H
L L
—

_0-3 T T L T L T T T L
5 55 6 65 7 75 8 85 9 95
Time in seconds
Predicted qw (No inertial, 60 ms distance)

— Actual qw
Figure 30: Qw curve with non-inertial-based predictor

0.3

Actual

qw

Time in seconds

Predicted qw (inertial, 60 ms distance)

1 \/
o 01 \/4
g]
© |
>
z]
i) 8
S 0
o]
©
s]
(o]
2]
.01
02
-0.37\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5 55 6 65 7 75 8 85 9 95
Time in seconds
Predicted qw (No prediction, 60 ms distance)
Actual qw
Figure 29: Qw curve with no prediction
0.3
o\
{1\ /
o 01 \v/
© |
>
2z]
o 8
E 0
o]
: \
s]
o _
5o \
© 01
0.2
1 \
-0-37\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5 55 6 65 7 75 8 85 9 095

Figure 31: Qw curve with inertial-based predictor

Z position in meters

Z position in meters

1.8
175
] /\ /f"
1.7 /
1.65
1.6
1.55 \;ﬂ
1-57\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4 45 5 55 6 6.5 7 75 8
Time in seconds
Predicted Z (No prediction, 60 ms distance)
Actual Z
Figure 32: Z curve with no prediction
1.8 AN
1.75
? \ | /1
1.7 /
1.65 /
1.6
155 \/
1-57\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4 45 5 55 6 6.5 7 7.5 8

Time in seconds

Predicted Z (No inertial, 60 ms distance)
Actual Z

Figure 33: Z curve with non-inertial-based predictor

C Autocalibration

Section 5.2.3 introduced the concept of autocalibration, where
optimization routines applied to collected data measure system pa-
rameters. Inthisappendix, we describe and eval uate two approaches
for measuring the orientation, biases and scales of our inertial sen-
sors. In both methods, a user wears the HMD and moves around
naturally while the inertial and tracker readings are recorded. This
dataset is then processed offline to determine the parameters.

Autocalibration requires finding effective bases of comparison.
If we can compute the same value in more than one way, by using
geometrical relationships or other manipulations, we have a basis
for comparing two or more estimates. Sinceideally these estimates
should be equal, an optimizer variesthe system parameters until the
best match is achieved between the multiple estimates.

In our case, we must compare the position and orientation read-
ings provided by the head tracker against the velocities and accel-
erationsreturned by the gyrosand accelerometers. Clearly, we have
two basic approaches available. We can either differentiate the
tracker positions and orientations and compare those against the
velocities and accelerations, or we can integrate the velocities and
accelerations and compare those against the tracker positions and
orientations.

The first method uses the differentiation approach. It turns out
that this approach does not work with the accelerometers. Numeri-
cal differentiation is an operation that inherently magnifies noise.
Differentiating position twice to get acceleration generates outputs
that are too noisy to be useful. However, we have been able to use
Kalman filtersto differentiate once without adding too much noise,
so this approach doeswork for the gyros. An EKF estimates omega

1.8

1.75

. /\\ A

()]

e
5

z]
< 1
= 165
S 1
"5; |
(@] _}
Q- .
N 16

1.55 1 \/

1-5 L I .
4 45 5 5.5 6 6.5 7 7.5 8

Time in seconds
Predicted Z (inertial, 60 ms distance)
Actual Z

Figure 34: Z curve with inertial-based predictor

from the quaternions reported by the head trackdurns out that D Limitsof prediction
the estimated omegas are shifted backwards in time, because they |, saction 5.3. we mention that prediction is nfetive to arbi-

are delayed versions of the true valudis timeshift, which is 4y gistances. Part of the reason is shown in Figure 7, which dem-
about 60 ms, is one measure of how much inertial sensors help thggirates how errors in the predicted outputs grow with increasing
prediction task. It means that the gyros provide information that e giction distancesThis should be intuitive; asking a predictor to
would cost 60 ms of lag to generate without gyrdée include a gyiranolate farther into the future makes the task harder and increases

timeshift along with the orientation, biases, and scales as systéMyg gypected erroiFor long distances, the task is essentially intrac-
parameters to be searched f&towells method [27] adjusts these (ahje We cannot predict head motion ten seconds into the future

parameters until it finds the set that minimizes the mean-square dify;ip, any real accuracy: in ten seconds the user can be anywhere.
ference between the two estimates of angular velocity However accuracy is only half the storyitter in the predicted
The second method uses the integration appro@ibis works outputs is the other factorAlmost all head-motion engy stays
for both the gyros and accelerometevghile integration tends 0 pe|oy 2 Hz when looked at in Fourier space, but predicted outputs
reduce noise, it has a tiifent problem: driftWe cannot integrate 5y additional engy in the 3-12 Hz rangeThese relatively high
the velo_cmes or acceleratlon_s _for long periods of time without ac- frequency engjies appear to the user as objectionable oscillations
cumulating too much errofThis is the same problem that prevents yhat go not correspond with the useactual motion; we call this
anybody from using a purely inertial tracking system. In practice, jiwer. Jitter is especially noticeable on motion sequences where the
we can integrate angular velocities for a few seconds and linear acyger alks around, because the act of walking adds high-frequency
celerations for a small fraction of a secofiie viable time interval - 5ppjes to the pitch and roll rotations and introduces spikes in the
for acceleration is small because the double integration needed tQ.celerometers. Many previous works, including the two that used
recover position generates drift errors that grow quadratically with jnertial sensors, focused on sitting users in flight simulators
tlm_e. Integration also requires initial estlmatgs fo_r p03|t|qn and ve- [1][24]125][35][37], so they did not encounter this problem. Smooth-
locity. Therefore, we implement the autocalibration routine as an j,q the predicted signals proved ifeetive because lowpass filter
“ideal noncausal predictdr The |d_§a is simple: if one could some- ing adds latencythe very thing we want to remov&he only way
how know the exact future velocities and accelerations of th&user e hayve been able to keep jitter at tolerable levels is by restricting
head, integrating these future values should result in nearly perfecl e giction distances to short intervals of around 80 ms or less. Fig-
prediction. Of course, this is impossible in realtime, but it is pos- \;re 35 shows a small segment of a quaternion curve with an overlayed
sible in simulation on a recorded dataset by using a noncausal appregicted curve The predicted curve was computed at 60 ms dis-
proach. Our “predictor” integrates the “future” angular velocities {ance |n comparison, Figure 36 shows the same curve with predic-
and linear accelerations for 100 mighis 100 ms “prediction” iS jon done at 130 ms distance. Note that not only is the prediction
repeated at many digfent starting times along the entire motion |ogq accurate, but the oscillations are muajeiaiThe same prob-
dataset. Powel’ method searches for the system parameters thalia, occurs with or without the use of inertial sensdFse pre-

result in the best match between the “predicted” positions and ori- jicted curve overlayed in Figure 37 was computed at 130 ms dis-
entations and the positions and orientations reported by the trackek, e without inertial sensors.

How well do these autocalibration procedures work? In practice, pregiction is most useful at relatively low prediction distances.
they provide reasonably consistent outputs for timeshifts, orienta-prggiiction is not a substitute for reducing overall system latency; it

tion and biases, but they are not robust at measuring scales. FQt, st be combined with fefits to reduce system lagrhose who

example, on one motion dataset the gyro pack orientations deterp,ye systems with 200 ms of lag and wish to use head-motion pre-
mined by both methods are within 0.5 degrees of each, @hér iciion to extrapolate across that distance are likely to be disap-
orientations computed from two fifent collected datasets gener pointed by the results.

ated results that ddr by 0.6 degrees. Unfortunatethe scales
determined by autocalibration are not nearly as consisidsu, it

has proven impossible to use autocalibration to measure the posi-
tions of the accelerometers (f@, F1, andF2 vectors imAppendix

A), so we simply use a ruler to measure thodée usually get a
closer fit with the gyros than with the accelerometers, a result that
merits further investigationThe parameters that are most reliably
determined appear to be the ones we are most sensitive to, which
presumably are also the ones th#getfthe prediction task the most.

Qx quaternion value

Qx quaternion value

Qx quaternion value

0.025

002 A\
0.015— / \
0.01 / \
0.005 / \\ v ;\\
i N /N 7 AN
0051 N \\\ 4 \ VAR o
PP G Dl / AT
-0.015
1 N\
-0.02 44— ‘ ‘ —— — —— g ‘ ‘ ‘
0.5 1 15 2 25 3 35 4 4.5 5
Time in seconds
= Predicted gx (inertial, 60 ms distance) — Actual gx
Figure 35: Jitter on gx cuve with inertial-based prediction and a 60 ms prediction distance
0.025
0.02 Q
0015 /AR
001 /AR [}
0_005§ A // \\ /\j/ﬂ% '\v N N
A VA NE/E Y=aA [\
o005 Ll N apld N4 \ V4 N
001 N V] \Y4 \\ /
-0.015 \\\\/7/// \///
-0.02 ~
-0.025 1 — :
0.5 1 15 2 25 3 35 4 4.5 5
Time in seconds
e Predicted gx (inertial, 130 ms distance) — Actual gqx
Figure 36: Jitter on gx cuve with inertial-based prediction and a 130 ms prediction distance
0.03
0.02 f C\
0.01 f / \\
i = chﬂ// \\ l// W\/\ JZaaN A
. T
-0.03 | —— ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.5 1 15 2 25 3 35 4 4.5 5
Time in seconds
e Predicted gx (non-inertial, 130 ms distance) Actual gx

Figure 37: Jitter on gx cuve with non-inertial-based prediction and a 130 ms prediction distance

E Estimating total prediction distance Figure 40 demonstrates théeefiveness of the estimation. It
Accurate prediction requires accurate estimation of how far to p!ot_s the_ estimated total prediction distance vs. the actugl total pre-
predict into the futureWhen we run predictors in simulation, we diction dls_tance for asequence of frames, from a real motion dataset
use a constant prediction distance. Many previous works do the_recorded |n_rea_lt|me\Ne detgrmmed the actual distances by recor_d-
same, even in runtime. Howeyesing a constant prediction dis- "9 the beginning and ending times for all the frames, computing
tance is not appropriate in our real system, because our tracker ani'® diferences after completing the data collection. Note that the
graphics engine run asynchronouslynless a system is set up so estimation is accurate, so the two curves overlap,_ except for one
all components run synchronouslyith guaranteed limits on how frame around #225When the estimation is wrong,stwrong by
long each step takes, the prediction distance will vary with time. 16:67 ms. Figure 40 also demonstrates how the total prediction
Therefore, the problem of estimating total prediction distance is likely diStance varies from iteration to iteration.
to occur in mosAugmented Reality systems. In Section 5.3 we
discussed steps taken to insure accurate timestamps and minimal
latency In this appendix, we describe how we estimate the total
prediction distance and evaluate the accuracy of this estimation.
We define the total prediction distance to be the interval from the - >
time when the tracker and inertial measurements are taken to the —
time when the frame bigr begins scanning out the images corre- H ﬁ

sponding to those measurements (Figure 38). Part of this distance

Total prediction distance

Measured C Estimated

is directly measurable. Our tracker provides timestamps for its Tracker, Predictor, viewpoint
measurements, and we can read the clock at the point labeled “Pre- communication, computation,

diction distance must be set here” in Figure 38. Howeerest of estimator lag rendering lag

the distance must be estimated/hy? The predictor requires a Tracker & Prediction Start of
distance to predict into the futur&he predictor must be run before inertial distance frame
viewpoint computation and rendering.herefore, the prediction measurements must be buffer
distance must be set right before we run the prediequiring us taken set here scanout

to estimate the length of the light-shaded interval in Figure 38.
Figure 39 shows how we generate this estimBle. key obser
vation is that our renderer is synchronized to the vertical retrace

Figure 38: Total prediction distance

signal, which occurs every 16.67 mEnus, the renderer is guaran- Esélmated

teed to render frames at 60 Hz, whether the tracker can keep up with Measured <_A><_> C

that or not. The estimated distance is made of three components. - > Time
ComponenA, the time needed to run the predictor and compute the] —
view matrices, is basically constant and can be measured during | | | | | |
trial runs. We compute component B, the delay until the renderer -—

accepts our new matrices, by finding the next rendering starting point ~ Times when renderer 16.67ms

that is greater than Measured +The predictor knows where these accepts new view matrices

starting points are because it receives a constant stream of past start-
ing points from the rendereBince the starting points are separated

by a strict 16.67 ms, #'easy to determine all future starting points,
given one point in the past. Finalgomponent C is 16.67 ms: the
time it takes the renderer to rasterize its images and copy them to
the frame buer.

0.075

A = Time to run predictor and view matrix computation
B = Delay until renderer accepts new matrices
C = Time for renderer to compute new images

Figure 39: Components of estimated distance

Ll
—®

0.07

0.065

NN AT
- [f

i
Pl
(

:
]

Prediction distance in seconds

0.05 T 1 1
0 50 100] 150 200 250
Frame number (each frame is 16.67 ms long)
—— Actual prediction distance —@—=Estimated prediction distance

Figure 40: Estimated vs. actual total prediction distances

F Miscellaneous comments

The HMD is not as firmly attached to the usdread as we would
like, but that has not turned out to be a major problem. Initially we
feared that moving the HMD on the usehead after calibration
would ruin the registration, but in practice it seems to have little
effect. Even if the HMD slides on the usehead, the HMD itself
stays rigid, so the relationship between the right eye display and the
head tracker remains constamhe user compensates for the HMD
sliding by rotating his eyeballlhe net change in the Eye+atker
transformation is small, causing little fdifence in apparent regis-
tration.

